Skip to main content

Advertisement

Log in

The influence of platelet membranes on tumour cell behaviour

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The significant role of platelets in the protection of tumour cells from immune attack and shear forces and the promotion of tumour cell extravasation from the bloodstream in the process of haematogenous metastasis have been extensively studied. The role of platelets, and in particular platelet membranes, in the promotion of a more metastatic phenotype in tumour cells is a more recent and, therefore, less well-recognised area of research. This review article summarises studies that have focused on the impact of tumour cell interactions with platelets and platelet membranes on tumour cell behaviour in vitro and in vivo. Furthermore, the gene expression changes that occur within tumour cells following contact with platelet membranes are also extensively reviewed. Overall, the interaction of platelet membranes with tumour cells results in a more invasive phenotype and the promotion of epithelial to mesenchymal transition with our own genetic studies revealing that matrix metalloproteinase-1, plasminogen activator inhibitor-1 and interleukin-8 are globally upregulated in a range of tumour cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liotta, L. A. (1992). Cancer cell invasion and metastasis. Scientific American, 266(2), 54–59 62–53.

    Article  CAS  PubMed  Google Scholar 

  2. Nierodzik, M. L., Klepfish, A., & Karpatkin, S. (1995). Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo. Thrombosis and Haemostasis, 74(1), 282–290.

    CAS  PubMed  Google Scholar 

  3. Gay, L. J., & Felding-Habermann, B. (2011). Contribution of platelets to tumour metastasis. Nature Reviews. Cancer, 11(2), 123–134.

    Article  CAS  PubMed  Google Scholar 

  4. Bendas, G., & Borsig, L. (2012). Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. International Journal of Cell Biology, 2012, 676731. doi:10.1155/2012/676731.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Coupland, L. A., & Parish, C. R. (2014). Platelets, selectins, and the control of tumor metastasis. Seminars in Oncology, 41(3), 422–434. doi:10.1053/j.seminoncol.2014.04.003.

    Article  CAS  PubMed  Google Scholar 

  6. Meikle, C. K., Kelly, C. A., Garg, P., Wuescher, L. M., Ali, R. A., & Worth, R. G. (2016). Cancer and thrombosis: the platelet perspective. Frontiers in Cell and Development Biology, 4, 147. doi:10.3389/fcell.2016.00147.

    Google Scholar 

  7. Leblanc, R., & Peyruchaud, O. (2016). Metastasis: new functional implications of platelets and megakaryocytes. Blood, 128(1), 24–31. doi:10.1182/blood-2016-01-636399.

    Article  CAS  PubMed  Google Scholar 

  8. Baj-Krzyworzeka, M., Majka, M., Pratico, D., Ratajczak, J., Vilaire, G., Kijowski, J., et al. (2002). Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Experimental Hematology, 30(5), 450–459.

    Article  CAS  PubMed  Google Scholar 

  9. Janowska-Wieczorek, A., Marquez-Curtis, L. A., Wysoczynski, M., & Ratajczak, M. Z. (2006). Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion, 46(7), 1199–1209.

    Article  PubMed  Google Scholar 

  10. Dashevsky, O., Varon, D., & Brill, A. (2009). Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. International Journal of Cancer, 124(8), 1773–1777. doi:10.1002/ijc.24016.

    Article  CAS  PubMed  Google Scholar 

  11. Labelle, M., Begum, S., & Hynes, R. O. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 20(5), 576–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carr, B. I., Cavallini, A., D’Alessandro, R., Refolo, M. G., Lippolis, C., Mazzocca, A., et al. (2014). Platelet extracts induce growth, migration and invasion in human hepatocellular carcinoma in vitro. BMC Cancer, 14, 43. doi:10.1186/1471-2407-14-43.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Orellana, R., Kato, S., Erices, R., Bravo, M. L., Gonzalez, P., Oliva, B., et al. (2015). Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer, 15, 290. doi:10.1186/s12885-015-1304-z.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pang, J. H., Coupland, L. A., Freeman, C., Chong, B. H., & Parish, C. R. (2015). Activation of tumour cell ECM degradation by thrombin-activated platelet membranes: potentially a P-selectin and GPIIb/IIIa-dependent process. Clinical & Experimental Metastasis, 32(5), 495–505. doi:10.1007/s10585-015-9722-5.

