Calcium role in human carcinogenesis: a comprehensive analysis and critical review of literature

Abstract

The central role played by calcium ion in biological systems has generated an interest for its potential implication in human malignancies. Thus, lines of research, on possible association of calcium metabolism regulation with tumorigenesis, implying disruptions and/or alterations of known molecular pathways, have been extensively researched in the recent decades. This paper is a critical synthesis of these findings, based on a functional approach of the calcium signaling toolkit. It provides strong support that this ubiquitous divalent cation is involved in cancer initiation, promotion, and progression. Different pathways have been outlined, involving equally different molecular and cellular structures. However, if the association between calcium and cancer can be described as constant, it is not always linear. We have identified several influencing factors among which the most relevant are (i) the changes in local or tissular concentrations of free calcium and (ii) the histological and physiological types of tissue involved. Such versatility at the molecular level may probably account for the conflicting findings reported by the epidemiological literature on calcium dietary intake and the risk to develop certain cancers such as the prostatic or mammary neoplasms. However, it also fuels the hypothesis that behind each cancer, a specific calcium pathway can be evidenced. Identifying such molecular interactions is probably a promising approach for further understanding and treatment options for the disease.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Haynes, W.M. (2014). CRC handbook of chemistry and physics. CRC press.

  2. 2.

    Beebe, S. (1904). The chemistry of malignant growths. Ii.—The inorganic constituents of tumors. American Journal of Physiology--Legacy Content, 12(2), 167–172.

    Google Scholar 

  3. 3.

    Bassingthwaighte, J.B., et al. (2012). Compartmental modeling in the analysis of biological systems. Computational Toxicology: Volume I:391–438.

  4. 4.

    Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nature Reviews Molecular Cell Biology, 1(1), 11–21.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Berridge, M. J., Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews. Molecular Cell Biology, 4(7), 517–529.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Shrestha, R. P., et al. (2010). A mathematical model of parathyroid hormone response to acute changes in plasma ionized calcium concentration in humans. Mathematical Biosciences, 226(1), 46–57.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Forsen, S. and J. Kordel (1994). Calcium in biological systems., University Science Books: Mill Valley, CA. p. 107.

  9. 9.

    Williams, R. J. (2006). The evolution of calcium biochemistry. Biochimica et Biophysica Acta, 1763(11), 1139–1146.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Clapham, D. E. (2007). Calcium signaling. Cell, 131(6), 1047–1058.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Endo, M. (2009). Calcium-induced calcium release in skeletal muscle. Physiological Reviews, 89(4), 1153–1176.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Peacock, M. (2010). Calcium metabolism in health and disease. Clinical Journal of the American Society of Nephrology, 5(Suppl 1), S23–S30.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Clark, V. L., & Kruse, J. A. (1990). Clinical methods: the history, physical, and laboratory examinations. JAMA, 264(21), 2808–2809.

    Article  Google Scholar 

  14. 14.

    Tsien, R.Y. (1981). A non-disruptive technique for loading calcium buffers and indicators into cells.

  15. 15.

    Rizzuto, R., & Pozzan, T. (2006). Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiological Reviews, 86(1), 369–408.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Carafoli, E. (2002). Calcium signaling: a tale for all seasons. Proceedings of the National Academy of Sciences, 99(3), 1115–1122.

    CAS  Article  Google Scholar 

  17. 17.

    Berridge, M. J. (2005). Unlocking the secrets of cell signaling. Annual Review of Physiology, 67, 1–21.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Tsien, R. W., & Tsien, R. Y. (1990). Calcium channels, stores, and oscillations. Annual Review of Cell Biology, 6(1), 715–760.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Clowes, G., & Frisbie, W. (1905). No. 32. On the relationship between the rate of growth, age, and potassium and calcium content of mouse tumors (adeno-carcinoma, jensen). American Journal of Physiology--Legacy Content, 14(3), 173–192.

