Cancer and Metastasis Reviews

, Volume 34, Issue 3, pp 465–478 | Cite as

Revisit dietary fiber on colorectal cancer: butyrate and its role on prevention and treatment

  • J. C. Encarnação
  • A. M. Abrantes
  • A. S. Pires
  • M. F. BotelhoEmail author


Colorectal cancer is still a major health problem worldwide. Based on the most recent released data by the World Health Organization GLOBOCAN in 2012, colorectal cancer is the third most prevalent type of cancer in males and the second in females. In 1999, it was published the first report showing evidence of a strong correlation between diet and cancer incidence, being its positive or negative impact intimately linked to dietary patterns. A diet rich in fiber is associated with a low risk of developing colorectal cancer. The fermentation of the dietary fiber by intestinal microflora results in production of butyrate, which plays a plurifunctional role on the colonocytes, and it has also been reported as a chemopreventive agent. However, there are limited studies focusing its anti-cancer potential. Here, we review the recent new insights that focus butyrate and its role in colorectal cancer prevention and treatment, from its synthesis, metabolism, and transport, through its involvement on several cancer-related signaling pathways, to the novel existing approaches for its clinical use.


Colorectal cancer Butyrate Histone deacetylase inhibitors Cancer prevention Cancer therapy 



Ana Salomé Pires would like to thank the Portuguese Foundation for Science and Technology for the award of PhD scholarship (SFRH/BD/75300/2010).

Support: FCT, Portugal (Strategic Project PEst-C/SAU/UI3282/2013 and UID/NEU/04539/2013), COMPETE-FEDER.

Conflict of interest

The authors declare that they have nothing to disclose.


  1. 1.
    Knudsen, B. K. E., Serena, A., Canibe, N., & Juntunen, K. S. (2003). New insight into butyrate metabolism. Proceedings of the Nutrition Society, 62, 81–86.CrossRefGoogle Scholar
  2. 2.
    Vital, M., Howe, A. C., & Tiedje, J. M. (2014). Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio, 5(2), 1–11. doi: 10.1128/mBio.00889-14.CrossRefGoogle Scholar
  3. 3.
    Mortensen, P. B., & Clausen, M. R. (1996). Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scandinavian Journal of Gastroenterology. Supplement, 216, 132–148.CrossRefPubMedGoogle Scholar
  4. 4.
    Daly, K., Cuff, M. A., Fung, F., & Shirazi-Beechey, S. P. (2005). The importance of colonic butyrate transport to the regulation of genes associated with colonic tissue homoeostasis. Biochemical Society Transactions, 33, 733–735. doi: 10.1042/BST0330733.CrossRefPubMedGoogle Scholar
  5. 5.
    Hamer, H. M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F. J., & Brummer, R.-J. (2008). Review article: the role of butyrate on colonic function. Alimentary Pharmacology & Therapeutics, 27(2), 104–119. doi: 10.1111/j.1365-2036.2007.03562.x.CrossRefGoogle Scholar
  6. 6.
    Ahmad, M. S., Krishnan, S., Ramakrishna, B. S., Mathan, M., Pulimood, A. B., & Murthy, S. N. (2000). Butyrate and glucose metabolism by colonocytes in experimental colitis in mice. Gut, 46(4), 493–499.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Topping, D. L., & Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 81(3), 1031–1064. doi: 10.1002/(SICI)1096-8644(199706)103:2<157::AID-AJPA2>3.0.CO;2-R.PubMedGoogle Scholar
  8. 8.
    Louis, P., & Flint, H. J. (2009). Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters, 294(1), 1–8. doi: 10.1111/j.1574-6968.2009.01514.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Pryde, S. E., Duncan, S. H., Hold, G. L., Stewart, C. S., & Flint, H. J. (2002). The microbiology of butyrate formation in the human colon. FEMS Microbiology Letters, 217, 133–139. doi: 10.1016/S0378-1097(02)01106-0.CrossRefPubMedGoogle Scholar
  10. 10.
    Genz, A., Engelhardt, W., & Busche, R. (1999). Maintenance and regulation of the pH microclimate at the luminal surface of the distal colon of guinea-pig. 507–519.Google Scholar
  11. 11.