    Article  CAS  Google Scholar 

  15. Dovizio, M., Alberti, S., Sacco, A., Guillem-Llobat, P., Schiavone, S., Maier, T. J., et al. (2015). Novel insights into the regulation of cyclooxygenase-2 expression by platelet-cancer cell cross-talk. Biochemical Society Transactions, 43(4), 707–714. doi:10.1042/BST20140322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gasic, G. J., Gasic, T. B., & Stewart, C. C. (1968). Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences of the United States of America, 61(1), 46–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karpatkin, S., & Pearlstein, E. (1981). Role of platelets in tumor cell metastasis. [Review]. Annals of Internal Medicine, 95(5), 636–641.

    Article  CAS  PubMed  Google Scholar 

  18. Kim, Y. J., Borsig, L., Varki, N. M., & Varki, A. (1998). P-selectin deficiency attenuates tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 95(16), 9325–9330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amirkhosravi, A., Amaya, M., Siddiqui, F., Biggerstaff, J. P., Meyer, T. V., & Francis, J. L. (1999). Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis. Platelets, 10(5), 285–292. doi:10.1080/09537109975915.

    Article  CAS  PubMed  Google Scholar 

  20. Nieswandt, B., Hafner, M., Echtenacher, B., & Mannel, D. N. (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Research, 59(6), 1295–1300.

    CAS  PubMed  Google Scholar 

  21. Jain, S., Zuka, M., Liu, J., Russell, S., Dent, J., Guerrero, J. A., et al. (2007). Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9024–9028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kato, Y., Kaneko, M. K., Kunita, A., Ito, H., Kameyama, A., Ogasawara, S., et al. (2008). Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Science, 99(1), 54–61. doi:10.1111/j.1349-7006.2007.00634.x.

    CAS  PubMed  Google Scholar 

  23. Jain, S., Russell, S., & Ware, J. (2009). Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. Journal of Thrombosis and Haemostasis, 7(10), 1713–1717.

    Article  CAS  PubMed  Google Scholar 

  24. Coupland, L. A., Chong, B. H., & Parish, C. R. (2012). Platelets and P-Selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells. Cancer Research, 72(18), 4662–4671.

  25. Lonsdorf, A. S., Kramer, B. F., Fahrleitner, M., Schonberger, T., Gnerlich, S., Ring, S., et al. (2012). Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. The Journal of Biological Chemistry, 287(3), 2168–2178.

    Article  CAS  PubMed  Google Scholar 

  26. Chang, Y. S., di Tomaso, E., McDonald, D. M., Jones, R., Jain, R. K., & Munn, L. L. (2000). Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14608–14613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Janowska-Wieczorek, A., Wysoczynski, M., Kijowski, J., Marquez-Curtis, L., Machalinski, B., Ratajczak, J., et al. (2005). Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. International Journal of Cancer, 113(5), 752–760.

    Article  CAS  PubMed  Google Scholar 

  28. Park, H. B., Yang, J. H., & Chung, K. H. (2011). Characterization of the cytokine profile of platelet rich plasma (PRP) and PRP-induced cell proliferation and migration: upregulation of matrix metalloproteinase-1 and -9 in HaCaT cells. Korean Journal of Hematology, 46(4), 265–273. doi:10.5045/kjh.2011.46.4.265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Echtler, K., Konrad, I., Lorenz, M., Schneider, S., Hofmaier, S., Plenagl, F., et al. (2017). Platelet GPIIb supports initial pulmonary retention but inhibits subsequent proliferation of melanoma cells during hematogenic metastasis. PloS One, 12(3), e0172788. doi:10.1371/journal.pone.0172788.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dvorak, H. F. (2015). Tumors: wounds that do not heal-redux. Cancer Immunology Research, 3(1), 1–11. doi:10.1158/2326-6066.CIR-14-0209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dovizio, M., Maier, T. J., Alberti, S., Di Francesco, L., Marcantoni, E., Munch, G., et al. (2013). Pharmacological inhibition of platelet-tumor cell cross-talk prevents platelet-induced overexpression of cyclooxygenase-2 in HT29 human colon carcinoma cells. Molecular Pharmacology, 84(1), 25–40. doi:10.1124/mol.113.084988.