    CAS  Google Scholar 

  20. 20.

    Carruthers, C., & Suntzeff, V. (1944). The role of calcium in carcinogenesis summary. Science, 99(2569), 245–247.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Lansing, A., Rosenthal, T., & Kamen, M. (1948). Calcium ion exchanges in some normal tissues and in epidermal carcinogenesis. Archives of Biochemistry, 19, 177–183.

    CAS  PubMed  Google Scholar 

  22. 22.

    Monteith, G. R., et al. (2007). Calcium and cancer: targeting Ca2+ transport. Nature Reviews. Cancer, 7(7), 519–530.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Rodland, K. D. (2004). The role of the calcium-sensing receptor in cancer. Cell Calcium, 35(3), 291–295.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Chakrabarty, S., et al. (2003). Extracellular calcium and calcium sensing receptor function in human colon carcinomas promotion of E-cadherin expression and suppression of β-catenin/TCF activation. Cancer Research, 63(1), 67–71.

    CAS  PubMed  Google Scholar 

  25. 25.

    Lipkin, M. (1999). Preclinical and early human studies of calcium and colon cancer prevention. Annals of the New York Academy of Sciences, 889(1), 120–127.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Wargovich, M. J., et al. (2000). Efficacy of potential chemopreventive agents on rat colon aberrant crypt formation and progression. Carcinogenesis, 21(6), 1149–1155.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Manning, A. T., O’Brien, N., & Kerin, M. J. (2006). Roles for the calcium sensing receptor in primary and metastatic cancer. Eur J Surg Oncol, 32(7), 693–697.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Hobson, S. A., et al. (2003). Activation of the MAP kinase cascade by exogenous calcium-sensing receptor. Molecular and Cellular Endocrinology, 200(1), 189–198.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Jin, T., George Fantus, I., & Sun, J. (2008). Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of beta-catenin. Cellular Signalling, 20(10), 1697–1704.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Whitfield, J. F. (2009). Calcium, calcium-sensing receptor and colon cancer. Cancer Letters, 275(1), 9–16.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Brenner, B., et al. (1998). The effect of dietary vitamin D 3 on the intracellular calcium gradient in mammalian colonic crypts. Cancer Letters, 127(1), 43–53.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Brennan, S. C., et al. (2013). Calcium sensing receptor signalling in physiology and cancer. Biochimica et Biophysica Acta, 1833(7), 1732–1744.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Fetahu, I. S., et al. (2014). Regulation of the calcium-sensing receptor expression by 1,25-dihydroxyvitamin D3, interleukin-6, and tumor necrosis factor alpha in colon cancer cells. The Journal of Steroid Biochemistry and Molecular Biology, 144 Pt A, 228–231.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Cho, E., et al. (2004). Dairy foods, calcium, and colorectal cancer: a pooled analysis of 10 cohort studies. Journal of the National Cancer Institute, 96(13), 1015–1022.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Dai, Q., et al. (2007). The relation of magnesium and calcium intakes and a genetic polymorphism in the magnesium transporter to colorectal neoplasia risk. The American Journal of Clinical Nutrition, 86(3), 743–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Dai, Q., et al. (2012). Calcium, magnesium, and colorectal cancer. Epidemiology, 23(3), 504–505.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    McGrath, C. M., & Soule, H. D. (1984). Calcium regulation of normal human mammary epithelial cell growth in culture. In Vitro, 20(8), 652–662.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Russo, J., et al. (1989). Influence of human breast development on the growth properties of primary cultures. In Vitro Cellular & Developmental Biology, 25(7), 643–649.

    CAS  Article  Google Scholar 

  39. 39.

    Liu, G., Hu, X., & Chakrabarty, S. (2009). Calcium sensing receptor down-regulates malignant cell behavior and promotes chemosensitivity in human breast cancer cells. Cell Calcium, 45(3), 216–225.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Harris, D. M., & Go, V. L. W. (2004). Vitamin D and colon carcinogenesis. The Journal of Nutrition, 134(12), 3463S–3471S.

