Immunotherapy for breast cancer: past, present, and future

Abstract

Immunotherapy has shown promise in many solid tumors including melanoma and non-small cell lung cancer with an evolving role in breast cancer. Immunotherapy encompasses a wide range of therapies including immune checkpoint inhibition, monoclonal antibodies, bispecific antibodies, vaccinations, antibody-drug conjugates, and identifying other emerging interventions targeting the tumor microenvironment. Increasing efficacy of these treatments in breast cancer patients requires identification of better biomarkers to guide patient selection; recognizing when to initiate these therapies in multi-modality treatment plans; establishing novel assays to monitor immune-mediated responses; and creating combined systemic therapy options incorporating conventional treatments such as chemotherapy and endocrine therapy. This review will focus on the current role and future directions of many of these immunotherapies in breast cancer, as well as highlighting clinical trials that are investigating several of these active issues.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Finn, O. J. (2008). Cancer immunology. The New England Journal of Medicine, 358(25), 2704–2715. doi:10.1056/NEJMra072739.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Murphy, J. F. (2010). Trends in cancer immunotherapy. Clin Med Insights Oncol, 4, 67–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Fisher, R. I., Rosenberg, S. A., & Fyfe, G. (2000). Long-term survival update for high-dose recombinant interleukin-2 in patients with renal cell carcinoma. The Cancer Journal from Scientific American, 6(Suppl 1), S55–S57.

    PubMed  Google Scholar 

  4. 4.

    Eggermont, A. M., Suciu, S., Santinami, M., Testori, A., Kruit, W. H., Marsden, J., et al. (2008). Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. Lancet, 372(9633), 117–126. doi:10.1016/S0140-6736(08)61033-8.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Fyfe, G., Fisher, R. I., Rosenberg, S. A., Sznol, M., Parkinson, D. R., & Louie, A. C. (1995). Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. Journal of Clinical Oncology, 13(3), 688–696.

    CAS  PubMed  Google Scholar 

  6. 6.

    Chavez-Galan, L., Arenas-Del Angel, M. C., Zenteno, E., Chavez, R., & Lascurain, R. (2009). Cell death mechanisms induced by cytotoxic lymphocytes. Cellular & Molecular Immunology, 6(1), 15–25. doi:10.1038/cmi.2009.3.

    CAS  Article  Google Scholar 

  7. 7.

    Nimmerjahn, F., & Ravetch, J. V. (2008). Fcgamma receptors as regulators of immune responses. Nature Reviews. Immunology, 8(1), 34–47. doi:10.1038/nri2206.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Bakema, J. E., & van Egmond, M. (2014). Fc receptor-dependent mechanisms of monoclonal antibody therapy of cancer. Current Topics in Microbiology and Immunology, 382, 373–392. doi:10.1007/978-3-319-07911-0_17.

    CAS  PubMed  Google Scholar 

  9. 9.

    Chung, S., Lin, Y. L., Reed, C., Ng, C., Cheng, Z. J., Malavasi, F., et al. (2014). Characterization of in vitro antibody-dependent cell-mediated cytotoxicity activity of therapeutic antibodies - impact of effector cells. Journal of Immunological Methods, 407, 63–75. doi:10.1016/j.jim.2014.03.021.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Rudd, C. E., Taylor, A., & Schneider, H. (2009). CD28 and CTLA-4 coreceptor expression and signal transduction. Immunological Reviews, 229(1), 12–26. doi:10.1111/j.1600-065X.2009.00770.x.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews. Cancer, 12(4), 252–264. doi:10.1038/nrc3239.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Wing, K., Onishi, Y., Prieto-Martin, P., Yamaguchi, T., Miyara, M., Fehervari, Z., et al. (2008). CTLA-4 control over Foxp3+ regulatory T cell function. Science, 322(5899), 271–275. doi:10.1126/science.1160062.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Peggs, K. S., Quezada, S. A., Chambers, C. A., Korman, A. J., & Allison, J. P. (2009). Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. The Journal of Experimental Medicine, 206(8), 1717–1725. doi:10.1084/jem.20082492.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Hodi, F. S., O'Day, S. J., McDermott, D. F., Weber, R. W., Sosman, J. A., Haanen, J. B., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. The New England Journal of Medicine, 363(8), 711–723. doi:10.1056/NEJMoa1003466.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Simpson, T. R., Li, F., Montalvo-Ortiz, W., Sepulveda, M. A., Bergerhoff, K., Arce, F., et al. (2013). Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. The Journal of Experimental Medicine, 210(9), 1695–1710. doi:10.1084/jem.20130579.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Bulliard, Y., Jolicoeur, R., Windman, M., Rue, S. M., Ettenberg, S., Knee, D. A., et al. (2013). Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. The Journal of Experimental Medicine, 210(9), 1685–1693. doi:10.1084/jem.20130573.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Ribas, A., Kefford, R., Marshall, M. A., Punt, C. J., Haanen, J. B., Marmol, M., et al. (2013). Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. Journal of Clinical Oncology, 31(5), 616–622. doi:10.1200/JCO.2012.44.6112.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Vonderheide, R. H., LoRusso, P. M., Khalil, M., Gartner, E. M., Khaira, D., Soulieres, D., et al. (2010). Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clinical Cancer Research, 16(13), 3485–3494. doi:10.1158/1078-0432.CCR-10-0505.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Keir, M. E., Butte, M. J., Freeman, G. J., & Sharpe, A. H. (2008). PD-1 and its ligands in tolerance and immunity. Annual Review of Immunology, 26, 677–704. doi:10.1146/annurev.immunol.26.021607.090331.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Fife, B. T., Pauken, K. E., Eagar, T. N., Obu, T., Wu, J., Tang, Q., et al. (2009). Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nature Immunology, 10(11), 1185–1192. doi:10.1038/ni.1790.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Barber, D. L., Wherry, E. J., Masopust, D., Zhu, B., Allison, J. P., Sharpe, A. H., et al. (2006). Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 439(7077), 682–687. doi:10.1038/nature04444.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Freeman, G. J., Long, A. J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., et al. (2000). Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. The Journal of Experimental Medicine, 192(7), 1027–1034.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Ahmadzadeh, M., Johnson, L. A., Heemskerk, B., Wunderlich, J. R., Dudley, M. E., White, D. E., et al. (2009). Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, 114(8), 1537–1544. doi:10.1182/blood-2008-12-195792.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hirano, F., Flies, D. B., et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Medicine, 8(8), 793–800. doi:10.1038/nm730.

    CAS  PubMed  Google Scholar 

  25. 25.

    Taube, J. M., Anders, R. A., Young, G. D., Xu, H., Sharma, R., McMiller, T. L., et al. (2012). Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Science Translational Medicine, 4(127), 127ra137. doi:10.1126/scitranslmed.3003689.

    Article  CAS  Google Scholar 

  26. 26.

    Muenst, S., Soysal, S. D., Gao, F., Obermann, E. C., Oertli, D., & Gillanders, W. E. (2013). The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Research and Treatment, 139(3), 667–676. doi:10.1007/s10549-013-2581-3.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Ghebeh, H., Mohammed, S., Al-Omair, A., Qattan, A., Lehe, C., Al-Qudaihi, G., et al. (2006). The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia, 8(3), 190–198. doi:10.1593/neo.05733.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Sabatier, R., Finetti, P., Mamessier, E., Adelaide, J., Chaffanet, M., Ali, H. R., et al. (2015). Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget, 6(7), 5449–5464.

    PubMed  Article  Google Scholar 

  29. 29.

    Mittendorf, E. A., Philips, A. V., Meric-Bernstam, F., Qiao, N., Wu, Y., Harrington, S., et al. (2014). PD-L1 expression in triple-negative breast cancer. Cancer Immunology Research, 2(4), 361–370. doi:10.1158/2326-6066.CIR-13-0127.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Gatalica, Z., Snyder, C., Maney, T., Ghazalpour, A., Holterman, D. A., Xiao, N., et al. (2014). Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiology, Biomarkers & Prevention, 23(12), 2965–2970. doi:10.1158/1055-9965.EPI-14-0654.

