Cancer and Metastasis Reviews

, Volume 34, Issue 3, pp 359–380 | Cite as

Omega-3 polyunsaturated fatty acids and cancer: lessons learned from clinical trials

  • Seyed Fazel Nabavi
  • Stefania Bilotto
  • Gian Luigi Russo
  • Ilkay Erdogan Orhan
  • Solomon Habtemariam
  • Maria Daglia
  • Kasi Pandima Devi
  • Monica Rosa Loizzo
  • Rosa Tundis
  • Seyed Mohammad Nabavi


Over the past decades, extensive studies have addressed the therapeutic effects of omega-3 polyunsaturated fatty acids (omega-3 FAs) against different human diseases such as cardiovascular and neurodegenerative diseases, cancer, etc. A growing body of scientific research shows the pharmacokinetic information and safety of these natural occurring substances. Moreover, during recent years, a plethora of studies has demonstrated that omega-3 FAs possess therapeutic role against certain types of cancer. It is also known that omega-3 FAs can improve efficacy and tolerability of chemotherapy. Previous reports showed that suppression of nuclear factor-κB, activation of AMPK/SIRT1, modulation of cyclooxygenase (COX) activity, and up-regulation of novel anti-inflammatory lipid mediators such as protectins, maresins, and resolvins, are the main mechanisms of antineoplastic effect of omega-3 FAs. In this review, we have collected the available clinical data on the therapeutic role of omega-3 FAs against breast cancer, colorectal cancer, leukemia, gastric cancer, pancreatic cancer, esophageal cancer, prostate cancer, lung cancer, head and neck cancer, as well as cancer cachexia. We also discussed the chemistry, dietary source, and bioavailability of omega-3 FAs, and the potential molecular mechanisms of anticancer and adverse effects.