    CAS  PubMed  Google Scholar 

  41. 41.

    Negri, E., et al. (1996). Intake of selected micronutrients and the risk of breast cancer. International Journal of Cancer, 65(2), 140–144.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    McCullough, M. L., et al. (2005). Dairy, calcium, and vitamin D intake and postmenopausal breast cancer risk in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiology Biomarkers & Prevention, 14(12), 2898–2904.

    CAS  Article  Google Scholar 

  43. 43.

    Journé, F., et al. (2004). Extracellular calcium downregulates estrogen receptor alpha and increases its transcriptional activity through calcium-sensing receptor in breast cancer cells. Bone, 35(2), 479–488.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Guise, T., et al. (2002). Parathyroid hormone-related protein (PTHrP)-(1-139) isoform is efficiently secreted in vitro and enhances breast cancer metastasis to bone in vivo. Bone, 30(5), 670–676.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Guise, T. A. (2000). Molecular mechanisms of osteolytic bone metastases. Cancer, 88(S12), 2892–2898.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Liao, J., et al. (2006). Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Research, 66(18), 9065–9073.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Prasad, V., et al. (2005). Haploinsufficiency of Atp2a2, encoding the sarco (endo) plasmic reticulum Ca2+-ATPase isoform 2 Ca2+ pump, predisposes mice to squamous cell tumors via a novel mode of cancer susceptibility. Cancer Research, 65(19), 8655–8661.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Prevarskaya, N., Zhang, L., & Barritt, G. (2007). TRP channels in cancer. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1772(8), 937–946.

    CAS  Article  Google Scholar 

  49. 49.

    Tsavaler, L., et al. (2001). Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Research, 61(9), 3760–3769.

    CAS  PubMed  Google Scholar 

  50. 50.

    Chen, J., et al. (2014). Transient receptor potential (TRP) channels, promising potential diagnostic and therapeutic tools for cancer. Bioscience Trends, 8(1), 1–10.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Gkika, D., & Prevarskaya, N. (2009). Molecular mechanisms of TRP regulation in tumor growth and metastasis. Biochimica et Biophysica Acta (BBA)-molecular. Cell Research, 1793(6), 953–958.

    CAS  Google Scholar 

  52. 52.

    Fuessel, S., et al. (2003). Multiple tumor marker analyses (PSA, hK2, PSCA, trp-p8) in primary prostate cancers using quantitative RT-PCR. International Journal of Oncology, 23(1), 221–228.

    CAS  PubMed  Google Scholar 

  53. 53.

    Feske, S., et al. (2006). A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature, 441(7090), 179–185.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Chen, Y.-T., et al. (2013). The ER Ca2+ sensor STIM1 regulates actomyosin contractility of migratory cells. Journal of Cell Science, 126(5), 1260–1267.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Avraamides, C. J., Garmy-Susini, B., & Varner, J. A. (2008). Integrins in angiogenesis and lymphangiogenesis. Nature Reviews. Cancer, 8(8), 604–617.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Chen, Y.-F., et al. (2013). Remodeling of calcium signaling in tumor progression. Journal of Biomedical Science, 20, 23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Yang, S., Zhang, J. J., & Huang, X.-Y. (2009). Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell, 15(2), 124–134.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Yang, N., et al. (2013). Blockade of store-operated Ca 2+ entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer Letters, 330(2), 163–169.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Roti, G., et al. (2013). Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer. Cancer Cell, 23(3), 390–405.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Yanez, M., Gil-Longo, J., & Campos-Toimil, M. (2012). Calcium binding proteins. Advances in Experimental Medicine and Biology, 740, 461–482.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Lunde, M. L. S., et al. (2014). Profiling of chromosomal changes in potentially malignant and malignant oral mucosal lesions from South and South-East Asia using array-comparative genomic hybridization. Cancer Genomics-Proteomics, 11(3), 127–140.