    CAS  Article  Google Scholar 

  31. 31.

    Zhang, P., Su, D. M., Liang, M., & Fu, J. (2008). Chemopreventive agents induce programmed death-1-ligand 1 (PD-L1) surface expression in breast cancer cells and promote PD-L1-mediated T cell apoptosis. Molecular Immunology, 45(5), 1470–1476. doi:10.1016/j.molimm.2007.08.013.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Wimberly, H., Brown, J. R., Schalper, K., Haack, H., Silver, M. R., Nixon, C., et al. (2015). PD-L1 expression correlates with tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy in breast cancer. Cancer Immunology Research, 3(4), 326–332. doi:10.1158/2326-6066.CIR-14-0133.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Verbrugge, I., Hagekyriakou, J., Sharp, L. L., Galli, M., West, A., McLaughlin, N. M., et al. (2012). Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Research, 72(13), 3163–3174. doi:10.1158/0008-5472.CAN-12-0210.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Ge, Y., Xi, H., Ju, S., & Zhang, X. (2013). Blockade of PD-1/PD-L1 immune checkpoint during DC vaccination induces potent protective immunity against breast cancer in hu-SCID mice. Cancer Letters, 336(2), 253–259. doi:10.1016/j.canlet.2013.03.010.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Stagg, J., Loi, S., Divisekera, U., Ngiow, S. F., Duret, H., Yagita, H., et al. (2011). Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proceedings of the National Academy of Sciences of the United States of America, 108(17), 7142–7147. doi:10.1073/pnas.1016569108.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Gangadhar, T. C., & Vonderheide, R. H. (2014). Mitigating the toxic effects of anticancer immunotherapy. Nature Reviews. Clinical Oncology, 11(2), 91–99. doi:10.1038/nrclinonc.2013.245.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Mohit, E., Hashemi, A., & Allahyari, M. (2014). Breast cancer immunotherapy: monoclonal antibodies and peptide-based vaccines. Expert Review of Clinical Immunology, 10(7), 927–961. doi:10.1586/1744666X.2014.916211.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Weber, J. S., D'Angelo, S. P., Minor, D., Hodi, F. S., Gutzmer, R., Neyns, B., et al. (2015). Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. The Lancet Oncology, 16(4), 375–384. doi:10.1016/S1470-2045(15)70076-8.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Brahmer, J., Reckamp, K. L., Baas, P., Crino, L., Eberhardt, W. E., Poddubskaya, E., et al. (2015). Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. The New England Journal of Medicine, 373(2), 123–135. doi:10.1056/NEJMoa1504627.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Motzer, R. J., Escudier, B., McDermott, D. F., George, S., Hammers, H. J., Srinivas, S., et al. (2015). Nivolumab versus everolimus in advanced renal-cell carcinoma. The New England Journal of Medicine, 373(19), 1803–1813. doi:10.1056/NEJMoa1510665.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Robert, C., Ribas, A., Wolchok, J. D., Hodi, F. S., Hamid, O., Kefford, R., et al. (2014). Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet, 384(9948), 1109–1117. doi:10.1016/S0140-6736(14)60958-2.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Garon, E. B., Rizvi, N. A., Hui, R., Leighl, N., Balmanoukian, A. S., Eder, J. P., et al. (2015). Pembrolizumab for the treatment of non-small-cell lung cancer. The New England Journal of Medicine, 372(21), 2018–2028. doi:10.1056/NEJMoa1501824.

    PubMed  Article  Google Scholar 

  43. 43.

    Nanda, R., Chow, L. Q., Dees, E. C., Berger, R., Gupta, S., Geva, R., et al. (2015). Abstract S1-09: A phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple-negative breast cancer. Cancer Res, 75(9 Supplement), S1-09-S01-09.

  44. 44.

    Rugo, H., Delord, J., Im, S., Ott, P., Piha-Paul, S., Bedard, P., et al. (2016). Abstract S5-07: Preliminary efficacy and safety of pembrolizumab (MK-3475) in patients with PD-L1–positive, estrogen receptor-positive (ER+)/HER2-negative advanced breast cancer enrolled in KEYNOTE-028. Cancer Res, 76(4 Supplement), S5-07-S05-07.

  45. 45.

    Cimino-Mathews, A., Foote, J. B., & Emens, L. A. (2015). Immune targeting in breast cancer. Oncology (Williston Park), 29(5), 375–385.

    Google Scholar 

  46. 46.

    Emens, L. A., Braiteh, F. S., Cassier, P., DeLord, J.-P., Eder, J. P., Shen, X., et al. (2015). Abstract PD1-6: Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. Cancer Res, 75(9 Supplement), PD1-6-PD1-6.

  47. 47.

    Adams S, D. J., Hamilton E, et al. (December 8–12, 2015). Safety and clinical activity of atezolizumab (anti-PDL1) in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer. Presented at: San Antonio Breast Cancer Symposium; San Antonio, TX.

  48. 48.

    Dirix, L., Takacs, I., Nikolinakos, P., Jerusalem, G., Arkenau, H., Hamilton, E., et al. (2016). Abstract S1-04: Avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: A phase Ib JAVELIN solid tumor trial. Cancer Res, 76(4 Supplement), S1-04-S01-04.

  49. 49.

    Emens, L. A. (2012). Breast cancer immunobiology driving immunotherapy: vaccines and immune checkpoint blockade. Expert Review of Anticancer Therapy, 12(12), 1597–1611. doi:10.1586/era.12.147.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Denkert, C., Loibl, S., Noske, A., Roller, M., Muller, B. M., Komor, M., et al. (2010). Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. Journal of Clinical Oncology, 28(1), 105–113. doi:10.1200/JCO.2009.23.7370.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    West, N. R., Milne, K., Truong, P. T., Macpherson, N., Nelson, B. H., & Watson, P. H. (2011). Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Research, 13(6), R126. doi:10.1186/bcr3072.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Ladoire, S., Mignot, G., Dabakuyo, S., Arnould, L., Apetoh, L., Rebe, C., et al. (2011). In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival. The Journal of Pathology, 224(3), 389–400. doi:10.1002/path.2866.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Shevach, E. M. (2011). Biological functions of regulatory T cells. Advances in Immunology, 112, 137–176. doi:10.1016/B978-0-12-387827-4.00004-8.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Jiang, X. (2014). Harnessing the immune system for the treatment of breast cancer. Journal of Zhejiang University. Science. B, 15(1), 1–15. doi:10.1631/jzus.B1300264.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Bates, G. J., Fox, S. B., Han, C., Leek, R. D., Garcia, J. F., Harris, A. L., et al. (2006). Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. Journal of Clinical Oncology, 24(34), 5373–5380. doi:10.1200/JCO.2006.05.9584.

    PubMed  Article  Google Scholar 

  56. 56.

    Bohling, S. D., & Allison, K. H. (2008). Immunosuppressive regulatory T cells are associated with aggressive breast cancer phenotypes: a potential therapeutic target. Modern Pathology, 21(12), 1527–1532. doi:10.1038/modpathol.2008.160.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Gobert, M., Treilleux, I., Bendriss-Vermare, N., Bachelot, T., Goddard-Leon, S., Arfi, V., et al. (2009). Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Research, 69(5), 2000–2009. doi:10.1158/0008-5472.CAN-08-2360.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Olkhanud, P. B., Damdinsuren, B., Bodogai, M., Gress, R. E., Sen, R., Wejksza, K., et al. (2011). Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4(+) T cells to T-regulatory cells. Cancer Research, 71(10), 3505–3515. doi:10.1158/0008-5472.CAN-10-4316.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Joffroy, C. M., Buck, M. B., Stope, M. B., Popp, S. L., Pfizenmaier, K., & Knabbe, C. (2010). Antiestrogens induce transforming growth factor beta-mediated immunosuppression in breast cancer. Cancer Research, 70(4), 1314–1322. doi:10.1158/0008-5472.CAN-09-3292.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Rech, A. J., Mick, R., Martin, S., Recio, A., Aqui, N. A., Powell Jr., D. J., et al. (2012). CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Science Translational Medicine, 4(134), 134ra162. doi:10.1126/scitranslmed.3003330.