    Sehested, J., Diernaes, L., Moller, P. D., & Skadhauge, E. (1996). Transport of sodium across the isolated bovine rumen epithelium: interaction with short-chain fatty acids, chloride and bicarbonate. Experimental Physiology, 81, 79–94.CrossRefPubMedGoogle Scholar
  12. 12.
    Gonçalves, P., & Martel, F. (2013). Butyrate and colorectal cancer: the role of butyrate transport. Current Drug Metabolism, 14(9), 994–1008. Retrieved from
  13. 13.
    Cuff, M. A., & Shirazi-Beechey, S. P. (2004). The importance of butyrate transport to the regulation of gene expression in the colonic epithelium. Biochemical Society Transactions, 32, 1100–1102. doi: 10.1042/BST0321100.CrossRefPubMedGoogle Scholar
  14. 14.
    Glade, M. J. (1999). Food, nutrition, and the prevention of cancer: a global perspective. Nutrition, 15(6), 523–526.CrossRefPubMedGoogle Scholar
  15. 15.
    Baena Ruiz, R., & Salinas Hernández, P. (2014). Diet and cancer: risk factors and epidemiological evidence. Maturitas, 77(3), 202–208. doi: 10.1016/j.maturitas.2013.11.010.CrossRefPubMedGoogle Scholar
  16. 16.
    Anand, P., Kunnumakkara, A. B., Kunnumakara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., … & Aggarwal, B. B. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical Research, 25(9), 2097–116. doi: 10.1007/s11095-008-9661-9.
  17. 17.
    Scharlau, D., Borowicki, A., Habermann, N., Hofmann, T., Klenow, S., Miene, C., … & Glei, M. (2009). Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutation Research, 682(1), 39–53. doi: 10.1016/j.mrrev.2009.04.001.
  18. 18.
    Zeng, H., Lazarova, D. L., & Bordonaro, M. (2014). Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World Journal of Gastrointestinal Oncology, 6(2), 41–51. doi: 10.4251/wjgo.v6.i2.41.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Irigaray, P., Newby, J. A., Clapp, R., Hardell, L., Howard, V., Montagnier, L., … & Belpomme, D. (2007). Lifestyle-related factors and environmental agents causing cancer: an overview. Biomedicine & pharmacotherapy = Biomédecine & pharmacothérapie, 61(10), 640–58. doi: 10.1016/j.biopha.2007.10.006.
  20. 20.
    Pericleous, M., Mandair, D., & Caplin, M. E. (2013). Diet and supplements and their impact on colorectal cancer. Journal of Gastrointestinal Oncology, 4(4), 409–423. doi: 10.3978/j.issn.2078-6891.2013.003.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Durko, L., & Malecka-Panas, E. (2014). Lifestyle modifications and colorectal cancer. Current Colorectal Cancer Reports, 10, 45–54. doi: 10.1007/s11888-013-0203-4.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Bultman, S. J. (2014). Molecular pathways: gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 20(4), 799–803. doi: 10.1158/1078-0432.CCR-13-2483.CrossRefGoogle Scholar
  23. 23.
    Leonel, A. J., & Alvarez-Leite, J. I. (2012). Butyrate: implications for intestinal function. Current Opinion in Clinical Nutrition and Metabolic Care, 15(5), 474–479. doi: 10.1097/MCO.0b013e32835665fa.CrossRefPubMedGoogle Scholar
  24. 24.
    Fung, K. Y. C., Cosgrove, L., Lockett, T., Head, R., & Topping, D. L. (2012). A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. The British Journal of Nutrition, 108(5), 820–831. doi: 10.1017/S0007114512001948.CrossRefPubMedGoogle Scholar
  25. 25.
    Lupton, J. R. (2004). Microbial degradation products influence colon cancer risk: the butyrate controversy. The Journal of Nutrition, 134, 479–482.PubMedGoogle Scholar
  26. 26.
    Klampfer, L., Huang, J., Sasazuki, T., Shirasawa, S., & Augenlicht, L. (2003). Inhibition of interferon; signaling by the short chain fatty acid butyrate. Molecular Cancer Research, 1(September), 855–862.PubMedGoogle Scholar
  27. 27.
    Scholz, D. (2011). The role of nutrition in the etiology of inflammatory bowel disease. Current Problems in Pediatric and Adolescent Health Care, 41(9), 248–253. doi: 10.1016/j.cppeds.2011.04.005.CrossRefPubMedGoogle Scholar
  28. 28.