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M. K., Mishima, K., Yatomi, Y., et al. (2007). Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. The Journal of Biological Chemistry, 282(36), 25993–26001.

    Article  CAS  PubMed  Google Scholar 

  33. Martin-Villar, E., Megias, D., Castel, S., Yurrita, M. M., Vilaro, S., & Quintanilla, M. (2006). Podoplanin binds ERM proteins to activate RhoA and promote epithelial-mesenchymal transition. Journal of Cell Science, 119(Pt 21), 4541–4553. doi:10.1242/jcs.03218.

    Article  CAS  PubMed  Google Scholar 

  34. Takagi, S., Sato, S., Oh-hara, T., Takami, M., Koike, S., Mishima, Y., et al. (2013). Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2. PloS One, 8(8), e73609. doi:10.1371/journal.pone.0073609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takemoto, A., Okitaka, M., Takagi, S., Takami, M., Sato, S., Nishio, M., et al. (2017). A critical role of platelet TGF-beta release in podoplanin-mediated tumour invasion and metastasis. Scientific Reports, 7, 42186. doi:10.1038/srep42186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lowe, K. L., Navarro-Nunez, L., & Watson, S. P. (2012). Platelet CLEC-2 and podoplanin in cancer metastasis. Thrombosis Research, 129(Suppl 1), S30–S37. doi:10.1016/S0049-3848(12)70013-0.

    Article  CAS  PubMed  Google Scholar 

  37. Yu, L. X., Yan, L., Yang, W., Wu, F. Q., Ling, Y., Chen, S. Z., et al. (2014). Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nature Communications, 5, 5256. doi:10.1038/ncomms6256.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, G., Han, J., Welch, E. J., Ye, R. D., Voyno-Yasenetskaya, T. A., Malik, A. B., et al. (2009). Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. Journal of Immunology, 182(12), 7997–8004. doi:10.4049/jimmunol.0802884.

    Article  CAS  Google Scholar 

  39. Qi, C., Wei, B., Zhou, W., Yang, Y., Li, B., Guo, S., et al. (2015). P-selectin-mediated platelet adhesion promotes tumor growth. Oncotarget, 6(9), 6584–6596. doi:10.18632/oncotarget.3164.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tadokoro, S., Shattil, S. J., Eto, K., Tai, V., Liddington, R. C., de Pereda, J. M., et al. (2003). Talin binding to integrin beta tails: a final common step in integrin activation. Science, 302(5642), 103–106. doi:10.1126/science.1086652.

    Article  CAS  PubMed  Google Scholar 

  41. Nieswandt, B., Moser, M., Pleines, I., Varga-Szabo, D., Monkley, S., Critchley, D., et al. (2007). Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. The Journal of Experimental Medicine, 204(13), 3113–3118. doi:10.1084/jem.20071827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Petrich, B. G., Marchese, P., Ruggeri, Z. M., Spiess, S., Weichert, R. A., Ye, F., et al. (2007). Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. The Journal of Experimental Medicine, 204(13), 3103–3111. doi:10.1084/jem.20071800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fulkerson, Z., Wu, T., Sunkara, M., Kooi, C. V., Morris, A. J., & Smyth, S. S. (2011). Binding of autotaxin to integrins localizes lysophosphatidic acid production to platelets and mammalian cells. The Journal of Biological Chemistry, 286(40), 34654–34663. doi:10.1074/jbc.M111.276725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boucharaba, A., Serre, C. M., Gres, S., Saulnier-Blache, J. S., Bordet, J. C., Guglielmi, J., et al. (2004). Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. The Journal of Clinical Investigation, 114(12), 1714–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Leblanc, R., Lee, S. C., David, M., Bordet, J. C., Norman, D. D., Patil, R., et al. (2014). Interaction of platelet-derived autotaxin with tumor integrin alphaVbeta3 controls metastasis of breast cancer cells to bone. Blood, 124(20), 3141–3150. doi:10.1182/blood-2014-04-568683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mannori, G., Crottet, P., Cecconi, O., Hanasaki, K., Aruffo, A., Nelson, R. M., et al. (1995). Differential colon cancer cell adhesion to E-, P-, and L-selectin: role of mucin-type glycoproteins. Cancer Research, 55(19), 4425–4431.