    Article  CAS  Google Scholar 

  61. 61.

    Weiss, V. L., Lee, T. H., Song, H., Kouo, T. S., Black, C. M., Sgouros, G., et al. (2012). Trafficking of high avidity HER-2/neu-specific T cells into HER-2/neu-expressing tumors after depletion of effector/memory-like regulatory T cells. PloS One, 7(2), e31962. doi:10.1371/journal.pone.0031962.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Ni, X., Langridge, T., & Duvic, M. (2015). Depletion of regulatory T cells by targeting CC chemokine receptor type 4 with mogamulizumab. Oncoimmunology, 4(7), e1011524. doi:10.1080/2162402X.2015.1011524.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. 63.

    Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews. Immunology, 9(3), 162–174. doi:10.1038/nri2506.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Markowitz, J., Wesolowski, R., Papenfuss, T., Brooks, T. R., & Carson 3rd, W. E. (2013). Myeloid-derived suppressor cells in breast cancer. Breast Cancer Research and Treatment, 140(1), 13–21. doi:10.1007/s10549-013-2618-7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Diaz-Montero, C. M., Salem, M. L., Nishimura, M. I., Garrett-Mayer, E., Cole, D. J., & Montero, A. J. (2009). Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunology, Immunotherapy, 58(1), 49–59. doi:10.1007/s00262-008-0523-4.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Sinha, P., Clements, V. K., & Ostrand-Rosenberg, S. (2005). Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. Journal of Immunology, 174(2), 636–645.

    CAS  Article  Google Scholar 

  67. 67.

    Morales, J. K., Kmieciak, M., Graham, L., Feldmesser, M., Bear, H. D., & Manjili, M. H. (2009). Adoptive transfer of HER2/neu-specific T cells expanded with alternating gamma chain cytokines mediate tumor regression when combined with the depletion of myeloid-derived suppressor cells. Cancer Immunology, Immunotherapy, 58(6), 941–953. doi:10.1007/s00262-008-0609-z.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Steding, C. E., Wu, S. T., Zhang, Y., Jeng, M. H., Elzey, B. D., & Kao, C. (2011). The role of interleukin-12 on modulating myeloid-derived suppressor cells, increasing overall survival and reducing metastasis. Immunology, 133(2), 221–238. doi:10.1111/j.1365-2567.2011.03429.x.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Thakur, A., Schalk, D., Sarkar, S. H., Al-Khadimi, Z., Sarkar, F. H., & Lum, L. G. (2012). A Th1 cytokine-enriched microenvironment enhances tumor killing by activated T cells armed with bispecific antibodies and inhibits the development of myeloid-derived suppressor cells. Cancer Immunology, Immunotherapy, 61(4), 497–509. doi:10.1007/s00262-011-1116-1.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Montero, A. J., Diaz-Montero, C. M., Deutsch, Y. E., Hurley, J., Koniaris, L. G., Rumboldt, T., et al. (2012). Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II-IIIc breast cancer. Breast Cancer Research and Treatment, 132(1), 215–223. doi:10.1007/s10549-011-1889-0.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Godin-Ethier, J., Hanafi, L. A., Piccirillo, C. A., & Lapointe, R. (2011). Indoleamine 2,3-dioxygenase expression in human cancers: clinical and immunologic perspectives. Clinical Cancer Research, 17(22), 6985–6991. doi:10.1158/1078-0432.CCR-11-1331.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Munder, M. (2009). Arginase: an emerging key player in the mammalian immune system. British Journal of Pharmacology, 158(3), 638–651. doi:10.1111/j.1476-5381.2009.00291.x.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Isla Larrain, M. T., Rabassa, M. E., Lacunza, E., Barbera, A., Creton, A., Segal-Eiras, A., et al. (2014). IDO is highly expressed in breast cancer and breast cancer-derived circulating microvesicles and associated to aggressive types of tumors by in silico analysis. Tumour Biology, 35(7), 6511–6519. doi:10.1007/s13277-014-1859-3.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Li, R., Wei, F., Yu, J., Li, H., Ren, X., & Hao, X. (2009). IDO inhibits T-cell function through suppressing Vav1 expression and activation. Cancer Biology & Therapy, 8(14), 1402–1408.

    CAS  Article  Google Scholar 

  75. 75.

    Sun, J., Yu, J., Li, H., Yang, L., Wei, F., Yu, W., et al. (2011). Upregulated expression of indoleamine 2, 3-dioxygenase in CHO cells induces apoptosis of competent T cells and increases proportion of Treg cells. Journal of Experimental & Clinical Cancer Research, 30, 82. doi:10.1186/1756-9966-30-82.

    CAS  Article  Google Scholar 

  76. 76.

    Munn, D. H., & Mellor, A. L. (2007). Indoleamine 2,3-dioxygenase and tumor-induced tolerance. The Journal of Clinical Investigation, 117(5), 1147–1154. doi:10.1172/JCI31178.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Yu, J., Du, W., Yan, F., Wang, Y., Li, H., Cao, S., et al. (2013). Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. Journal of Immunology, 190(7), 3783–3797. doi:10.4049/jimmunol.1201449.

    CAS  Article  Google Scholar 

  78. 78.

    Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E., & Prendergast, G. C. (2005). Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nature Medicine, 11(3), 312–319. doi:10.1038/nm1196.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Soliman, H. H., Jackson, E., Neuger, T., Dees, E. C., Harvey, R. D., Han, H., et al. (2014). A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget, 5(18), 8136–8146.

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Tang, S., Montero, A., Munn, D., Link, C., Vahanian, N., Kennedy, E., et al. (2016). Abstract P2-11-09: A phase 2 randomized trial of the IDO pathway inhibitor indoximod in combination with taxane based chemotherapy for metastatic breast cancer: Preliminary data. Cancer Res, 76(4 Supplement), P2-11-09-P12-11-09.

  81. 81.

    Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141(1), 39–51. doi:10.1016/j.cell.2010.03.014.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Laoui, D., Movahedi, K., Van Overmeire, E., Van den Bossche, J., Schouppe, E., Mommer, C., et al. (2011). Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. The International Journal of Developmental Biology, 55(7–9), 861–867. doi:10.1387/ijdb.113371dl.

    PubMed  Article  Google Scholar 

  83. 83.

    Obeid, E., Nanda, R., Fu, Y. X., & Olopade, O. I. (2013). The role of tumor-associated macrophages in breast cancer progression (review). International Journal of Oncology, 43(1), 5–12. doi:10.3892/ijo.2013.1938.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Tang, X. (2013). Tumor-associated macrophages as potential diagnostic and prognostic biomarkers in breast cancer. Cancer Letters, 332(1), 3–10. doi:10.1016/j.canlet.2013.01.024.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Leek, R. D., Lewis, C. E., Whitehouse, R., Greenall, M., Clarke, J., & Harris, A. L. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Research, 56(20), 4625–4629.

    CAS  PubMed  Google Scholar 

  86. 86.

    Tsutsui, S., Yasuda, K., Suzuki, K., Tahara, K., Higashi, H., & Era, S. (2005). Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncology Reports, 14(2), 425–431.

    CAS  PubMed  Google Scholar 

  87. 87.