    Rogler, G. (2014). Chronic ulcerative colitis and colorectal cancer. Cancer Letters, 345(2), 235–241. doi: 10.1016/j.canlet.2013.07.032.CrossRefPubMedGoogle Scholar
  29. 29.
    Wang, K., & Karin, M. (2013). Common flora and intestine: a carcinogenic marriage. Cellular Logistics, 3(1), e24975. doi: 10.4161/cl.24975.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Peng, L., Li, Z.-R., Green, R. S., Holzman, I. R., & Lin, J. (2009). Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. The Journal of Nutrition, 139(9), 1619–1625. doi: 10.3945/jn.109.104638.PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    Renaud, F., Vincent, A., Mariette, C., Crépin, M., Stechly, L., Truant, S., … & Buisine, M.-P. (2014). MUC5AC hypomethylation is a predictor of microsatellite instability independently of clinical factors associated with colorectal cancer. International Journal of Cancer. Journal International du Cancer, 00. doi: 10.1002/ijc.29342.
  32. 32.
    Hatayama, H., Iwashita, J., Kuwajima, A., & Abe, T. (2007). The short chain fatty acid, butyrate, stimulates MUC2 mucin production in the human colon cancer cell line, LS174T. Biochemical and Biophysical Research Communications, 356(3), 599–603. doi: 10.1016/j.bbrc.2007.03.025.CrossRefPubMedGoogle Scholar
  33. 33.
    Blum, H. E. (1995). Colorectal cancer: future population screening for early colorectal cancer. European Journal of Cancer (Oxford, England : 1990), 31A(7-8), 1369–1372.CrossRefGoogle Scholar
  34. 34.
    Canani, R. B., Costanzo, M. D., Leone, L., Pedata, M., Meli, R., & Calignano, A. (2011). Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology: WJG, 17(12), 1519–1528. doi: 10.3748/wjg.v17.i12. 1519.PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Soret, R., Chevalier, J., De Coppet, P., Poupeau, G., Derkinderen, P., Segain, J. P., & Neunlist, M. (2010). Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology, 138(5), 1772–1782. doi: 10.1053/j.gastro.2010.01.053.CrossRefPubMedGoogle Scholar
  36. 36.
    Hurst, N. R., Kendig, D. M., Murthy, K. S., & Grider, J. R. (2014). The short chain fatty acids, butyrate and propionate, have differential effects on the motility of the guinea pig colon. Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society, 26(11), 1586–1596. doi: 10.1111/nmo.12425.CrossRefGoogle Scholar
  37. 37.
    Kautenburger, T., Beyer-Sehlmeyer, G., Festag, G., Haag, N., Kühler, S., Küchler, A., & … Pool-Zobel, B. L. (2005). The gut fermentation product butyrate, a chemopreventive agent, suppresses glutathione S-transferase theta (hGSTT1) and cell growth more in human colon adenoma (LT97) than tumor (HT29) cells. Journal of Cancer Research and Clinical Oncology, 131(10), 692–700. doi: 10.1007/s00432-005-0013-4.
  38. 38.
    Scharmach, E., Hessel, S., Niemann, B., & Lampen, A. (2009). Glutathione S-transferase expression and isoenzyme composition during cell differentiation of Caco-2 cells. Toxicology, 265(3), 122–126. doi: 10.1016/j.tox.2009.09.017.CrossRefPubMedGoogle Scholar
  39. 39.
    Sauer, J., Richter, K. K., & Pool-Zobel, B. L. (2007). Products formed during fermentation of the prebiotic inulin with human gut flora enhance expression of biotransformation genes in human primary colon cells. The British Journal of Nutrition, 97(5), 928–937. doi: 10.1017/S0007114507666422.CrossRefPubMedGoogle Scholar
  40. 40.
    Hofmanová, J., Straková, N., Vaculová, A. H., Tylichová, Z., Safaříková, B., Skender, B., & Kozubík, A. (2014). Interaction of dietary fatty acids with tumour necrosis factor family cytokines during colon inflammation and cancer. Mediators of Inflammation, 2014, 848632. doi: 10.1155/2014/848632.PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., … & Vermeire, S. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63(8), 1275–83. doi: 10.1136/gutjnl-2013-304833.
  42. 42.