    PubMed  Google Scholar 

  62. 62.

    Bresnick, A. R., Weber, D. J., & Zimmer, D. B. (2015). S100 proteins in cancer. Nature Reviews. Cancer, 15(2), 96–109.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Mishra, S. K., Siddique, H. R., & Saleem, M. (2012). S100A4 calcium-binding protein is key player in tumor progression and metastasis: preclinical and clinical evidence. Cancer and Metastasis Reviews, 31(1–2), 163–172.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Network, C. G. A. (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61–70.

    Article  CAS  Google Scholar 

  65. 65.

    Rosenberger, S., et al. (2007). A novel regulator of telomerase S100A8 mediates differentiation-dependent and calcium-induced inhibition of telomerase activity in the human epidermal keratinocyte line HaCaT. Journal of Biological Chemistry, 282(9), 6126–6135.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Hunter, K. D., Parkinson, E. K., & Harrison, P. R. (2005). Profiling early head and neck cancer. Nature Reviews Cancer, 5(2), 127–135.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Barbieri, C. E., Demichelis, F., & Rubin, M. A. (2012). Molecular genetics of prostate cancer: emerging appreciation of genetic complexity. Histopathology, 60(1), 187–198.

    PubMed  Article  Google Scholar 

  68. 68.

    LeGolvan, M. P., Taliano, R. J., & Resnick, M. B. (2012). Application of molecular techniques in the diagnosis, prognosis and management of patients with colorectal cancer: a practical approach. Human Pathology, 43(8), 1157–1168.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Sadanandam, A., et al. (2013). A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nature Medicine, 19(5), 619–625.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Salama, I., et al. (2008). A review of the S100 proteins in cancer. European Journal of Surgical Oncology (EJSO), 34(4), 357–364.

    CAS  Article  Google Scholar 

  71. 71.

    Day, T. K., & Bianco-Miotto, T. (2013). Common gene pathways and families altered by DNA methylation in breast and prostate cancers. Endocrine-Related Cancer, 20(5), R215–R232.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Leśniak, W. (2011). Epigenetic regulation of S100 protein expression. Clinical epigenetics, 2(2), 77.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. 73.

    Sack, U., & Stein, U. (2009). Wnt up your mind-intervention strategies for S100A4-induced metastasis in colon cancer. General Physiology and Biophysics, 28, F55–F64.

    PubMed  Google Scholar 

  74. 74.

    Ozawa, H., & Takata, K. (1995). The granin family. Its role in sorting and secretory granule formation. Cell Structure and Function, 20(6), 415–420.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Abrahamsson, P. A. (1999). Neuroendocrine differentiation in prostatic carcinoma. Prostate, 39(2), 135–148.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Ranno, S., et al. (2006). The chromogranin-a (CgA) in prostate cancer. Archives of Gerontology and Geriatrics, 43(1), 117–126.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Conteduca, V., et al. (2014). Chromogranin A is a potential prognostic marker in prostate cancer patients treated with enzalutamide. The Prostate, 74(16), 1691–1696.

    CAS  PubMed  Article  Google Scholar 

  78. 78.

    Basak, A. (2005). Inhibitors of proprotein convertases. Journal of Molecular Medicine, 83(11), 844–855.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Khatib, A.-M. (2006). Regulation of carcinogenesis, angiogenesis and metastasis by the proprotein convertases (pc’s). Springer.

  80. 80.

    Khatib, A.-M., et al. (2002). Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. The American Journal of Pathology, 160(6), 1921–1935.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Mercapide, J., et al. (2002). Inhibition of furin-mediated processing results in suppression of astrocytoma cell growth and invasiveness. Clinical Cancer Research, 8(6), 1740–1746.

    CAS  PubMed  Google Scholar 

  82. 82.