    Mahmoud, S. M., Lee, A. H., Paish, E. C., Macmillan, R. D., Ellis, I. O., & Green, A. R. (2012). Tumour-infiltrating macrophages and clinical outcome in breast cancer. Journal of Clinical Pathology, 65(2), 159–163. doi:10.1136/jclinpath-2011-200355.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Campbell, M. J., Tonlaar, N. Y., Garwood, E. R., Huo, D., Moore, D. H., Khramtsov, A. I., et al. (2011). Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Research and Treatment, 128(3), 703–711. doi:10.1007/s10549-010-1154-y.

    PubMed  Article  Google Scholar 

  89. 89.

    Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444. doi:10.1038/nature07205.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Biswas, S. K., & Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology, 11(10), 889–896. doi:10.1038/ni.1937.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Ruffell, B., Affara, N. I., & Coussens, L. M. (2012). Differential macrophage programming in the tumor microenvironment. Trends in Immunology, 33(3), 119–126. doi:10.1016/j.it.2011.12.001.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Huang, Y., Yuan, J., Righi, E., Kamoun, W. S., Ancukiewicz, M., Nezivar, J., et al. (2012). Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 109(43), 17561–17566. doi:10.1073/pnas.1215397109.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Zhang, X., Tian, W., Cai, X., Wang, X., Dang, W., Tang, H., et al. (2013). Hydrazinocurcumin Encapsuled nanoparticles "re-educate" tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PloS One, 8(6), e65896. doi:10.1371/journal.pone.0065896.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1(1), 54–67. doi:10.1158/2159-8274.CD-10-0028.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. 95.

    Leek, R. D., Hunt, N. C., Landers, R. J., Lewis, C. E., Royds, J. A., & Harris, A. L. (2000). Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. The Journal of Pathology, 190(4), 430–436. doi:10.1002/(SICI)1096-9896(200003)190:4<430::AID-PATH538>3.0.CO;2-6.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Lewis, J. S., Landers, R. J., Underwood, J. C., Harris, A. L., & Lewis, C. E. (2000). Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. The Journal of Pathology, 192(2), 150–158. doi:10.1002/1096-9896(2000)9999:9999<::AID-PATH687>3.0.CO;2-G.

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Dirkx, A. E., Oude Egbrink, M. G., Wagstaff, J., & Griffioen, A. W. (2006). Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. Journal of Leukocyte Biology, 80(6), 1183–1196. doi:10.1189/jlb.0905495.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Kakarala, M., & Wicha, M. S. (2008). Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. Journal of Clinical Oncology, 26(17), 2813–2820. doi:10.1200/JCO.2008.16.3931.

    PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Korkaya, H., Liu, S., & Wicha, M. S. (2011). Breast cancer stem cells, cytokine networks, and the tumor microenvironment. The Journal of Clinical Investigation, 121(10), 3804–3809. doi:10.1172/JCI57099.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Yang, J., Liao, D., Chen, C., Liu, Y., Chuang, T. H., Xiang, R., et al. (2013). Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells, 31(2), 248–258. doi:10.1002/stem.1281.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Ding, J., Jin, W., Chen, C., Shao, Z., & Wu, J. (2012). Tumor associated macrophage x cancer cell hybrids may acquire cancer stem cell properties in breast cancer. PloS One, 7(7), e41942. doi:10.1371/journal.pone.0041942.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Iliopoulos, D., Hirsch, H. A., & Struhl, K. (2009). An epigenetic switch involving NF-kappaB, Lin28, let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell, 139(4), 693–706. doi:10.1016/j.cell.2009.10.014.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Salgado, R., Junius, S., Benoy, I., Van Dam, P., Vermeulen, P., Van Marck, E., et al. (2003). Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. International Journal of Cancer, 103(5), 642–646. doi:10.1002/ijc.10833.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Dethlefsen, C., Hojfeldt, G., & Hojman, P. (2013). The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Research and Treatment, 138(3), 657–664. doi:10.1007/s10549-013-2488-z.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Todorovic-Rakovic, N., & Milovanovic, J. (2013). Interleukin-8 in breast cancer progression. Journal of Interferon & Cytokine Research, 33(10), 563–570. doi:10.1089/jir.2013.0023.

    CAS  Article  Google Scholar 

  106. 106.

    Marotta, L. L., Almendro, V., Marusyk, A., Shipitsin, M., Schemme, J., Walker, S. R., et al. (2011). The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(−) stem cell-like breast cancer cells in human tumors. The Journal of Clinical Investigation, 121(7), 2723–2735. doi:10.1172/JCI44745.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Charafe-Jauffret, E., Ginestier, C., Iovino, F., Wicinski, J., Cervera, N., Finetti, P., et al. (2009). Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Research, 69(4), 1302–1313. doi:10.1158/0008-5472.CAN-08-2741.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Hartman, Z. C., Poage, G. M., den Hollander, P., Tsimelzon, A., Hill, J., Panupinthu, N., et al. (2013). Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Research, 73(11), 3470–3480. doi:10.1158/0008-5472.CAN-12-4524-T.

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Xie, G., Yao, Q., Liu, Y., Du, S., Liu, A., Guo, Z., et al. (2012). IL-6-induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures. International Journal of Oncology, 40(4), 1171–1179. doi:10.3892/ijo.2011.1275.

    CAS  PubMed  Google Scholar 

  110. 110.

    Hwang, M. S., Yu, N., Stinson, S. Y., Yue, P., Newman, R. J., Allan, B. B., et al. (2013). miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer. PLoS One, 8(6), e66502, doi:10.1371/journal.pone.0066502.

  111. 111.

    Britschgi, A., Andraos, R., Brinkhaus, H., Klebba, I., Romanet, V., Muller, U., et al. (2012). JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer. Cancer Cell, 22(6), 796–811. doi:10.1016/j.ccr.2012.10.023.

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Ahn, E. R., & Vogel, C. L. (2012). Dual HER2-targeted approaches in HER2-positive breast cancer. Breast Cancer Research and Treatment, 131(2), 371–383. doi:10.1007/s10549-011-1781-y.

    PubMed  Article  Google Scholar 

  113. 113.

    Buzdar, A. U., Ibrahim, N. K., Francis, D., Booser, D. J., Thomas, E. S., Theriault, R. L., et al. (2005). Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer. Journal of Clinical Oncology, 23(16), 3676–3685. doi:10.1200/JCO.2005.07.032.

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Gianni, L., Eiermann, W., Semiglazov, V., Manikhas, A., Lluch, A., Tjulandin, S., et al. (2010). Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet, 375(9712), 377–384. doi:10.1016/S0140-6736(09)61964-4.

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Yin, W., Jiang, Y., Shen, Z., Shao, Z., & Lu, J. (2011). Trastuzumab in the adjuvant treatment of HER2-positive early breast cancer patients: a meta-analysis of published randomized controlled trials. PloS One, 6(6), e21030. doi:10.1371/journal.pone.0021030.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Gianni, L., Dafni, U., Gelber, R. D., Azambuja, E., Muehlbauer, S., Goldhirsch, A., et al. (2011). Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: a 4-year follow-up of a randomised controlled trial. The Lancet Oncology, 12(3), 236–244. doi:10.1016/S1470-2045(11)70033-X.

    CAS  PubMed  Article  Google Scholar 

  117. 117.

    Fang, L., Barekati, Z., Zhang, B., Liu, Z., & Zhong, X. (2011). Targeted therapy in breast cancer: what's new? Swiss Medical Weekly, 141, w13231. doi:10.4414/smw.2011.13231.

    PubMed  Google Scholar 

  118. 118.

    Huang, Y., Fu, P., & Fan, W. (2013). Novel targeted therapies to overcome trastuzumab resistance in HER2-overexpressing metastatic breast cancer. Current Drug Targets, 14(8), 889–898.

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Nahta, R., Hung, M. C., & Esteva, F. J. (2004). The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Research, 64(7), 2343–2346.

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Agus, D. B., Akita, R. W., Fox, W. D., Lewis, G. D., Higgins, B., Pisacane, P. I., et al. (2002). Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell, 2(2), 127–137.