    Chang, P. V., Hao, L., Offermanns, S., & Medzhitov, R. (2014). The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 111(6), 2247–2252. doi: 10.1073/pnas.1322269111.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Russo, I., Luciani, A., De Cicco, P., Troncone, E., & Ciacci, C. (2012). Butyrate attenuates lipopolysaccharide-induced inflammation in intestinal cells and Crohn’s mucosa through modulation of antioxidant defense machinery. PloS One, 7(3), e32841. doi: 10.1371/journal.pone.0032841.PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Vieira, E. L. M., Leonel, A. J., Sad, A. P., Beltrão, N. R. M., Costa, T. F., Ferreira, T. M. R., … & Alvarez-Leite, J. I. (2012). Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. The Journal of Nutritional Biochemistry, 23(5), 430–6. doi: 10.1016/j.jnutbio.2011.01.007.
  45. 45.
    Liu, T., Li, J., Liu, Y., Xiao, N., Suo, H., Xie, K., … & Wu, C. (2012). Short-chain fatty acids suppress lipopolysaccharide-induced production of nitric oxide and proinflammatory cytokines through inhibition of NF-κB pathway in RAW264.7 cells. Inflammation, 35(5), 1676–84. doi: 10.1007/s10753-012-9484-z.
  46. 46.
    Ohira, H., Fujioka, Y., Katagiri, C., Mamoto, R., Aoyama-Ishikawa, M., Amako, K., … & Ikeda, M. (2013). Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. Journal of Atherosclerosis and Thrombosis, 425–442. doi: 10.5551/jat.15065.
  47. 47.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. doi: 10.1016/j.cell.2011.02.013.CrossRefPubMedGoogle Scholar
  48. 48.
    Donohoe, D. R., Collins, L. B., Wali, A., Bigler, R., Sun, W., & Bultman, S. J. (2012). The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Molecular Cell, 48(4), 612–626. doi: 10.1016/j.molcel.2012.08.033.PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Pajak, B., Orzechowski, A., & Gajkowska, B. (2007). Molecular basis of sodium butyrate-dependent proapoptotic activity in cancer cells. Advances in Medical Sciences, 52, 83–8. Retrieved from
  50. 50.
    Pan, M.-H., Lai, C.-S., Wu, J.-C., & Ho, C.-T. (2011). Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Molecular Nutrition & Food Research, 55(1), 32–45. doi: 10.1002/mnfr.201000412.CrossRefGoogle Scholar
  51. 51.
    Stiborová, M., Eckschlager, T., Poljaková, J., Hraběta, J., Adam, V., Kizek, R., & Frei, E. (2012). The synergistic effects of DNA-targeted chemotherapeutics and histone deacetylase inhibitors as therapeutic strategies for cancer treatment. Current Medicinal Chemistry, 19(25), 4218–38. Retrieved from
  52. 52.
    Witt, O., Deubzer, H. E., Milde, T., & Oehme, I. (2009). HDAC family: what are the cancer relevant targets? Cancer Letters, 277(1), 8–21. doi: 10.1016/j.canlet.2008.08.016.CrossRefPubMedGoogle Scholar
  53. 53.
    Godman, C. A, Joshi, R., Tierney, B. R., Greenspan, E., Rasmussen, T. P., Wang, H.-W., … & Giardina, C. (2008). HDAC3 impacts multiple oncogenic pathways in colon cancer cells with effects on Wnt and vitamin D signaling. Cancer Biology and Therapy, 7(10), 1570–80. Retrieved from
  54. 54.
    Li, Y., Zhang, X., Polakiewicz, R. D., Yao, T.-P., & Comb, M. J. (2008). HDAC6 is required for epidermal growth factor-induced beta-catenin nuclear localization. The Journal of Biological Chemistry, 283(19), 12686–12690. doi: 10.1074/jbc.C700185200.PubMedCentralCrossRefPubMedGoogle Scholar
  55. 55.
    Ma, X., Ezzeldin, H. H., & Diasio, R. B. (2009). Histone deacetylase inhibitors: current status and overview of recent clinical trials. Drugs, 69(14), 1911–1934. doi: 10.2165/11315680-000000000-00000.CrossRefPubMedGoogle Scholar
  56. 56.