Omega-3 FA Cancer Nuclear factor-κB Clinical trials 



Fatty acids


Nuclear factor-κB




Alpha-linolenic acid


Docosahexaenoic acid


Eicosapentaenoic acid


Arachidonic acid


B-cell lymphoma 2


Light transmission aggregometry


Electrophoretic quasi-elastic light scattering technology


Conflicts of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128(4), 683–692.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Bleyer, W. A. (2002). Cancer in older adolescents and young adults: epidemiology, diagnosis, treatment, survival, and importance of clinical trials. Medical and Pediatric Oncology, 38(1), 1–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Berman, J. J. (2004). Tumor classification: molecular analysis meets Aristotle. BMC Cancer, 4(1), 10.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Grady, W. M., & Markowitz, S. D. (2002). Genetic and epigenetic alterations in colon cancer. Annual Review of Genomics and Human Genetics, 3(1), 101–128.PubMedCrossRefGoogle Scholar
  5. 5.
    Ames, B. N., Gold, L. S., & Willett, W. C. (1995). The causes and prevention of cancer. Proceedings of the National Academy of Sciences, 92(12), 5258–5265.CrossRefGoogle Scholar
  6. 6.
    Peto, J. (2001). Cancer epidemiology in the last century and the next decade. Nature, 411(6835), 390–395.PubMedCrossRefGoogle Scholar
  7. 7.
    Boffetta, P., Boccia, S., & La Vecchia, C. (2014). Overview of the major causes of human cancer. In A quick guide to cancer epidemiology (pp. 77-88): Springer.Google Scholar
  8. 8.
    Siegel, R., Ma, J., Zou, Z., & Jemal, A. (2014). Cancer statistics, 2014. CA: A Cancer Journal for Clinicians, 64(1), 9–29.Google Scholar
  9. 9.
    Harnack, L., Block, G., Subar, A., Lane, S., & Brand, R. (1997). Association of cancer prevention-related nutrition knowledge, beliefs, and attitudes to cancer prevention dietary behavior. Journal of the American Dietetic Association, 97(9), 957–965.PubMedCrossRefGoogle Scholar
  10. 10.
    Beaglehole, R., Bonita, R., & Magnusson, R. (2011). Global cancer prevention: an important pathway to global health and development. Public Health, 125(12), 821–831.PubMedCrossRefGoogle Scholar
  11. 11.
    Manca, A., Asseburg, C., Bravo Vergel, Y., Seymour, M. T., Meade, A., Stephens, R., et al. (2012). The cost-effectiveness of different chemotherapy strategies for patients with poor prognosis advanced colorectal cancer (MRC FOCUS). Value in Health, 15(1), 22–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Sher, D. J., Wee, J. O., & Punglia, R. S. (2011). Cost-effectiveness analysis of stereotactic body radiotherapy and radiofrequency ablation for medically inoperable, early-stage non-small cell lung cancer. International Journal of Radiation Oncology Biology Physics, 81(5), e767–e774.CrossRefGoogle Scholar
  13. 13.
    Monsuez, J.-J., Charniot, J.-C., Vignat, N., & Artigou, J.-Y. (2010). Cardiac side-effects of cancer chemotherapy. International Journal of Cardiology, 144(1), 3–15.PubMedCrossRefGoogle Scholar
  14. 14.
    Monje, M., & Dietrich, J. (2012). Cognitive side effects of cancer therapy demonstrate a functional role for adult neurogenesis. Behavioural Brain Research, 227(2), 376–379.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Eschenhagen, T., Force, T., Ewer, M. S., Keulenaer, G. W., Suter, T. M., Anker, S. D., et al. (2011). Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 13(1), 1–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Ihbe-Heffinger, A., Paessens, B., Berger, K., Shlaen, M., Bernard, R., von Schilling, C., et al. (2013). The impact of chemotherapy-induced side effects on medical care usage and cost in German hospital care—an observational analysis on non-small-cell lung cancer patients. Supportive Care in Cancer, 21(6), 1665–1675.PubMedCrossRefGoogle Scholar