    CAS  PubMed  Google Scholar 

  47. Nath, S., & Mukherjee, P. (2014). MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends in Molecular Medicine, 20(6), 332–342. doi:10.1016/j.molmed.2014.02.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Facey, A., Pinar, I., Arthur, J. F., Qiao, J., Jing, J., Mado, B., et al. (2016). A-disintegrin-and-metalloproteinase (ADAM) 10 activity on resting and activated platelets. Biochemistry, 55(8), 1187–1194. doi:10.1021/acs.biochem.5b01102.

    Article  CAS  PubMed  Google Scholar 

  49. Cathcart, J., Pulkoski-Gross, A., & Cao, J. (2015). Targeting matrix metalloproteinases in cancer: bringing new life to old ideas. Genes Diseases, 2(1), 26–34. doi:10.1016/j.gendis.2014.12.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu, P., Weaver, V. M., & Werb, Z. (2012). The extracellular matrix: a dynamic niche in cancer progression. The Journal of Cell Biology, 196(4), 395–406. doi:10.1083/jcb.201102147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sunami, E., Tsuno, N., Osada, T., Saito, S., Kitayama, J., Tomozawa, S., et al. (2000). MMP-1 is a prognostic marker for hematogenous metastasis of colorectal cancer. The Oncologist, 5(2), 108–114.

    Article  CAS  PubMed  Google Scholar 

  52. Liu, H., Kato, Y., Erzinger, S. A., Kiriakova, G. M., Qian, Y., Palmieri, D., et al. (2012). The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model. BMC Cancer, 12, 583. doi:10.1186/1471-2407-12-583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kwaan, H. C., Wang, J., Svoboda, K., & Declerck, P. J. (2000). Plasminogen activator inhibitor 1 may promote tumour growth through inhibition of apoptosis. British Journal of Cancer, 82(10), 1702–1708. doi:10.1054/bjoc.2000.1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Andreasen, P. A. (2007). PAI-1—a potential therapeutic target in cancer. Current Drug Targets, 8(9), 1030–1041.

    Article  CAS  PubMed  Google Scholar 

  55. Singh, J. K., Simoes, B. M., Howell, S. J., Farnie, G., & Clarke, R. B. (2013). Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Research, 15(4), 210. doi:10.1186/bcr3436.

    Article  PubMed  PubMed Central  Google Scholar 

  56. David, J. M., Dominguez, C., Hamilton, D. H., & Palena, C. (2016). The IL-8/IL-8R axis: a double agent in tumor immune resistance. Vaccines, 4(3), 22–37.

  57. Duffy, M. J., McGowan, P. M., Harbeck, N., Thomssen, C., & Schmitt, M. (2014). uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Research, 16(4), 428. doi:10.1186/s13058-014-0428-4.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Huber, M. C., Mall, R., Braselmann, H., Feuchtinger, A., Molatore, S., Lindner, K., et al. (2016). uPAR enhances malignant potential of triple-negative breast cancer by directly interacting with uPA and IGF1R. BMC Cancer, 16, 615. doi:10.1186/s12885-016-2663-9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bandyopadhyay, A., & Raghavan, S. (2009). Defining the role of integrin alphavbeta6 in cancer. Current Drug Targets, 10(7), 645–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lebrun, J. J. (2012). The dual role of TGFbeta in human cancer: from tumor suppression to cancer metastasis. ISRN Molecular Biology, 2012, 381428. doi:10.5402/2012/381428.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ranganathan, P., Agrawal, A., Bhushan, R., Chavalmane, A. K., Kalathur, R. K., Takahashi, T., et al. (2007). Expression profiling of genes regulated by TGF-beta: differential regulation in normal and tumour cells. BMC Genomics, 8, 98. doi:10.1186/1471-2164-8-98.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Holting, T., Siperstein, A. E., Clark, O. H., & Duh, Q. Y. (1995). Epidermal growth factor (EGF)- and transforming growth factor alpha-stimulated invasion and growth of follicular thyroid cancer cells can be blocked by antagonism to the EGF receptor and tyrosine kinase in vitro. European Journal of Endocrinology, 132(2), 229–235.