    Minucci, S., & Pelicci, P. G. (2006). Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Review. Cancer, 6(1), 38–51. doi: 10.1038/nrc1779.CrossRefGoogle Scholar
  57. 57.
    Bordonaro, M., Lazarova, D. L., & Sartorelli, A. C. (2007). The activation of beta-catenin by Wnt signaling mediates the effects of histone deacetylase inhibitors. Experimental Cell Research, 313(8), 1652–1666. doi: 10.1016/j.yexcr.2007.02.008.PubMedCentralCrossRefPubMedGoogle Scholar
  58. 58.
    Federico, M., & Bagella, L. (2011). Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. Journal of Biomedicine and Biotechnology, 2011(Figure 1), 475641. doi: 10.1155/2011/475641.
  59. 59.
    Dashwood, R. H., & Ho, E. (2007). Dietary histone deacetylase inhibitors: from cells to mice to man. Seminars in Cancer Biology, 17(5), 363–369. doi: 10.1016/j.semcancer.2007.04.001.PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Kuefer, R., Hofer, M. D., Altug, V., Zorn, C., Genze, F., Kunzi-Rapp, K., … & Gschwend, J. E. (2004). Sodium butyrate and tributyrin induce in vivo growth inhibition and apoptosis in human prostate cancer. British Journal of Cancer, 90(2), 535–41. doi: 10.1038/sj.bjc.6601510.
  61. 61.
    Wang, Z., Ehinger, M., & Grant, S. (1999). Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid ( SAHA ) proceeds through pathways that are regulated by, 7016–7025.Google Scholar
  62. 62.
    Davie, J. R. (2003). Inhibition of histone deacetylase activity by butyrate. The Journal of nutrition, 2485–2493.Google Scholar
  63. 63.
    Roy, M.-J., Dionne, S., Marx, G., Qureshi, I., Sarma, D., Levy, E., & Seidman, E. G. (2009). In vitro studies on the inhibition of colon cancer by butyrate and carnitine. Nutrition (Burbank, Los Angeles County, California), 25(11-12), 1193–1201. doi: 10.1016/j.nut.2009.04.008.CrossRefGoogle Scholar
  64. 64.
    Yu, D. C. W., Waby, J. S., Chirakkal, H., Staton, C. A., & Corfe, B. M. (2010). Butyrate suppresses expression of neuropilin I in colorectal cell lines through inhibition of Sp1 transactivation. Molecular Cancer, 9(1), 276. doi: 10.1186/1476-4598-9-276.PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    Hernandez, A., Thomas, R., Smith, F., Sandberg, J., Kim, S., Chung, D. H., & Evers, B. M. (2001). Butyrate sensitizes human colon cancer cells to TRAIL-mediated apoptosis. Surgery, 130(2), 265–272. doi: 10.1067/msy.2001.115897.CrossRefPubMedGoogle Scholar
  66. 66.
    Kim, Y.-H., Park, J.-W., Lee, J.-Y., & Kwon, T. K. (2004). Sodium butyrate sensitizes TRAIL-mediated apoptosis by induction of transcription from the DR5 gene promoter through Sp1 sites in colon cancer cells. Carcinogenesis, 25(10), 1813–1820. doi: 10.1093/carcin/bgh188.CrossRefPubMedGoogle Scholar
  67. 67.
    Niles, R. M. (1989). Sodium butyrate suppresses the transforming activity activated N-ras oncogene in human colon carcinoma cells. Experimental Cell Research, 184, 16–27.CrossRefPubMedGoogle Scholar
  68. 68.
    Velázquez, O. C., Lederer, H. M., & Rombeau, J. L. (1996). Butyrate and the colonocyte. Implications for neoplasia. Digestive Diseases and Sciences, 41(4), 727–39. Retrieved from
  69. 69.
    Heruth, D. P., Zirnstein, G. W., Bradley, J. F., & Rothbergs, G. (1993). Sodium butyrate causes an increase in the block to transcriptional elongation in the c-myc gene in SW837 rectal carcinoma cells. The Journal of Biological Chemistry, 268(25), 20466–20472.PubMedGoogle Scholar
  70. 70.
    Taylora, C. W., & Kimb, Y. S. (1992). Sensitivity of nuclear c-myc levels and induction to agents in human colon tumor cell lines. Cancer Letters, 62(2), 95–105.CrossRefGoogle Scholar
  71. 71.