  17. 17.
    Love, R. R., Leventhal, H., Easterling, D. V., & Nerenz, D. R. (1989). Side effects and emotional distress during cancer chemotherapy. Cancer, 63(3), 604–612.PubMedCrossRefGoogle Scholar
  18. 18.
    Terry, P., Lichtenstein, P., Feychting, M., Ahlbom, A., & Wolk, A. (2001). Fatty fish consumption and risk of prostate cancer. The Lancet, 357(9270), 1764–1766.CrossRefGoogle Scholar
  19. 19.
    Szymanski, K. M., Wheeler, D. C., & Mucci, L. A. (2010). Fish consumption and prostate cancer risk: a review and meta-analysis. The American journal of clinical nutrition, 92(5), 1223–1233.Google Scholar
  20. 20.
    Turunen, A. W., Suominen, A. L., Kiviranta, H., Verkasalo, P. K., & Pukkala, E. (2014). Cancer incidence in a cohort with high fish consumption. Cancer Causes & Control, 25(12), 1595–1602.Google Scholar
  21. 21.
    Rohrmann, S., Linseisen, J., Nöthlings, U., Overvad, K., Egeberg, R., Tjønneland, A., et al. (2013). Meat and fish consumption and risk of pancreatic cancer: results from the European Prospective Investigation into Cancer and Nutrition. International Journal of Cancer, 132(3), 617–624.CrossRefGoogle Scholar
  22. 22.
    Wu, S., Feng, B., Li, K., Zhu, X., Liang, S., Liu, X., et al. (2012). Fish consumption and colorectal cancer risk in humans: a systematic review and meta-analysis. The American Journal of Medicine, 125(6), 551–559.Google Scholar
  23. 23.
    MacLean, C. H., Newberry, S. J., Mojica, W. A., Khanna, P., Issa, A. M., Suttorp, M. J., et al. (2006). Effects of omega-3 fatty acids on cancer risk: a systematic review. JAMA, 295(4), 403–415.PubMedCrossRefGoogle Scholar
  24. 24.
    Hooper, L., Thompson, R. L., Harrison, R. A., Summerbell, C. D., Ness, A. R., Moore, H. J., et al. (2006). Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review. BMJ, 332(7544), 752–760.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Rose, D. P., & Connolly, J. M. (1999). Omega-3 fatty acids as cancer chemopreventive agents. Pharmacology & Therapeutics, 83(3), 217–244.CrossRefGoogle Scholar
  26. 26.
    Larsson, S. C., Kumlin, M., Ingelman-Sundberg, M., & Wolk, A. (2004). Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. The American Journal of Clinical Nutrition, 79(6), 935–945.PubMedGoogle Scholar
  27. 27.
    Kapoor, R., & Patil, U. (2011). Importance and production of omega-3 fatty acids from natural sources. International Food Research Journal, 18, 493–499.Google Scholar
  28. 28.
    Pawlosky, R. J., Hibbeln, J. R., Novotny, J. A., & Salem, N. (2001). Physiological compartmental analysis of α-linolenic acid metabolism in adult humans. Journal of Lipid Research, 42(8), 1257–1265.PubMedGoogle Scholar
  29. 29.
    Booyens, J., Engelbrecht, P., Le Roux, S., Louwrens, C., Van der Merwe, C., & Katzeff, I. (1984). Some effects of the essential fatty acids linoleic acid and alpha-linolenic acid and of their metabolites gamma-linolenic acid, arachidonic acid, eicosapentaenoic acid, docosahexaenoic acid, and of prostaglandins A1 and E1 on the proliferation of human osteogenic sarcoma cells in culture. Prostaglandins, Leukotrienes, and Medicine, 15(1), 15–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Das, U. N. (2006). Essential fatty acids: biochemistry, physiology and pathology. Biotechnology Journal, 1(4), 420–439.PubMedCrossRefGoogle Scholar
  31. 31.
    Das, U. N. (2006). Essential fatty acids—a review. Current Pharmaceutical Biotechnology, 7(6), 467–482.PubMedCrossRefGoogle Scholar
  32. 32.
    Brenna, J. T., Salem, N., Jr., Sinclair, A. J., & Cunnane, S. C. (2009). α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins, Leukotrienes and Essential Fatty Acids, 80(2), 85–91.CrossRefGoogle Scholar
  33. 33.