    Article  CAS  PubMed  Google Scholar 

  63. Humphreys, R. C., & Hennighausen, L. (2000). Transforming growth factor alpha and mouse models of human breast cancer. Oncogene, 19(8), 1085–1091. doi:10.1038/sj.onc.1203278.

    Article  CAS  PubMed  Google Scholar 

  64. Li, Y., Wang, L., Pappan, L., Galliher-Beckley, A., & Shi, J. (2012). IL-1beta promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Molecular Cancer, 11, 87. doi:10.1186/1476-4598-11-87.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Apte, R. N., Dotan, S., Elkabets, M., White, M. R., Reich, E., Carmi, Y., et al. (2006). The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Reviews, 25(3), 387–408. doi:10.1007/s10555-006-9004-4.

    Article  CAS  PubMed  Google Scholar 

  66. Waalkes, S., Atschekzei, F., Kramer, M. W., Hennenlotter, J., Vetter, G., Becker, J. U., et al. (2010). Fibronectin 1 mRNA expression correlates with advanced disease in renal cancer. BMC Cancer, 10, 503. doi:10.1186/1471-2407-10-503.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gouveia-Fernandes, S., Carvalho, T., Domingues, G., Bordeira-Carrico, R., Dias, S., & Serpa, J. (2016). Colorectal cancer aggressiveness is related to fibronectin over expression, driving the activation of SDF-1:CXCR4 axis. International Journal of Cancer and Clinical Research, 3(8), 72–81.

  68. Yan, T., Lin, Z., Jiang, J., Lu, S., Chen, M., Que, H., et al. (2015). MMP14 regulates cell migration and invasion through epithelial-mesenchymal transition in nasopharyngeal carcinoma. American Journal of Translational Research, 7(5), 950–958.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Duggan, C., Kennedy, S., Kramer, M. D., Barnes, C., Elvin, P., McDermott, E., et al. (1997). Plasminogen activator inhibitor type 2 in breast cancer. British Journal of Cancer, 76(5), 622–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Robert, C., Bolon, I., Gazzeri, S., Veyrenc, S., Brambilla, C., & Brambilla, E. (1999). Expression of plasminogen activator inhibitors 1 and 2 in lung cancer and their role in tumor progression. Clinical Cancer Research, 5(8), 2094–2102.

    CAS  PubMed  Google Scholar 

  71. Su, C. Y., Liu, Y. P., Yang, C. J., Lin, Y. F., Chiou, J., Chi, L. H., et al. (2015). Plasminogen activator inhibitor-2 plays a leading prognostic role among protease families in non-small cell lung cancer. PloS One, 10(7), 1–15.

    Google Scholar 

  72. Thapa, R., & Wilson, G. D. (2016). The importance of CD44 as a stem cell biomarker and therapeutic target in cancer. Stem Cells International, 2016, 2087204. doi:10.1155/2016/2087204.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mao, X., Gauche, C., Coughtrie, M. W., Bui, C., Gulberti, S., Merhi-Soussi, F., et al. (2016). The heparan sulfate sulfotransferase 3-OST3A (HS3ST3A) is a novel tumor regulator and a prognostic marker in breast cancer. Oncogene, 35(38), 5043–5055. doi:10.1038/onc.2016.44.

    Article  CAS  PubMed  Google Scholar 

  74. Chen, Y., Satoh, T., Sasatomi, E., Miyazaki, K., & Tokunaga, O. (2001). Critical role of type IV collagens in the growth of bile duct carcinoma. In vivo and in vitro studies. Pathology, Research and Practice, 197(9), 585–596. doi:10.1078/0344-0338-00132.