    CAS  PubMed  Article  Google Scholar 

  121. 121.

    Franklin, M. C., Carey, K. D., Vajdos, F. F., Leahy, D. J., de Vos, A. M., & Sliwkowski, M. X. (2004). Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell, 5(4), 317–328.

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Scheuer, W., Friess, T., Burtscher, H., Bossenmaier, B., Endl, J., & Hasmann, M. (2009). Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models. Cancer Research, 69(24), 9330–9336. doi:10.1158/0008-5472.CAN-08-4597.

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Capelan, M., Pugliano, L., De Azambuja, E., Bozovic, I., Saini, K. S., Sotiriou, C., et al. (2013). Pertuzumab: new hope for patients with HER2-positive breast cancer. Annals of Oncology, 24(2), 273–282. doi:10.1093/annonc/mds328.

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Swain, S. M., Kim, S. B., Cortes, J., Ro, J., Semiglazov, V., Campone, M., et al. (2013). Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. The Lancet Oncology, 14(6), 461–471. doi:10.1016/S1470-2045(13)70130-X.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Gianni, L., Pienkowski, T., Im, Y. H., Roman, L., Tseng, L. M., Liu, M. C., et al. (2012). Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. The Lancet Oncology, 13(1), 25–32. doi:10.1016/S1470-2045(11)70336-9.

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Scott, A. M., Wolchok, J. D., & Old, L. J. (2012). Antibody therapy of cancer. Nature Reviews. Cancer, 12(4), 278–287. doi:10.1038/nrc3236.

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Musolino, A., Naldi, N., Bortesi, B., Pezzuolo, D., Capelletti, M., Missale, G., et al. (2008). Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. Journal of Clinical Oncology, 26(11), 1789–1796. doi:10.1200/JCO.2007.14.8957.

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Mellor, J. D., Brown, M. P., Irving, H. R., Zalcberg, J. R., & Dobrovic, A. (2013). A critical review of the role of Fc gamma receptor polymorphisms in the response to monoclonal antibodies in cancer. Journal of Hematology & Oncology, 6, 1. doi:10.1186/1756-8722-6-1.

    CAS  Article  Google Scholar 

  129. 129.

    Lameris, R., de Bruin, R. C., Schneiders, F. L., van Bergen en Henegouwen, P. M., Verheul, H. M., de Gruijl, T. D., et al. (2014). Bispecific antibody platforms for cancer immunotherapy. Critical Reviews in Oncology/Hematology, 92(3), 153–165. doi:10.1016/j.critrevonc.2014.08.003.

    PubMed  Article  Google Scholar 

  130. 130.

    Holliger, P., & Hudson, P. J. (2005). Engineered antibody fragments and the rise of single domains. Nature Biotechnology, 23(9), 1126–1136. doi:10.1038/nbt1142.

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Chames, P., Van Regenmortel, M., Weiss, E., & Baty, D. (2009). Therapeutic antibodies: successes, limitations and hopes for the future. British Journal of Pharmacology, 157(2), 220–233. doi:10.1111/j.1476-5381.2009.00190.x.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Vaughan, A. T., Iriyama, C., Beers, S. A., Chan, C. H., Lim, S. H., Williams, E. L., et al. (2014). Inhibitory FcgammaRIIb (CD32b) becomes activated by therapeutic mAb in both cis and trans and drives internalization according to antibody specificity. Blood, 123(5), 669–677. doi:10.1182/blood-2013-04-490821.

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Schaefer, G., Haber, L., Crocker, L. M., Shia, S., Shao, L., Dowbenko, D., et al. (2011). A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell, 20(4), 472–486. doi:10.1016/j.ccr.2011.09.003.

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Bostrom, J., Yu, S. F., Kan, D., Appleton, B. A., Lee, C. V., Billeci, K., et al. (2009). Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science, 323(5921), 1610–1614. doi:10.1126/science.1165480.

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Robinson, M. K., Hodge, K. M., Horak, E., Sundberg, A. L., Russeva, M., Shaller, C. C., et al. (2008). Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro. British Journal of Cancer, 99(9), 1415–1425. doi:10.1038/sj.bjc.6604700.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    McDonagh, C. F., Huhalov, A., Harms, B. D., Adams, S., Paragas, V., Oyama, S., et al. (2012). Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Molecular Cancer Therapeutics, 11(3), 582–593. doi:10.1158/1535-7163.MCT-11-0820.

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Oyama, S. K., Paragas, V., Adams, S., Luus, L., Huhalov, A., Kudla, A. J., et al. (2011). MM-111, an ErbB2/ErbB3 bispecific antibody, effectively combines with lapatinib to inhibit growth of ErbB2-overexpressing tumor cells. Cancer Research, 71(8 Supplement), 654.

    Article  Google Scholar 

  138. 138.

    May, C., Sapra, P., & Gerber, H. P. (2012). Advances in bispecific biotherapeutics for the treatment of cancer. Biochemical Pharmacology, 84(9), 1105–1112. doi:10.1016/j.bcp.2012.07.011.

    CAS  PubMed  Article  Google Scholar 

  139. 139.

    Heiss, M. M., Murawa, P., Koralewski, P., Kutarska, E., Kolesnik, O. O., Ivanchenko, V. V., et al. (2010). The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. International Journal of Cancer, 127(9), 2209–2221. doi:10.1002/ijc.25423.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Jager, M., Schoberth, A., Ruf, P., Hess, J., & Lindhofer, H. (2009). The trifunctional antibody ertumaxomab destroys tumor cells that express low levels of human epidermal growth factor receptor 2. Cancer Research, 69(10), 4270–4276. doi:10.1158/0008-5472.CAN-08-2861.

    PubMed  Article  CAS  Google Scholar 

  141. 141.

    Topp, M. S., Gokbuget, N., Stein, A. S., Zugmaier, G., O'Brien, S., Bargou, R. C., et al. (2015). Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. The Lancet Oncology, 16(1), 57–66. doi:10.1016/S1470-2045(14)71170-2.

    CAS  PubMed  Article  Google Scholar 

  142. 142.

    Junttila, T. T., Li, J., Johnston, J., Hristopoulos, M., Clark, R., Ellerman, D., et al. (2014). Antitumor efficacy of a bispecific antibody that targets HER2 and activates T cells. Cancer Research, 74(19), 5561–5571. doi:10.1158/0008-5472.CAN-13-3622-T.

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Arteaga, C. L., Sliwkowski, M. X., Osborne, C. K., Perez, E. A., Puglisi, F., & Gianni, L. (2012). Treatment of HER2-positive breast cancer: current status and future perspectives. Nature Reviews. Clinical Oncology, 9(1), 16–32. doi:10.1038/nrclinonc.2011.177.

    CAS  Article  Google Scholar 

  144. 144.

    Tsang, R. Y., & Finn, R. S. (2012). Beyond trastuzumab: novel therapeutic strategies in HER2-positive metastatic breast cancer. British Journal of Cancer, 106(1), 6–13. doi:10.1038/bjc.2011.516.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. 145.

    Verma, S., Miles, D., Gianni, L., Krop, I. E., Welslau, M., Baselga, J., et al. (2012). Trastuzumab emtansine for HER2-positive advanced breast cancer. The New England Journal of Medicine, 367(19), 1783–1791. doi:10.1056/NEJMoa1209124.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. 146.

    Krop, I. E., Beeram, M., Modi, S., Jones, S. F., Holden, S. N., Yu, W., et al. (2010). Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. Journal of Clinical Oncology, 28(16), 2698–2704. doi:10.1200/JCO.2009.26.2071.

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Krop, I. E., LoRusso, P., Miller, K. D., Modi, S., Yardley, D., Rodriguez, G., et al. (2012). A phase II study of trastuzumab emtansine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer who were previously treated with trastuzumab, lapatinib, an anthracycline, a taxane, and capecitabine. Journal of Clinical Oncology, 30(26), 3234–3241. doi:10.1200/JCO.2011.40.5902.