    Lopez-Garcia, E., Schulze, M. B., Manson, J. E., Meigs, J. B., Albert, C. M., Rifai, N., et al. (2004). Consumption of (n-3) fatty acids is related to plasma biomarkers of inflammation and endothelial activation in women. The Journal of Nutrition, 134(7), 1806–1811.PubMedGoogle Scholar
  34. 34.
    Kidd, P. M. (2007). Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Alternative Medicine Review, 12(3), 207.PubMedGoogle Scholar
  35. 35.
    Simopoulos, A. P. (1991). Omega-3 fatty acids in health and disease and in growth and development. The American Journal of Clinical Nutrition, 54(3), 438–463.PubMedGoogle Scholar
  36. 36.
    Meyer, B. J., Mann, N. J., Lewis, J. L., Milligan, G. C., Sinclair, A. J., & Howe, P. R. (2003). Dietary intakes and food sources of omega-6 and omega-3 polyunsaturated fatty acids. Lipids, 38(4), 391–398.PubMedCrossRefGoogle Scholar
  37. 37.
    Simopoulos, A. P. (2004). Omega-3 fatty acids and antioxidants in edible wild plants. Biological Research, 37(2), 263–277.PubMedCrossRefGoogle Scholar
  38. 38.
    Ratnayake, W. N., & Galli, C. (2009). Fat and fatty acid terminology, methods of analysis and fat digestion and metabolism: a background review paper. Annals of Nutrition and Metabolism, 55(1-3), 8–43.PubMedCrossRefGoogle Scholar
  39. 39.
    Brash, A. R. (2001). Arachidonic acid as a bioactive molecule. The Journal of Clinical Investigation, 107(11), 1339–1345.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Piomelli, D. (1993). Arachidonic acid in cell signaling. Current Opinion in Cell Biology, 5(2), 274–280.PubMedCrossRefGoogle Scholar
  41. 41.
    Zahringer, U., Domergue, F., Abbadi, A., Moreau, H. x. e., & Heinz, E. (2005). In vivo characterization of the first acyl-CoA Delta6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. Biochemical Journal, 389, 483–490.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Ryckebosch, E., Bruneel, C., Muylaert, K., & Foubert, I. (2012). Microalgae as an alternative source of omega‐3 long chain polyunsaturated fatty acids. Lipid Technology, 24(6), 128–130.CrossRefGoogle Scholar
  43. 43.
    Chen, Y., Meesapyodsuk, D., & Qiu, X. (2014). Transgenic production of omega-3 very long chain polyunsaturated fatty acids in plants: accomplishment and challenge. Biocatalysis and Agricultural Biotechnology, 3(1), 38–43.CrossRefGoogle Scholar
  44. 44.
    Simopoulos, A. (2000). Human requirement for N-3 polyunsaturated fatty acids. Poultry Science, 79(7), 961–970.PubMedCrossRefGoogle Scholar
  45. 45.
    Belury, M. A. (1995). Conjugated dienoic linoleate: a polyunsaturated fatty acid with unique chemoprotective properties. Nutrition Reviews, 53(4), 83–89.PubMedCrossRefGoogle Scholar
  46. 46.
    Tapiero, H., Nguyen Ba, G., Couvreur, P., & Tew, K. (2002). Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomedicine & Pharmacotherapy, 56(5), 215–222.CrossRefGoogle Scholar
  47. 47.
    Kurlak, L., & Stephenson, T. (1999). Plausible explanations for effects of long chain polyunsaturated fatty acids (LCPUFA) on neonates. Archives of Disease in Childhood-Fetal and Neonatal Edition, 80(2), F148–F154.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Jump, D. B. (2002). The biochemistry of n-3 polyunsaturated fatty acids. Journal of Biological Chemistry, 277(11), 8755–8758.PubMedCrossRefGoogle Scholar
  49. 49.
    Astorg, P., Arnault, N., Czernichow, S., Noisette, N., Galan, P., & Hercberg, S. (2004). Dietary intakes and food sources of n-6 and n-3 PUFA in French adult men and women. Lipids, 39(6), 527–535.PubMedCrossRefGoogle Scholar
  50. 50.
    Williams, C. M., & Burdge, G. (2006). Long-chain n-3 PUFA: plant v. marine sources. Proceedings of the Nutrition Society, 65(01), 42–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Kolanowski, W. (1999). Possibilities of fish oil application for food products enrichment with omega-3 PUFA. International Journal of Food Sciences and Nutrition, 50(1), 39–49.PubMedCrossRefGoogle Scholar