    Giles, R. H., Lolkema, M. P., Snijckers, C. M., Belderbos, M., van der Groep, P., Mans, D. a, … & Voest, E. E. (2006). Interplay between VHL/HIF1alpha and Wnt/beta-catenin pathways during colorectal tumorigenesis. Oncogene, 25(21), 3065–70. doi: 10.1038/sj.onc.1209330.
  72. 72.
    Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., … & Ohno, H. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 504(7480), 446–50. doi: 10.1038/nature12721.
  73. 73.
    Qian, D. Z., Kachhap, S. K., Collis, S. J., Verheul, H. M. W., Carducci, M. A., Atadja, P., & Pili, R. (2006). Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1 alpha. Cancer Research, 66(17), 8814–8821. doi: 10.1158/0008-5472.CAN-05-4598.CrossRefPubMedGoogle Scholar
  74. 74.
    Sancho, E., Batlle, E., & Clevers, H. (2004). Signaling pathways in intestinal development and cancer. Annual Review of Cell and Developmental Biology, 20, 695–723. doi: 10.1146/annurev.cellbio.20.010403.092805.CrossRefPubMedGoogle Scholar
  75. 75.
    Billin, A. N., Thirlwell, H., & Ayer, D. E. (2000). Beta-catenin-histone deacetylase interactions regulate the transition of LEF1 from a transcriptional repressor to an activator. Molecular and cellular biology, 20(18), 6882–90. Retrieved from
  76. 76.
    Yamaguchi, M., Tonou-Fujimori, N., Komori, A., Maeda, R., Nojima, Y., Li, H., … & Masai, I. (2005). Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development (Cambridge, England), 132(13), 3027–43. doi: 10.1242/dev.01881.
  77. 77.
    Luczyńska, E., & Anioł, J. (2013). Neoangiogenesis in prostate cancer. Contemporary Oncology (Poznan, Poland), 17(3), 229–233. doi: 10.5114/wo.2013.35272.Google Scholar
  78. 78.
    Pellizzaro, C., & Coradini, D. (2002). Modulation of angiogenesis-related proteins synthesis by sodium butyrate in colon cancer cell line HT29 sodium butyrate (NaB), a short-chain fatty acid naturally arrest, differentiation and apoptosis in colon cancer cells. Carcinogenesis, 23(5), 735–740.CrossRefPubMedGoogle Scholar
  79. 79.
    Bates, S. E., Currier, S. J., Alvarez, M., & Fojo, A. T. (1992). Modulation of P-glycoprotein phosphorylation and drug transport by sodium butyrate. Biochemistry, 31(28), 6366–72. Retrieved from
  80. 80.
    Gonçalves, P., Gregório, I., & Martel, F. (2011). The short-chain fatty acid butyrate is a substrate of breast cancer resistance protein. American Journal of Physiology. Cell Physiology, 301(5), C984–C994. doi: 10.1152/ajpcell.00146.2011.CrossRefPubMedGoogle Scholar
  81. 81.
    Casalta-Lopes, J. (2011). Efflux pumps modulation in colorectal adenocarcinoma cell lines: the role of nuclear medicine. Journal of Cancer Therapy, 02(03), 408–417. doi: 10.4236/jct.2011.23056.CrossRefGoogle Scholar
  82. 82.
    Kwaan, H. C. B., & McMahon, B. (2009). Coagulation in cancer. (P. David Green, MD & H. C. Kwaan, Eds.) (pp. 43–66). Springer New York. Retrieved from
  83. 83.
    Gibson, P. R., Birchall, I., Rosella, O., Albert, V., Finch, C. F., Barkla, D. H., & Young, G. P. (1998). Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover. Gut, 43, 656–663.PubMedCentralCrossRefPubMedGoogle Scholar
  84. 84.
    Mortensen, F. V., Jørgensen, B., Christiansen, H. M., Sloth-Nielsen, J., Wolff, B., & Hessov, I. (2000). Short-chain fatty acid enemas stimulate plasminogen activator inhibitor-1 after abdominal aortic graft surgery: a double-blinded, placebo-controlled study. Thrombosis Research, 98(5), 361–366.CrossRefPubMedGoogle Scholar
  85. 85.
    Shukla, S., & Meeran, S. M. (2014). Epigenetics of cancer stem cells: pathways and therapeutics. Biochimica et Biophysica Acta (BBA), 1840(12), 3494–3502.CrossRefGoogle Scholar
  86. 86.