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Burris 3rd, H. A., Rugo, H. S., Vukelja, S. J., Vogel, C. L., Borson, R. A., Limentani, S., et al. (2011). Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. Journal of Clinical Oncology, 29(4), 398–405. doi:10.1200/JCO.2010.29.5865.

    CAS  PubMed  Article  Google Scholar 

  149. 149.

    Boyraz, B., Sendur, M. A., Aksoy, S., Babacan, T., Roach, E. C., Kizilarslanoglu, M. C., et al. (2013). Trastuzumab emtansine (T-DM1) for HER2-positive breast cancer. Current Medical Research and Opinion, 29(4), 405–414. doi:10.1185/03007995.2013.775113.

    CAS  PubMed  Article  Google Scholar 

  150. 150.

    Krop, I. E., Kim, S. B., Gonzalez-Martin, A., LoRusso, P. M., Ferrero, J. M., Smitt, M., et al. (2014). Trastuzumab emtansine versus treatment of physician's choice for pretreated HER2-positive advanced breast cancer (TH3RESA): a randomised, open-label, phase 3 trial. The Lancet Oncology, 15(7), 689–699. doi:10.1016/S1470-2045(14)70178-0.

    CAS  PubMed  Article  Google Scholar 

  151. 151.

    Ellis, P. A., Barrios, C. H., Eiermann, W., Toi, M., Im, Y.-H., Conte, P. F., et al. Phase III, randomized study of trastuzumab emtansine (T-DM1){+/−} pertuzumab (P) vs trastuzumab+ taxane (HT) for first-line treatment of HER2-positive MBC: Primary results from the MARIANNE study. In ASCO Annual Meeting Proceedings, 2015 (Vol. 33, pp. 507, Vol. 15_suppl)

  152. 152.

    LoRusso, P. (2015). MM-302 shows clinical activity, tolerability in heavily-pretreated HER2+ breast cancer http://www.onclive.com/conference-coverage/aacr-2015/MM-302-Shows-Clinical-Activity-Tolerability-in-Heavily-Pretreated-HER2-Breast-Cancer#sthash.4vGDpDX1.dpuf.

  153. 153.

    Wiedermann, U., Davis, A. B., & Zielinski, C. C. (2013). Vaccination for the prevention and treatment of breast cancer with special focus on Her-2/neu peptide vaccines. Breast Cancer Research and Treatment, 138(1), 1–12. doi:10.1007/s10549-013-2410-8.

    CAS  PubMed  Article  Google Scholar 

  154. 154.

    Wortzel, R. D., Philipps, C., & Schreiber, H. (1983). Multiple tumour-specific antigens expressed on a single tumour cell. Nature, 304(5922), 165–167.

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Barrow, C., Browning, J., MacGregor, D., Davis, I. D., Sturrock, S., Jungbluth, A. A., et al. (2006). Tumor antigen expression in melanoma varies according to antigen and stage. Clinical Cancer Research, 12(3 Pt 1), 764–771. doi:10.1158/1078-0432.CCR-05-1544.

    CAS  PubMed  Article  Google Scholar 

  156. 156.

    Holmes, J. P., Gates, J. D., Benavides, L. C., Hueman, M. T., Carmichael, M. G., Patil, R., et al. (2008). Optimal dose and schedule of an HER-2/neu (E75) peptide vaccine to prevent breast cancer recurrence: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer, 113(7), 1666–1675. doi:10.1002/cncr.23772.

    CAS  PubMed  Article  Google Scholar 

  157. 157.

    Peoples, G. E., Holmes, J. P., Hueman, M. T., Mittendorf, E. A., Amin, A., Khoo, S., et al. (2008). Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clinical Cancer Research, 14(3), 797–803. doi:10.1158/1078-0432.CCR-07-1448.

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Ladjemi, M. Z., Jacot, W., Chardes, T., Pelegrin, A., & Navarro-Teulon, I. (2010). Anti-HER2 vaccines: new prospects for breast cancer therapy. Cancer Immunology, Immunotherapy, 59(9), 1295–1312. doi:10.1007/s00262-010-0869-2.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Hueman, M. T., Stojadinovic, A., Storrer, C. E., Foley, R. J., Gurney, J. M., Shriver, C. D., et al. (2006). Levels of circulating regulatory CD4+CD25+ T cells are decreased in breast cancer patients after vaccination with a HER2/neu peptide (E75) and GM-CSF vaccine. Breast Cancer Research and Treatment, 98(1), 17–29. doi:10.1007/s10549-005-9108-5.

    CAS  PubMed  Article  Google Scholar 

  160. 160.

    Hueman, M. T., Stojadinovic, A., Storrer, C. E., Dehqanzada, Z. A., Gurney, J. M., Shriver, C. D., et al. (2007). Analysis of naive and memory CD4 and CD8 T cell populations in breast cancer patients receiving a HER2/neu peptide (E75) and GM-CSF vaccine. Cancer Immunology, Immunotherapy, 56(2), 135–146. doi:10.1007/s00262-006-0188-9.

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Holmes, J. P., Clifton, G. T., Patil, R., Benavides, L. C., Gates, J. D., Stojadinovic, A., et al. (2011). Use of booster inoculations to sustain the clinical effect of an adjuvant breast cancer vaccine: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer, 117(3), 463–471. doi:10.1002/cncr.25586.

    CAS  PubMed  Article  Google Scholar 

  162. 162.

    Mittendorf, E. A., Clifton, G. T., Holmes, J. P., Clive, K. S., Patil, R., Benavides, L. C., et al. (2012). Clinical trial results of the HER-2/neu (E75) vaccine to prevent breast cancer recurrence in high-risk patients: from US Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Cancer, 118(10), 2594–2602. doi:10.1002/cncr.26574.

    CAS  PubMed  Article  Google Scholar 

  163. 163.

    Vreeland, T. J., Clifton, G. T., Hale, D. F., Sears, A., Patil, R., Holmes, J., et al. (2012). Abstract P5-16-02: Final results of the phase I/II trials of the E75 adjuvant breast cancer vaccine. Cancer Res, 72(24 Supplement), P5-16-02-P15-16-02.

  164. 164.

    Mittendorf, E. A., Clifton, G. T., Holmes, J. P., Schneble, E., van Echo, D., Ponniah, S., et al. (2014). Final report of the phase I/II clinical trial of the E75 (nelipepimut-S) vaccine with booster inoculations to prevent disease recurrence in high-risk breast cancer patients. Annals of Oncology, 25(9), 1735–1742. doi:10.1093/annonc/mdu211.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  165. 165.

    Carmichael, M. G., Benavides, L. C., Holmes, J. P., Gates, J. D., Mittendorf, E. A., Ponniah, S., et al. (2010). Results of the first phase 1 clinical trial of the HER-2/neu peptide (GP2) vaccine in disease-free breast cancer patients: United States Military Cancer Institute Clinical Trials Group Study I-04. Cancer, 116(2), 292–301. doi:10.1002/cncr.24756.

    CAS  PubMed  Article  Google Scholar 

  166. 166.

    Trappey, F., Berry, J. S., Vreeland, T. J., Hale, D. F., Sears, A. K., Ponniah, S., et al. 2013 Randomized phase II clinical trial of the anti-HER2 (GP2) vaccine to prevent recurrence in high-risk breast cancer patients: a planned interim analysis. In JOURNAL OF CLINICAL ONCOLOGY, (Vol. 31, Vol. 15): AMER SOC CLINICAL ONCOLOGY 2318 MILL ROAD, STE 800, ALEXANDRIA, VA 22314 USA

  167. 167.