  52. 52.
    Kris-Etherton, P., Taylor, D. S., Yu-Poth, S., Huth, P., Moriarty, K., Fishell, V., et al. (2000). Polyunsaturated fatty acids in the food chain in the United States. The American Journal of Clinical Nutrition, 71(1), 179S–188S.PubMedGoogle Scholar
  53. 53.
    Racine, R. A., & Deckelbaum, R. J. (2007). Sources of the very-long-chain unsaturated omega-3 fatty acids: eicosapentaenoic acid and docosahexaenoic acid. Current Opinion in Clinical Nutrition and Metabolic Care, 10(2), 123–128.PubMedCrossRefGoogle Scholar
  54. 54.
    Pacetti, D., Mozzon, M., Lucci, P., & Frega, N. G. (2013). Bioactive fish fatty acids: health effects and their use as functional food ingredients. Current Nutrition and Food Science, 9(4), 283–297.CrossRefGoogle Scholar
  55. 55.
    Martins, D. A., Custódio, L., Barreira, L., Pereira, H., Ben-Hamadou, R., Varela, J., et al. (2013). Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Marine Drugs, 11(7), 2259–2281.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Collins, M., Lynch, B., Barfield, W., Bull, A., Ryan, A., & Astwood, J. (2014). Genetic and acute toxicological evaluation of an algal oil containing eicosapentaenoic acid (EPA) and palmitoleic acid. Food and Chemical Toxicology, 72, 162–168.PubMedCrossRefGoogle Scholar
  57. 57.
    Whelan, J., & Rust, C. (2006). Innovative dietary sources of n-3 fatty acids. Annual Review of Nutrition, 26, 75–103.PubMedCrossRefGoogle Scholar
  58. 58.
    Ahmad, S., Yousaf, M., Sabri, M. A., & Kamran, Z. (2012). Response of laying hens to omega-3 fatty acids for performance and egg quality. Avian Biology Research, 5(1), 1–10.CrossRefGoogle Scholar
  59. 59.
    Simopoulos, A. P. (2002). Omega‐3 fatty acids in wild plants, nuts and seeds. Asia Pacific Journal of Clinical Nutrition, 11(s6), S163–S173.CrossRefGoogle Scholar
  60. 60.
    Ribeiro, B., Guedes de Pinho, P., Andrade, P. B., Baptista, P., & Valentão, P. (2009). Fatty acid composition of wild edible mushrooms species: a comparative study. Microchemical Journal, 93(1), 29–35.CrossRefGoogle Scholar
  61. 61.
    Meluzzi, A., Sirri, F., Manfreda, G., Tallarico, N., & Franchini, A. (2000). Effects of dietary vitamin E on the quality of table eggs enriched with n-3 long-chain fatty acids. Poultry Science, 79(4), 539–545.PubMedCrossRefGoogle Scholar
  62. 62.
    Shapira, N., Weill, P., & Loewenbach, R. (2008). Egg fortification with n-3 polyunsaturated fatty acids (PUFA): nutritional benefits versus high n-6 PUFA western diets, and consumer acceptance. The Israel Medical Association Journal: IMAJ, 10(4), 262–265.PubMedGoogle Scholar
  63. 63.
    Farrell, D. J. (1998). Enrichment of hen eggs with n-3 long-chain fatty acids and evaluation of enriched eggs in humans. The American Journal of Clinical Nutrition, 68(3), 538–544.PubMedGoogle Scholar
  64. 64.
    Lopez-Bote, C., Sanz Arias, R., Rey, A., Castano, A., Isabel, B., & Thos, J. (1998). Effect of free-range feeding on n-3 fatty acid and α-tocopherol content and oxidative stability of eggs. Animal Feed Science and Technology, 72(1), 33–40.CrossRefGoogle Scholar
  65. 65.
    Herber, S., & Van Elswyk, M. (1996). Dietary marine algae promotes efficient deposition of n-3 fatty acids for the production of enriched shell eggs. Poultry Science, 75(12), 1501–1507.PubMedCrossRefGoogle Scholar
  66. 66.
    Van Elswyk, M. E. (1997). Comparison of n–3 fatty acid sources in laying hen rations for improvement of whole egg nutritional quality: a review. British Journal of Nutrition, 78(01), S61–S69.PubMedCrossRefGoogle Scholar
  67. 67.
    Fredriksson, S., Elwinger, K., & Pickova, J. (2006). Fatty acid and carotenoid composition of egg yolk as an effect of microalgae addition to feed formula for laying hens. Food Chemistry, 99(3), 530–537.CrossRefGoogle Scholar