    CAS  PubMed  Google Scholar 

  75. Ohlund, D., Franklin, O., Lundberg, E., Lundin, C., & Sund, M. (2013). Type IV collagen stimulates pancreatic cancer cell proliferation, migration, and inhibits apoptosis through an autocrine loop. BMC Cancer, 13, 154. doi:10.1186/1471-2407-13-154.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ortiz-Urda, S., Garcia, J., Green, C. L., Chen, L., Lin, Q., Veitch, D. P., et al. (2005). Type VII collagen is required for Ras-driven human epidermal tumorigenesis. Science, 307(5716), 1773–1776. doi:10.1126/science.1106209.

    Article  CAS  PubMed  Google Scholar 

  77. Dang, C. V. (2012). MYC on the path to cancer. Cell, 149(1), 22–35. doi:10.1016/j.cell.2012.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mitrugno, A., Sylman, J. L., Ngo, A. T., Pang, J., Sears, R. C., Williams, C. D., et al. (2017). Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: implications for the oncoprotein c-MYC. American Journal of Physiology. Cell Physiology, 312(2), C176–C189. doi:10.1152/ajpcell.00196.2016.

    Article  PubMed  Google Scholar 

  79. Savore, C., Zhang, C., Muir, C., Liu, R., Wyrwa, J., Shu, J., et al. (2005). Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. Clinical & Experimental Metastasis, 22(5), 377–390. doi:10.1007/s10585-005-2339-3.

    Article  CAS  Google Scholar 

  80. Musgrove, E. A., Caldon, C. E., Barraclough, J., Stone, A., & Sutherland, R. L. (2011). Cyclin D as a therapeutic target in cancer. Nature Reviews. Cancer, 11(8), 558–572. doi:10.1038/nrc3090.

    Article  CAS  PubMed  Google Scholar 

  81. Radziwon-Balicka, A., Medina, C., O’Driscoll, L., Treumann, A., Bazou, D., Inkielewicz-Stepniak, I., et al. (2012). Platelets increase survival of adenocarcinoma cells challenged with anticancer drugs: mechanisms and implications for chemoresistance. British Journal of Pharmacology, 167(4), 787–804. doi:10.1111/j.1476-5381.2012.01991.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Song, G., Xu, S., Zhang, H., Wang, Y., Xiao, C., Jiang, T., et al. (2016). TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway. Journal of Experimental & Clinical Cancer Research, 35(1), 148. doi:10.1186/s13046-016-0427-7.

    Article  Google Scholar 

  83. Honn, K. V., Cavanaugh, P., Evens, C., Taylor, J. D., & Sloane, B. F. (1982). Tumor cell-platelet aggregation: induced by cathepsin B-like proteinase and inhibited by prostacyclin. Science, 217(4559), 540–542.

    Article  CAS  PubMed  Google Scholar 

  84. Aggarwal, N., & Sloane, B. F. (2014). Cathepsin B: multiple roles in cancer. Proteomics. Clinical Applications, 8(5–6), 427–437. doi:10.1002/prca.201300105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang, J. L., Chen, Z. F., Chen, H. M., Wang, M. Y., Kong, X., Wang, Y. C., et al. (2014). Elf3 drives beta-catenin transactivation and associates with poor prognosis in colorectal cancer. Cell Death & Disease, 5, e1263. doi:10.1038/cddis.2014.206.

    Article  CAS  Google Scholar 

  86. Gajulapalli, V. N., Samanthapudi, V. S., Pulaganti, M., Khumukcham, S. S., Malisetty, V. L., Guruprasad, L., et al. (2016). A transcriptional repressive role for epithelial-specific ETS factor ELF3 on oestrogen receptor alpha in breast cancer cells. The Biochemical Journal, 473(8), 1047–1061. doi:10.1042/BCJ20160019.

    Article  CAS  PubMed  Google Scholar 

  87. Rizzolio, S., & Tamagnone, L. (2007). Semaphorin signals on the road to cancer invasion and metastasis. Cell Adhesion & Migration, 1(2), 62–68.