    Clive, K. S., Tyler, J. A., Clifton, G. T., Holmes, J. P., Ponniah, S., Peoples, G. E., et al. (2012). The GP2 peptide: a HER2/neu-based breast cancer vaccine. Journal of Surgical Oncology, 105(5), 452–458. doi:10.1002/jso.21723.

    CAS  PubMed  Article  Google Scholar 

  168. 168.

    Sotiriadou, N. N., Kallinteris, N. L., Gritzapis, A. D., Voutsas, I. F., Papamichail, M., von Hofe, E., et al. (2007). Ii-Key/HER-2/neu(776-790) hybrid peptides induce more effective immunological responses over the native peptide in lymphocyte cultures from patients with HER-2/neu+ tumors. Cancer Immunology, Immunotherapy, 56(5), 601–613. doi:10.1007/s00262-006-0213-z.

    CAS  PubMed  Article  Google Scholar 

  169. 169.

    Holmes, J. P., Benavides, L. C., Gates, J. D., Carmichael, M. G., Hueman, M. T., Mittendorf, E. A., et al. (2008). Results of the first phase I clinical trial of the novel II-key hybrid preventive HER-2/neu peptide (AE37) vaccine. Journal of Clinical Oncology, 26(20), 3426–3433. doi:10.1200/JCO.2007.15.7842.

    CAS  PubMed  Article  Google Scholar 

  170. 170.

    Gates, J. D., Clifton, G. T., Benavides, L. C., Sears, A. K., Carmichael, M. G., Hueman, M. T., et al. (2010). Circulating regulatory T cells (CD4+CD25+FOXP3+) decrease in breast cancer patients after vaccination with a modified MHC class II HER2/neu (AE37) peptide. Vaccine, 28(47), 7476–7482. doi:10.1016/j.vaccine.2010.09.029.

    CAS  PubMed  Article  Google Scholar 

  171. 171.

    Sears, A. K., Perez, S. A., Clifton, G. T., Benavides, L. C., Gates, J. D., Clive, K. S., et al. (2011). AE37: a novel T-cell-eliciting vaccine for breast cancer. Expert Opinion on Biological Therapy, 11(11), 1543–1550. doi:10.1517/14712598.2011.616889.

    CAS  PubMed  Article  Google Scholar 

  172. 172.

    Hale, D., Perez, S., Sears, A., Clifton, G., Vreeland, T., Holmes, J., et al. (2011). P1-13-01: an update of a phase II trial of the HER2 peptide AE37 vaccine in breast cancer patients to prevent recurrence. Cancer Research, 71(24 Supplement), P1-13-01-P11-13-01.

    Article  Google Scholar 

  173. 173.

    Mittendorf, E. A., Schneble, E. J., Perez, S. A., Symanowski, R. P., Vreeland, T. J., Berry, J. S., et al. (2014). Primary analysis of the prospective, randomized, single-blinded phase II trial of AE37 vaccine versus GM-CSF alone administered in the adjuvant setting to high-risk breast cancer patients. Journal of Clinical Oncology, 32, 5s.

    Article  CAS  Google Scholar 

  174. 174.

    Schneble, E. J., Berry, J. S., Trappey, A. F., Vreeland, T. J., Hale, D. F., Sears, A. K., et al. (2013). Vaccine-specific T-cell proliferation in response to a dual peptide cancer vaccine in breast and ovarian cancer patients. Journal for immunotherapy of cancer, 1(1), 1–1.

    Article  Google Scholar 

  175. 175.

    Miyako, H., Kametani, Y., Katano, I., Ito, R., Tsuda, B., Furukawa, A., et al. (2011). Antitumor effect of new HER2 peptide vaccination based on B cell epitope. Anticancer Research, 31(10), 3361–3368.

    CAS  PubMed  Google Scholar 

  176. 176.

    Dakappagari, N. K., Douglas, D. B., Triozzi, P. L., Stevens, V. C., & Kaumaya, P. T. (2000). Prevention of mammary tumors with a chimeric HER-2 B-cell epitope peptide vaccine. Cancer Research, 60(14), 3782–3789.

    CAS  PubMed  Google Scholar 

  177. 177.

    Dakappagari, N. K., Pyles, J., Parihar, R., Carson, W. E., Young, D. C., & Kaumaya, P. T. (2003). A chimeric multi-human epidermal growth factor receptor-2 B cell epitope peptide vaccine mediates superior antitumor responses. Journal of Immunology, 170(8), 4242–4253.

    CAS  Article  Google Scholar 

  178. 178.

    Kaumaya, P. T., Foy, K. C., Garrett, J., Rawale, S. V., Vicari, D., Thurmond, J. M., et al. (2009). Phase I active immunotherapy with combination of two chimeric, human epidermal growth factor receptor 2, B-cell epitopes fused to a promiscuous T-cell epitope in patients with metastatic and/or recurrent solid tumors. Journal of Clinical Oncology, 27(31), 5270–5277. doi:10.1200/JCO.2009.22.3883.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. 179.

    Wiedermann, U., Wiltschke, C., Jasinska, J., Kundi, M., Zurbriggen, R., Garner-Spitzer, E., et al. (2010). A virosomal formulated Her-2/neu multi-peptide vaccine induces Her-2/neu-specific immune responses in patients with metastatic breast cancer: a phase I study. Breast Cancer Research and Treatment, 119(3), 673–683.

    CAS  PubMed  Article  Google Scholar 

  180. 180.

    Schlom, J. (2012). Therapeutic cancer vaccines: current status and moving forward. Journal of the National Cancer Institute, 104(8), 599–613. doi:10.1093/jnci/djs033.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  181. 181.

    Benavides, L. C., Gates, J. D., Carmichael, M. G., Patil, R., Holmes, J. P., Hueman, M. T., et al. (2009). The impact of HER2/neu expression level on response to the E75 vaccine: from U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clinical Cancer Research, 15(8), 2895–2904. doi:10.1158/1078-0432.CCR-08-1126.

    CAS  PubMed  Article  Google Scholar 

  182. 182.

    Disis, M. L., Wallace, D. R., Gooley, T. A., Dang, Y., Slota, M., Lu, H., et al. (2009). Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. Journal of Clinical Oncology, 27(28), 4685–4692. doi:10.1200/JCO.2008.20.6789.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. 183.

    Patil, R., Clifton, G. T., Litton, J. K., Shumway, N. M., Vreeland, T. J., Berry, J. S., et al. 2013 Safety and efficacy of the HER2-derived GP2 peptide vaccine in combination with trastuzumab for breast cancer patients in the adjuvant setting. In JOURNAL OF CLINICAL ONCOLOGY, (Vol. 31, Vol. 15): AMER SOC CLINICAL ONCOLOGY 2318 MILL ROAD, STE 800, ALEXANDRIA, VA 22314 USA

  184. 184.

    Cerullo, V., Diaconu, I., Kangasniemi, L., Rajecki, M., Escutenaire, S., Koski, A., et al. (2011). Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus. Molecular Therapy, 19(9), 1737–1746. doi:10.1038/mt.2011.113.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  185. 185.

    Demaria, S., Volm, M. D., Shapiro, R. L., Yee, H. T., Oratz, R., Formenti, S. C., et al. (2001). Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clinical Cancer Research, 7(10), 3025–3030.

    CAS  PubMed  Google Scholar 

  186. 186.

    Emens, L. A., Asquith, J. M., Leatherman, J. M., Kobrin, B. J., Petrik, S., Laiko, M., et al. (2009). Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor-secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. Journal of Clinical Oncology, 27(35), 5911–5918. doi:10.1200/JCO.2009.23.3494.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  187. 187.

    Chen, G., Gupta, R., Petrik, S., Laiko, M., Leatherman, J. M., Asquith, J. M., et al. (2014). A feasibility study of cyclophosphamide, trastuzumab, and an allogeneic GM-CSF-secreting breast tumor vaccine for HER2+ metastatic breast cancer. Cancer Immunology Research, 2(10), 949–961. doi:10.1158/2326-6066.CIR-14-0058.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  188. 188.