    Nakajima, T., et al. (2002). Prohormone convertase furin has a role in gastric cancer cell proliferation with parathyroid hormone-related peptide in a reciprocal manner. Digestive Diseases and Sciences, 47(12), 2729–2737.

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Dubois, C. M., et al. (2001). Evidence that furin is an authentic transforming growth factor-β1-converting enzyme. The American Journal of Pathology, 158(1), 305–316.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Rizzuto, R., et al. (2003). Calcium and apoptosis: facts and hypotheses. Oncogene, 22(53), 8619–8627.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Pinton, P., et al. (2008). Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene, 27(50), 6407–6418.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Mattson, M. P., & Chan, S. L. (2003). Calcium orchestrates apoptosis. Nature Cell Biology, 5(12), 1041–1043.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Zhivotovsky, B., & Orrenius, S. (2011). Calcium and cell death mechanisms: a perspective from the cell death community. Cell Calcium, 50(3), 211–221.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Giorgi, C., et al. (2015). p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 112(6), 1779–1784.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Giorgi, C., et al. (2015). Intravital imaging reveals p53-dependent cancer cell death induced by phototherapy via calcium signaling.

  90. 90.

    Haupt, S., Raghu, D., & Haupt, Y. (2015). p53 calls upon CIA (calcium induced apoptosis) to counter stress. Front Oncol, 5, 57.

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Shachaf, C. M., et al. (2004). MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature, 431(7012), 1112–1117.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Soto, A. M., & Sonnenschein, C. (2004). The somatic mutation theory of cancer: growing problems with the paradigm? BioEssays, 26(10), 1097–1107.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Jaffe, L. F. (2005). A calcium-based theory of carcinogenesis., 94, 231–263.

    CAS  Google Scholar 

  94. 94.

    Sonnenschein, C. and A.M. Soto. Theories of carcinogenesis: an emerging perspective. in Seminars in cancer biology. 2008. Elsevier.

  95. 95.

    Smith, B. M., Gindhart, T. D., & Colbum, N. H. (1986). Extracellular calcium requirement for promotion of transformation in JB6 cells. Cancer Research, 46(2), 701–706.

    CAS  PubMed  Google Scholar 

  96. 96.

    Taylor, J. M., & Simpson, R. (1992). Inhibition of cancer cell growth by calcium channel antagonists in the athymic mouse. Cancer Research, 52(9), 2413–2418.

    CAS  PubMed  Google Scholar 

  97. 97.

    D’Agostino, D., et al. (2005). The human T-cell leukemia virus type 1 p13II protein: effects on mitochondrial function and cell growth. Cell Death & Differentiation, 12, 905–915.

    Article  CAS  Google Scholar 

  98. 98.

    Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicologic Pathology, 35(4), 495–516.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Peracchia, C., Wang, X. G., & Peracchia, L. L. (1999). Behavior of chemical and slow voltage-sensitive gates of connexin channels: the"cork" gating hypothesis. Gap Junctions: Molecular Basis of Cell Communication in Health and Disease: Molecular Basis of Cell Communication in Health and Disease, 49, 271.

    Article  Google Scholar 

  100. 100.

    Chipman, J. K., Mally, A., & Edwards, G. O. (2003). Disruption of gap junctions in toxicity and carcinogenicity. Toxicological Sciences, 71(2), 146–153.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    McKinsey, T. A., Zhang, C. L., & Olson, E. N. (2000). Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proceedings of the National Academy of Sciences, 97(26), 14400–14405.

    CAS  Article  Google Scholar 

  102. 102.

    Hogan, P. G., et al. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes & Development, 17(18), 2205–2232.

    CAS  Article  Google Scholar 

  103. 103.

    Carrion, A. M., et al. (1999). DREAM is a Ca2+-regulated transcriptional repressor. Nature, 398(6722), 80–84.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Olave, I. A., Reck-Peterson, S. L., & Crabtree, G. R. (2002). Nuclear actin and actin-related proteins in chromatin remodeling. Annual Review of Biochemistry, 71(1), 755–781.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Rando, O. J., Chi, T. H., & Crabtree, G. R. (2003). Second messenger control of chromatin remodeling. Nature Structural & Molecular Biology, 10(2), 81–83.