  68. 68.
    Alfaia, C. P., Alves, S. P., Martins, S., IV, Costa, A. S., Fontes, C. M., Lemos, J. P., et al. (2009). Effect of the feeding system on intramuscular fatty acids and conjugated linoleic acid isomers of beef cattle, with emphasis on their nutritional value and discriminatory ability. Food Chemistry, 114(3), 939–946.CrossRefGoogle Scholar
  69. 69.
    Leheska, J., Thompson, L., Howe, J., Hentges, E., Boyce, J., Brooks, J., et al. (2008). Effects of conventional and grass-feeding systems on the nutrient composition of beef. Journal of Animal Science, 86(12), 3575–3585.PubMedCrossRefGoogle Scholar
  70. 70.
    Richardson, R. I., Ender, K., Nute, G., Scollan, N. D., Nuernberg, K., Voigt, J., et al. Effect of a grass-based and a concentrate feeding system on meat quality characteristics and fatty acid composition of longissimus muscle in different cattle breeds. different cattle breeds. Livestock Production Science.Google Scholar
  71. 71.
    Realini, C., Duckett, S., Brito, G., Dalla Rizza, M., & De Mattos, D. (2004). Effect of pasture vs. concentrate feeding with or without antioxidants on carcass characteristics, fatty acid composition, and quality of Uruguayan beef. Meat Science, 66(3), 567–577.PubMedCrossRefGoogle Scholar
  72. 72.
    Warren, H., Enser, M., Richardson, I., Wood, J., & Scollan, N. Effect of breed and diet on total lipid and selected shelf-life parameters in beef muscle. In Proceedings of British Society of animal science, 2003 (Vol. 23)Google Scholar
  73. 73.
    Ponnampalam, E., Mann, N., & Sinclair, A. (2006). Effect of feeding systems on omega-3 fatty acids, conjugated linoleic acid and trans fatty acids in Australian beef cuts: potential impact on human health. Asia Pacific Journal of Clinical Nutrition, 15(1), 21–29.PubMedGoogle Scholar
  74. 74.
    Fisher, A., Enser, M., Richardson, R., Wood, J., Nute, G., Kurt, E., et al. (2000). Fatty acid composition and eating quality of lamb types derived from four diverse breed × production systems. Meat Science, 55(2), 141–147.PubMedCrossRefGoogle Scholar
  75. 75.
    Sanudo, C., Enser, M., Campo, M., Nute, G., Marıa, G., Sierra, I., et al. (2000). Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Science, 54(4), 339–346.PubMedCrossRefGoogle Scholar
  76. 76.
    Ayerza, R., Coates, W., & Lauria, M. (2002). Chia seed (Salvia hispanica L.) as an omega-3 fatty acid source for broilers: influence on fatty acid composition, cholesterol and fat content of white and dark meats, growth performance, and sensory characteristics. Poultry Science, 81(6), 826–837.PubMedCrossRefGoogle Scholar
  77. 77.
    Simopoulos, A. P. (2001). n-3 Fatty acids and human health: defining strategies for public policy. Lipids, 36(1), S83–S89.PubMedCrossRefGoogle Scholar
  78. 78.
    Lopez-Ferrer, S., Baucells, M., Barroeta, A., & Grashorn, M. (1999). N-3 enrichment of chicken meat using fish oil: alternative substitution with rapeseed and linseed oils. Poultry Science, 78(3), 356–365.PubMedCrossRefGoogle Scholar
  79. 79.
    Azcona, J. O., Schang, M. J., Garcia, P. T., Gallinger, C., Ayerza, R., Jr., & Coates, W. (2008). Omega-3 enriched broiler meat: the influence of dietary α-linolenic-ω-3 fatty acid sources on growth, performance and meat fatty acid composition. Canadian Journal of Animal Science, 88(2), 257–269.CrossRefGoogle Scholar
  80. 80.
    Kopecky, J., Rossmeisl, M., Flachs, P., Kuda, O., Brauner, P., Jilkova, Z., et al. (2009). n-3 PUFA: bioavailability and modulation of adipose tissue function. Proceedings of the Nutrition Society, 68(04), 361–369.PubMedCrossRefGoogle Scholar
  81. 81.
    Dyerberg, J., Madsen, P., Møller, J. M., Aardestrup, I., & Schmidt, E. B. (2010). Bioavailability of marine n-3 fatty acid formulations. Prostaglandins, Leukotrienes and Essential Fatty Acids, 83(3), 137–141.CrossRefGoogle Scholar