    Pruitt, S. K., Boczkowski, D., de Rosa, N., Haley, N. R., Morse, M. A., Tyler, D. S., et al. (2011). Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. European Journal of Immunology, 41(12), 3553–3563. doi:10.1002/eji.201141383.

    CAS  PubMed  Article  Google Scholar 

  189. 189.

    Soliman, H. H., Minton, S. E., Ismail-Khan, R., Han, H. S., Vahanian, N. N., Link, C. J., et al. (2015). Abstract P2-15-04: A phase 1/2 study of Ad. p53 DC vaccine with indoximod immunotherapy in metastatic breast cancer. Cancer Res, 75(9 Supplement), P2-15-04-P12-15-04.

  190. 190.

    Hamid, O., Schmidt, H., Nissan, A., Ridolfi, L., Aamdal, S., Hansson, J., et al. (2011). A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. Journal of Translational Medicine, 9, 204. doi:10.1186/1479-5876-9-204.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  191. 191.

    Page, D. B., Postow, M. A., Callahan, M. K., Allison, J. P., & Wolchok, J. D. (2014). Immune modulation in cancer with antibodies. Annual Review of Medicine, 65, 185–202. doi:10.1146/annurev-med-092012-112807.

    CAS  PubMed  Article  Google Scholar 

  192. 192.

    Saenger, Y., Magidson, J., Liaw, B., de Moll, E., Harcharik, S., Fu, Y., et al. (2014). Blood mRNA expression profiling predicts survival in patients treated with tremelimumab. Clinical Cancer Research, 20(12), 3310–3318. doi:10.1158/1078-0432.CCR-13-2906.

    CAS  PubMed  Article  Google Scholar 

  193. 193.

    Shahabi, V., Berman, D., Chasalow, S. D., Wang, L., Tsuchihashi, Z., Hu, B., et al. (2013). Gene expression profiling of whole blood in ipilimumab-treated patients for identification of potential biomarkers of immune-related gastrointestinal adverse events. Journal of Translational Medicine, 11, 75. doi:10.1186/1479-5876-11-75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  194. 194.

    Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine, 366(26), 2443–2454. doi:10.1056/NEJMoa1200690.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  195. 195.

    Grosso, J., Horak, C. E., Inzunza, D., Cardona, D. M., Simon, J. S., Gupta, A. K., et al. 2013 Association of tumor PD-L1 expression and immune biomarkers with clinical activity in patients (pts) with advanced solid tumors treated with nivolumab (anti-PD-1; BMS-936558; ONO-4538). In Journal of Clinical Oncology, (Vol. 31, Vol. 15): AMER SOC CLINICAL ONCOLOGY 2318 MILL ROAD, STE 800, ALEXANDRIA, VA 22314 USA

  196. 196.

    Callahan, M. K., Horak, C. E., Curran, M. A., Hollman, T., Schaer, D. A., Yuan, J., et al. 2013 Peripheral and tumor immune correlates in patients with advanced melanoma treated with combination nivolumab (anti-PD-1, BMS-936558, ONO-4538) and ipilimumab. In JOURNAL OF CLINICAL ONCOLOGY, (Vol. 31, Vol. 15): AMER SOC CLINICAL ONCOLOGY 2318 MILL ROAD, STE 800, ALEXANDRIA, VA 22314 USA

  197. 197.

    Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., Rizvi, N. A., Lesokhin, A. M., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. The New England Journal of Medicine, 369(2), 122–133. doi:10.1056/NEJMoa1302369.

    CAS  PubMed  Article  Google Scholar 

  198. 198.

    Postow, M. A., Cardona, D. M., Taube, J. M., Anders, R. A., Taylor, C. R., Wolchok, J. D., et al. (2014). Peripheral and tumor immune correlates in patients with advanced melanoma treated with nivolumab (anti-PD-1, BMS-936558, ONO-4538) monotherapy or in combination with ipilimumab. Journal of Translational Medicine, 12(Suppl 1), O8.

    PubMed Central  Article  Google Scholar 

  199. 199.

    Ku, G. Y., Yuan, J., Page, D. B., Schroeder, S. E., Panageas, K. S., Carvajal, R. D., et al. (2010). Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting. Cancer, 116(7), 1767–1775.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  200. 200.

    Postow, M. A., Yuan, J., Panageas, K., Bogatch, K., Callahan, M., Cheng, M., et al. 2012 Evaluation of the absolute lymphocyte count as a biomarker for melanoma patients treated with the commercially available dose of ipilimumab (3mg/kg). In JOURNAL OF CLINICAL ONCOLOGY, (Vol. 30, Vol. 15): AMER SOC CLINICAL ONCOLOGY 2318 MILL ROAD, STE 800, ALEXANDRIA, VA 22314 USA

  201. 201.

    Postow, M. A., Chasalow, S. D., Yuan, J., Kuk, D., Panageas, K. S., Cheng, M., et al. 2013 Pharmacodynamic effect of ipilimumab on absolute lymphocyte count (ALC) and association with overall survival in patients with advanced melanoma. In JOURNAL OF CLINICAL ONCOLOGY, (Vol. 31, Vol. 15): AMER SOC CLINICAL ONCOLOGY 2318 MILL ROAD, STE 800, ALEXANDRIA, VA 22314 USA

  202. 202.

    Schindler, K., Harmankaya, K., Postow, M. A., Frantal, S., Bello, D., Ariyan, C. E., et al. 2013 Pretreatment levels of absolute and relative eosinophil count to improve overall survival (OS) in patients with metastatic melanoma under treatment with ipilimumab, an anti CTLA-4 antibody. In JOURNAL OF CLINICAL ONCOLOGY, (Vol. 31, Vol. 15): AMER SOC CLINICAL ONCOLOGY 2318 MILL ROAD, STE 800, ALEXANDRIA, VA 22314 USA

  203. 203.

    Schindler, K., Harmankaya, K., Kuk, D., Mangana, J., Michielin, O., Hoeller, C., et al. Correlation of absolute and relative eosinophil counts with immune-related adverse events in melanoma patients treated with ipilimumab. In ASCO Annual Meeting Proceedings, 2014 (Vol. 32, pp. 9096, Vol. 15_suppl)

  204. 204.

    Adams, S., Gray, R. J., Demaria, S., Goldstein, L., Perez, E. A., Shulman, L. N., et al. (2014). Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. Journal of Clinical Oncology, 32(27), 2959–2966. doi:10.1200/JCO.2013.55.0491.

    PubMed  PubMed Central  Article  Google Scholar 

  205. 205.

    Loi, S., Sirtaine, N., Piette, F., Salgado, R., Viale, G., Van Eenoo, F., et al. (2013). Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. Journal of Clinical Oncology, 31(7), 860–867. doi:10.1200/JCO.2011.41.0902.

    CAS  PubMed  Article  Google Scholar 

  206. 206.

    Mahmoud, S. M., Paish, E. C., Powe, D. G., Macmillan, R. D., Grainge, M. J., Lee, A. H., et al. (2011). Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. Journal of Clinical Oncology, 29(15), 1949–1955. doi:10.1200/JCO.2010.30.5037.

    PubMed  Article  Google Scholar 

Download references

Acknowledgment

We thank Ms. Lynsey Ekema and Mr. Aaron Burkhardt from Georgia Regents University Illustration Department as well as Lisa Middleton from Georgia Regents University Cancer Center for their kind help in graphic design and drawing for the figures.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shou-Ching Tang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spellman, A., Tang, S. Immunotherapy for breast cancer: past, present, and future. Cancer Metastasis Rev 35, 525–546 (2016). https://doi.org/10.1007/s10555-016-9654-9

Download citation

Keywords

  • Immunotherapy
  • Breast cancer
  • Review
  • Checkpoint inhibitor
  • Biomarkers
  • Clinical trials