    Kato, K., Kuhara, A., Yoneda, T., Inoue, T., Takao, T., Ohgami, T., … & Wake, N. (2011). Sodium butyrate inhibits the self-renewal capacity of endometrial tumor side-population cells by inducing a DNA damage response. Molecular Cancer Therapeutics, 10(8), 1430–9. doi: 10.1158/1535-7163.MCT-10-1062.
  87. 87.
    Rodríguez-Salvador, J., Armas-Pineda, C., Perezpeña-Diazconti, F., Chico-Ponce de León, G., Sosa-Sáinz, P., Lezama, F., … & Arenas-Huertero, F. (2005). Effect of sodium butyrate on pro-matrix metalloproteinase-9 and -2 differential secretion in pediatric tumors and cell lines. Journal of Experimental & Clinical Cancer Research, 24(3), 463–474.Google Scholar
  88. 88.
    Oukopoulos, P. L., Ungall, B. A. M., Traw, R. C. S., & Hornton, J. R. T. (2003). Matrix metalloproteinase-2 and -9 involvement in canine tumors. Veterinary Pathology, 394, 382–394.CrossRefGoogle Scholar
  89. 89.
    Oba, K., Konno, H., Tanaka, T., Baba, M., Kamiya, K., Ohta, M., … & Nakamura, S. (2002). Prevention of liver metastasis of human colon cancer by selective matrix metalloproteinase inhibitor MMI-166. Cancer Letters, 175, 45–51.Google Scholar
  90. 90.
    Zeng, H., & Briske-Anderson, M. (2005). Nutrition and cancer prolonged butyrate treatment inhibits the migration and invasion potential of HT1080 tumor cells. The Journal of Nutrition, 291–295.Google Scholar
  91. 91.
    Pouillart, P. R. (1998). Role of butyric acid and its derivatives in the treatment of colorectal cancer and hemoglobinopathies. Life Sciences, 63(20), 1739–1760.CrossRefPubMedGoogle Scholar
  92. 92.
    Egorin, M. J., Yuan, Z. M., Sentz, D. L., Plaisance, K., & Eiseman, J. L. (1999). Plasma pharmacokinetics of butyrate after intravenous administration of sodium butyrate or oral administration of tributyrin or sodium butyrate to mice and rats. Cancer Chemotherapy and Pharmacology, 43(6), 445–53. Retrieved from
  93. 93.
    Marc, D., & Sausville, A. (1998). I study of the in patients orally with administered solid butyrate. 4(March), 629–634.Google Scholar
  94. 94.
    Bras–Gonçalves, R. A., Pocard, M., Formento‡, J., Poirson–Bichat, F., de Pinieux, G., Pandrea§, I., … & Poupon, M. (2001). Synergistic efficacy of 3n-butyrate and 5-fluorouracil in human colorectal cancer xenografts via modulation of DNA synthesis. Gastroenterology, 120(4), 874–888. doi: 10.1053/gast.2001.22440.
  95. 95.
    Wang, T., Cai, G., Qiu, Y., Fei, N., Zhang, M., Pang, X., … & Zhao, L. (2012). Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. The ISME Journal, 6(2), 320–9. doi: 10.1038/ismej.2011.109.
  96. 96.
    Lin, X. B., Farhangfar, A., Valcheva, R., Sawyer, M. B., Dieleman, L., Schieber, A., … & Baracos, V. (2014). The role of intestinal microbiota in development of irinotecan toxicity and in toxicity reduction through dietary fibres in rats. PloS One, 9(1), e83644. doi: 10.1371/journal.pone.0083644.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • J. C. Encarnação
    • 1
    • 2
    • 3
  • A. M. Abrantes
    • 1
    • 2
    • 3
  • A. S. Pires
    • 1
    • 2
    • 4
  • M. F. Botelho
    • 1
    • 2
    • 3
    Email author
  1. 1.Biophysics Unit, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  2. 2.CNC.IBILI, University of CoimbraCoimbraPortugal
  3. 3.Center of Investigation on Environmental, Genetics and Oncobiology (CIMAGO), Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  4. 4.Faculty of Sciences and TechnologyUniversity of CoimbraCoimbraPortugal

Personalised recommendations