  82. 82.
    Wallace, J., McCabe, A., Robson, P., Keogh, M., Murray, C., Kelly, P., et al. (2000). Bioavailability of n-3 polyunsaturated fatty acids (PUFA) in foods enriched with microencapsulated fish oil. Annals of Nutrition and Metabolism, 44(4), 157–162.PubMedCrossRefGoogle Scholar
  83. 83.
    Nagakura, T., Matsuda, S., Shichijyo, K., Sugimoto, H., & Hata, K. (2000). Dietary supplementation with fish oil rich in omega-3 polyunsaturated fatty acids in children with bronchial asthma. European Respiratory Journal, 16(5), 861–865.PubMedCrossRefGoogle Scholar
  84. 84.
    Sargent, J., Bell, G., McEvoy, L., Tocher, D., & Estevez, A. (1999). Recent developments in the essential fatty acid nutrition of fish. Aquaculture, 177(1), 191–199.CrossRefGoogle Scholar
  85. 85.
    Rogers, S., James, K. S., Butland, B. K., Etherington, M., O'Brien, J., & Jones, J. (1987). Effects of a fish oil supplement on serum lipids, blood pressure, bleeding time, haemostatic and rheological variables: a double blind randomised controlled trial in healthy volunteers. Atherosclerosis, 63(2), 137–143.PubMedCrossRefGoogle Scholar
  86. 86.
    Schuchardt, J. P., Schneider, I., Meyer, H., Neubronner, J., von Schacky, C., & Hahn, A. (2011). Incorporation of EPA and DHA into plasma phospholipids in response to different omega-3 fatty acid formulations-a comparative bioavailability study of fish oil vs. krill oil. Lipids in Health and Disease, 10(1), 145.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Harris, W. S., Pottala, J. V., Sands, S. A., & Jones, P. G. (2007). Comparison of the effects of fish and fish-oil capsules on the n-3 fatty acid content of blood cells and plasma phospholipids. The American Journal of Clinical Nutrition, 86(6), 1621–1625.PubMedGoogle Scholar
  88. 88.
    Barrow, C. J., Nolan, C., & Holub, B. J. (2009). Bioequivalence of encapsulated and microencapsulated fish-oil supplementation. Journal of Functional Foods, 1(1), 38–43.CrossRefGoogle Scholar
  89. 89.
    Bourre, J. (2004). Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing. J Nutr Health Aging, 8(3), 163–74.Google Scholar
  90. 90.
    Arterburn, L. M., Hall, E. B., & Oken, H. (2006). Distribution, interconversion, and dose response of n-3 fatty acids in humans. The American Journal of Clinical Nutrition, 83(6), S1467–1476S.Google Scholar
  91. 91.
    Flachs, P., Rossmeisl, M., Bryhn, M., & Kopecky, J. (2009). Cellular and molecular effects of n-3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clinical Science, 116, 1–16.PubMedCrossRefGoogle Scholar
  92. 92.
    Ruzickova, J., Rossmeisl, M., Prazak, T., Flachs, P., Sponarova, J., Vecka, M., et al. (2004). Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids, 39(12), 1177–1185.PubMedCrossRefGoogle Scholar
  93. 93.
    Kuda, O., Jelenik, T., Jilkova, Z., Flachs, P., Rossmeisl, M., Hensler, M., et al. (2009). n-3 Fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet. Diabetologia, 52(5), 941–951.PubMedCrossRefGoogle Scholar
  94. 94.
    Cansell, M., Nacka, F., & Combe, N. (2003). Marine lipid-based liposomes increase in vivo FA bioavailability. Lipids, 38(5), 551–559.PubMedCrossRefGoogle Scholar
  95. 95.
    Vidgren, H. M., Ågren, J. J., Schwab, U., Rissanen, T., Hänninen, O., & Uusitupa, M. I. (1997). Incorporation of n-3 fatty acids into plasma lipid fractions, and erythrocyte membranes and platelets during dietary supplementation with fish, fish oil, and docosahexaenoic acid-rich oil among healthy young men. Lipids, 32(7), 697–705.PubMedCrossRefGoogle Scholar
  96. 96.