    CAS  Article  Google Scholar 

  106. 106.

    Wang, Z., Wilson, G. F., & Griffith, L. C. (2002). Calcium/calmodulin-dependent protein kinase II phosphorylates and regulates the Drosophila eag potassium channel. Journal of Biological Chemistry, 277(27), 24022–24029.

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Christensen, B., Kieler, J., & Bem, W. (1986). Growth requirements and growth pattern of human urothelial cell lines of different grades of transformation. Anticancer Research, 7(3 Pt B), 481–490.

    Google Scholar 

  108. 108.

    Boynton, A.L., et al., Extracellular Ca2+ and cell cycle transitions, in Cell calcium metabolism. 1989, Springer. p. 273–282.

  109. 109.

    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Kessler, T., Hache, H., & Wierling, C. (2013). Integrative analysis of cancer-related signaling pathways. Frontiers in Physiology, 4, 124.

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20, 781–810.

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Thrasivoulou, C., Millar, M., & Ahmed, A. (2013). Activation of intracellular calcium by multiple Wnt ligands and translocation of beta-catenin into the nucleus: a convergent model of Wnt/Ca2+ and Wnt/beta-catenin pathways. The Journal of Biological Chemistry, 288(50), 35651–35659.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Dikic, I., et al., A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. 1996.

  114. 114.

    Farnsworth, C.L., et al., Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. 1995.

  115. 115.

    Chen, H.-J., et al. (1998). A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron, 20(5), 895–904.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Tebar, F., et al. (2002). Calmodulin regulates intracellular trafficking of epidermal growth factor receptor and the MAPK signaling pathway. Molecular Biology of the Cell, 13(6), 2057–2068.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Chuderland, D., & Seger, R. (2014). Calcium regulates ERK signaling by modulating its protein-protein interactions. Communicative & Integrative Biology, 1(1), 4–5.

    Article  Google Scholar 

  118. 118.

    Hogan, P.G. ( 2012) The STIM-Orai pathway, in Store-operated Ca2+ entry (SOCE) pathways. Springer. p. 33–44.

  119. 119.

    Stathopulos, P.B. and M. Ikura, The STIM-Orai pathway, in Store-operated Ca2+ entry (SOCE) pathways. 2012, Springer. p. 15–31.

  120. 120.

    Schindl, R., et al. (2012). The STIM-Orai pathway, in Store-operated Ca2+ entry (SOCE) pathways. Springer. p. 45–56.

  121. 121.

    Rand, M. D., et al. (2000). Calcium depletion dissociates and activates heterodimeric notch receptors. Molecular and Cellular Biology, 20(5), 1825–1835.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Kadesch, T. (2004). Notch signaling: the demise of elegant simplicity. Current Opinion in Genetics & Development, 14(5), 506–512.

    CAS  Article  Google Scholar 

  123. 123.

    Raya, Á., et al. (2004). Notch activity acts as a sensor for extracellular calcium during vertebrate left–right determination. Nature, 427(6970), 121–128.

    CAS  PubMed  Article  Google Scholar 

  124. 124.

    Belgacem, Y. H., & Borodinsky, L. N. (2011). Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord. Proceedings of the National Academy of Sciences, 108(11), 4482–4487.

    CAS  Article  Google Scholar 

  125. 125.

    Feng, M., et al. (2010). Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell, 143(1), 84–98.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Zhao, R., et al. (2016). A drug-free tumor therapy strategy: cancer-cell-targeting calcification. Angewandte Chemie International Edition, 55(17), 5225–5229.

    CAS  Article  Google Scholar 

  127. 127.

    Raynal, N. J., et al. (2016). Targeting calcium signaling induces epigenetic reactivation of tumor suppressor genes in cancer. Cancer Research, 76(6), 1494–1505.