    Article  Google Scholar 

  88. Daniel-Carmi, V., Makovitzki-Avraham, E., Reuven, E. M., Goldstein, I., Zilkha, N., Rotter, V., et al. (2009). The human 1-8D gene (IFITM2) is a novel p53 independent pro-apoptotic gene. International Journal of Cancer, 125(12), 2810–2819. doi:10.1002/ijc.24669.

    Article  CAS  PubMed  Google Scholar 

  89. Fullar, A., Baghy, K., Deak, F., Peterfia, B., Zsak, Y., Tatrai, P., et al. (2014). Lack of Matrilin-2 favors liver tumor development via Erk1/2 and GSK-3beta pathways in vivo. PloS One, 9(4), e93469. doi:10.1371/journal.pone.0093469.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Korpos, E., Deak, F., & Kiss, I. (2015). Matrilin-2, an extracellular adaptor protein, is needed for the regeneration of muscle, nerve and other tissues. Neural Regeneration Research, 10(6), 866–869. doi:10.4103/1673-5374.158332.

    Article  PubMed  PubMed Central  Google Scholar 

  91. McIlwain, D. R., Berger, T., & Mak, T. W. (2015). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 7(4), doi:10.1101/cshperspect.a026716.

  92. Ozaki, T., & Nakagawara, A. (2011). Role of p53 in cell death and human cancers. Cancers (Basel), 3(1), 994–1013. doi:10.3390/cancers3010994.

    Article  CAS  PubMed Central  Google Scholar 

  93. Clarke, C. J., Berg, T. J., Birch, J., Ennis, D., Mitchell, L., Cloix, C., et al. (2016). The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis. Current Biology, 26(6), 755–765. doi:10.1016/j.cub.2016.01.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, Y., An, S., Ward, R., Yang, Y., Guo, X. X., Li, W., et al. (2016). G protein-coupled receptors as promising cancer targets. Cancer Letters, 376(2), 226–239. doi:10.1016/j.canlet.2016.03.031.

    Article  CAS  PubMed  Google Scholar 

  95. Shevde, L. A., & Samant, R. S. (2014). Role of osteopontin in the pathophysiology of cancer. Matrix Biology, 37, 131–141. doi:10.1016/j.matbio.2014.03.001.

    Article  CAS  PubMed  Google Scholar 

  96. Gu, L., Zhu, N., Zhang, H., Durden, D. L., Feng, Y., & Zhou, M. (2009). Regulation of XIAP translation and induction by MDM2 following irradiation. Cancer Cell, 15(5), 363–375. doi:10.1016/j.ccr.2009.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xie, Y., Camps, J., Awad, K. S., Wangsa, D., Yang, J., Yoo, N., et al. (2011). Abstract 135: MicroRNA repression of BIRC4/XIAP in lung cancer. Paper presented at the AACR 102nd Annual Meeting, Orlando, FL.

  98. Yip, K. W., & Reed, J. C. (2008). Bcl-2 family proteins and cancer. Oncogene, 27(50), 6398–6406. doi:10.1038/onc.2008.307.

    Article  CAS  PubMed  Google Scholar 

  99. Blick, T., Widodo, E., Hugo, H., Waltham, M., Lenburg, M. E., Neve, R. M., et al. (2008). Epithelial mesenchymal transition traits in human breast cancer cell lines. Clinical & Experimental Metastasis, 25(6), 629–642. doi:10.1007/s10585-008-9170-6.

    Article  CAS  Google Scholar 

  100. Akalay, I., Janji, B., Hasmim, M., Noman, M. Z., Andre, F., De Cremoux, P., et al. (2013). Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Research, 73(8), 2418–2427. doi:10.1158/0008-5472.CAN-12-2432.

    Article  CAS  PubMed  Google Scholar 

  101. Nurden, A. T., Nurden, P., Sanchez, M., Andia, I., & Anitua, E. (2008). Platelets and wound healing. Frontiers in Bioscience, 13, 3532–3548.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Health and Medical Research Council of Australia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LA Coupland.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coupland, L., Hindmarsh, E., Gardiner, E. et al. The influence of platelet membranes on tumour cell behaviour. Cancer Metastasis Rev 36, 215–224 (2017). https://doi.org/10.1007/s10555-017-9671-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-017-9671-3

Keywords

Navigation