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Si, J., et al. (2010). Chromatin remodeling is required for gene reactivation after decitabine-mediated DNA hypomethylation. Cancer Research, 70(17), 6968–6977.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Kim, S.-Y., et al. (2013). Regulation of calcium influx and signaling pathway in cancer cells via TRPV6–Numb1 interaction. Cell Calcium, 53(2), 102–111.

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Prevarskaya, N., Skryma, R., & Shuba, Y. (2011). Calcium in tumour metastasis: new roles for known actors. Nature Reviews Cancer, 11(8), 609–618.

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Berridge, M. J., Bootman, M. D., & Lipp, P. (1998). Calcium-a life and death signal. Nature, 395(6703), 645–648.

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Cook, S. J., & Lockyer, P. J. (2006). Recent advances in Ca 2+-dependent Ras regulation and cell proliferation. Cell Calcium, 39(2), 101–112.

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Alam, M. J., et al. (2013). Switching p 53 states by calcium: dynamics and interaction of stress systems. Molecular BioSystems, 9(3), 508–521.

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Sorrentino, G., Comel, A., & Del Sal, G. (2015). p53 orchestrates calcium signaling in vivo. Cell Cycle, 14(9), 1343–1344.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Madan, E., et al. (2013). p53 increases intra-cellular calcium release by transcriptional regulation of calcium channel TRPC6 in GaQ 3-treated cancer cells. PloS One, 8(8), e71016.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Hoth, M. (2016). CRAC channels, calcium, and cancer in light of the driver and passenger concept. Biochimica et Biophysica Acta (BBA)-molecular. Cell Research, 1863(6), 1408–1417.

    CAS  Google Scholar 

  137. 137.

    Zhong, Z., et al. (2010). Cyclin D1/cyclin-dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells. Cancer Research, 70(5), 2105–2114.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Bikle, D., Oda, Y., & Xie, Z. (2004). Calcium and 1, 25 (OH) 2 D: interacting drivers of epidermal differentiation. The Journal of Steroid Biochemistry and Molecular Biology, 89, 355–360.

    PubMed  Article  CAS  Google Scholar 

  139. 139.

    Parkash, J., & Asotra, K. (2010). Calcium wave signaling in cancer cells. Life Sciences, 87(19–22), 587–595.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Baker, R., et al. (2010). New relationships between breast microcalcifications and cancer. British Journal of Cancer, 103(7), 1034–1039.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Morgan, M. P., Cooke, M. M., & McCarthy, G. M. (2005). Microcalcifications associated with breast cancer: an epiphenomenon or biologically significant feature of selected tumors? Journal of Mammary Gland Biology and Neoplasia, 10(2), 181–187.

    PubMed  Article  Google Scholar 

  142. 142.

    Franceschi, D., et al. (1990). Biopsy of the breast for mammographically detected lesions. Surgery, Gynecology & Obstetrics, 171(6), 449–455.

    CAS  Google Scholar 

  143. 143.

    Park, J., et al. (2000). Clustering of breast microcalcifications: revisited. Clinical Radiology, 55(2), 114–118.

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Kakkos, S. K., et al. (2000). Relative risk of cancer in sonographically detected thyroid nodules with calcifications. Journal of Clinical Ultrasound, 28(7), 347–352.

    CAS  PubMed  Article  Google Scholar 

  145. 145.

    Woods, J. E., Soh, S., & Wheeler, T. M. (1998). Distribution and significance of microcalcifications in the neoplastic and nonneoplastic prostate. Archives of Pathology & Laboratory Medicine, 122(2), 152.

    CAS  Google Scholar 

  146. 146.

    Rashid, H.H., et al. Testicular microlithiasis: a review and its association with testicular cancer. in Urologic oncology: seminars and original investigations. 2004. Elsevier.

  147. 147.

    Conteduca, V., et al. (2014). Chromogranin A is a potential prognostic marker in prostate cancer patients treated with enzalutamide. Prostate, 74(16), 1691–1696.

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Wang, Q., et al. (2012). S100P, a potential novel prognostic marker in colorectal cancer. Oncology Reports, 28(1), 303.

    PubMed  Google Scholar 

  149. 149.

    Tennakoon, S., Aggarwal, A., & Kállay, E. (2016). The calcium-sensing receptor and the hallmarks of cancer. Biochimica et Biophysica Acta (BBA)-molecular. Cell Research, 1863(6), 1398–1407.

    CAS  Google Scholar 

  150. 150.

    Monteith, G. R., Davis, F. M., & Roberts-Thomson, S. J. (2012). Calcium channels and pumps in cancer: changes and consequences. Journal of Biological Chemistry, 287(38), 31666–31673.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Casemore, D. and C. Xing, SERCA as a target for cancer therapies.

  152. 152.

    Wong, V. K., et al. (2013). Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell death in apoptosis-defective cells. Cell Death & Disease, 4, e720.

    CAS  Article  Google Scholar 

  153. 153.

    Seo, J.a et al., Curcumin induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca 2+ ATPase activity in ovarian cancer cells. Cancer letters, 2016. 371(1): p. 30–37.

  154. 154.

    Florea, A.-M., & Büsselberg, D. (2009). Anti-cancer drugs interfere with intracellular calcium signaling. Neurotoxicology, 30(5), 803–810.

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Laneuville, O., et al. (1993). Hepoxilin A3 inhibits the rise in free intracellular calcium evoked by formyl-methionyl-leucyl-phenylalanine, platelet-activating factor and leukotriene B4. Biochemical Journal, 295(2), 393–397.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. 156.

    Mills, L., Reynaud, D., & Pace-Asciak, C. R. (1997). Hepoxilin-evoked intracellular reorganization of calcium in human neutrophils: a confocal microscopy study. Experimental Cell Research, 230(2), 337–341.

    CAS  PubMed  Article  Google Scholar 

  157. 157.

    Pace-Asciak, C. R. (2011). Hepoxilins in cancer and inflammation—use of hepoxilin antagonists. Cancer Metastasis Reviews, 30(3–4), 493–506.

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Yang, B., et al. (2016). Calcium intake and mortality from all causes, cancer, and cardiovascular disease: the Cancer Prevention Study II Nutrition Cohort. The American Journal of Clinical Nutrition, 103(3), 886–894.

    CAS  PubMed  Article  Google Scholar 

  159. 159.

    Chan, J. M., & Giovannucci, E. L. (2001). Dairy products, calcium, and vitamin D and risk of prostate cancer. Epidemiologic Reviews, 23(1), 87–92.

    CAS  PubMed  Article  Google Scholar 

  160. 160.

    Brändstedt, J., et al. (2016). Vitamin D, PTH, and calcium and tumor aggressiveness in prostate cancer: a prospective nested case–control study. Cancer Causes & Control, 27(1), 69–80.

    Article  Google Scholar 

  161. 161.

    Grant, M. J., & Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information and Libraries Journal, 26(2), 91–108.

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

This research received no funding.

We would like to thank the long lignage of researchers involved in calcium research and its molecular intercations with cancer. In particular, our special thoughts go toward Prs Majid Khatib, Michael Berridge, and the late Lionel Jaffe for their pionneering work in the field.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sanni Yaya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kadio, B., Yaya, S., Basak, A. et al. Calcium role in human carcinogenesis: a comprehensive analysis and critical review of literature. Cancer Metastasis Rev 35, 391–411 (2016). https://doi.org/10.1007/s10555-016-9634-0

Download citation

Keywords

  • Calcium signaling
  • Cancer pathways
  • Calcium homeostasis
  • Cellular calcium concentration
  • Tumorigenesis
  • Cancer metastasis
  • Apoptosis