    Saw, C. L., Yang, A. Y., Guo, Y., & Kong, A. N. (2013). Astaxanthin and omega-3 fatty acids individually and in combination protect against oxidative stress via the Nrf2-ARE pathway. Food and Chemical Toxicology : an International Journal Published for the British Industrial Biological Research Association, 62, 869–875.Google Scholar
  97. 97.
    Russo, G. L. (2009). Dietary n-6 and n-3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochemical Pharmacology, 77(6), 937–946.PubMedCrossRefGoogle Scholar
  98. 98.
    Gerber, M. (2012). Omega-3 fatty acids and cancers: a systematic update review of epidemiological studies. The British Journal of Nutrition, 107(Suppl 2), S228–S239.PubMedCrossRefGoogle Scholar
  99. 99.
    Berquin, I. M., Edwards, I. J., Kridel, S. J., & Chen, Y. Q. (2011). Polyunsaturated fatty acid metabolism in prostate cancer. Cancer Metastasis Reviews, 30(3-4), 295–309.PubMedCrossRefGoogle Scholar
  100. 100.
    Larsson, S. C., Kumlin, M., Ingelman-Sundberg, M., & Wolk, A. (2004). Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. The American Journal of Clinical Nutrition, 79(6), 935–945.PubMedGoogle Scholar
  101. 101.
    Li, Q., Tan, L., Wang, C., Li, N., Li, Y., Xu, G., et al. (2006). Polyunsaturated eicosapentaenoic acid changes lipid composition in lipid rafts. European Journal of Nutrition, 45(3), 144–151.PubMedCrossRefGoogle Scholar
  102. 102.
    Corsetto, P. A., Cremona, A., Montorfano, G., Jovenitti, I. E., Orsini, F., Arosio, P., et al. (2012). Chemical-physical changes in cell membrane microdomains of breast cancer cells after omega-3 PUFA incorporation. Cell Biochemistry and Biophysics, 64(1), 45–59.PubMedCrossRefGoogle Scholar
  103. 103.
    Hardman, W. E. (2004). (n-3) fatty acids and cancer therapy. The Journal of Nutrition, 134(12 Suppl), 3427S–3430S.PubMedGoogle Scholar
  104. 104.
    Schley, P. D., Brindley, D. N., & Field, C. J. (2007). (n-3) PUFA alter raft lipid composition and decrease epidermal growth factor receptor levels in lipid rafts of human breast cancer cells. The Journal of Nutrition, 137(3), 548–553.PubMedGoogle Scholar
  105. 105.
    Rogers, K. R., Kikawa, K. D., Mouradian, M., Hernandez, K., McKinnon, K. M., Ahwah, S. M., et al. (2010). Docosahexaenoic acid alters epidermal growth factor receptor-related signaling by disrupting its lipid raft association. Carcinogenesis, 31(9), 1523–1530.PubMedCrossRefGoogle Scholar
  106. 106.
    Kikawa, K. D., Herrick, J. S., Tateo, R. E., Mouradian, M., Tay, J. S., & Pardini, R. S. (2010). Induced oxidative stress and cell death in the A549 lung adenocarcinoma cell line by ionizing radiation is enhanced by supplementation with docosahexaenoic acid. Nutrition and Cancer, 62(8), 1017–1024.PubMedCrossRefGoogle Scholar
  107. 107.
    Mouradian, M., Kikawa, K. D., Johnson, E. D., Beck, K. L., & Pardini, R. S. (2014). Key roles for GRB2-associated-binding protein 1, phosphatidylinositol-3-kinase, cyclooxygenase 2, prostaglandin E2 and transforming growth factor alpha in linoleic acid-induced upregulation of lung and breast cancer cell growth. Prostaglandins, Leukotrienes and Essential Fatty Acids, 90(4), 105–115.CrossRefGoogle Scholar
  108. 108.
    Abulrob, A. N., Mason, M., Bryce, R., & Gumbleton, M. (2000). The effect of fatty acids and analogues upon intracellular levels of doxorubicin in cells displaying P-glycoprotein mediated multidrug resistance. Journal of Drug Targeting, 8(4), 247–256. PubMedCrossRefGoogle Scholar
  109. 109.
    Abdia, J., Garssena, J., Faberb, J., & Redegeld, F. A. (2014). Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells. The Journal of Nutritional Biochemistry, 14, S0955–S2863.Google Scholar
  110. 110.
    Schley, P. D., Jijon, H. B., Robinson, L. E., & Field, C. J. (2005). Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Research and Treatment, 92(2), 187–195.PubMedCrossRefGoogle Scholar
  111. 111.
    Jeong S, J. K., Kim N, Shin S, Kim S, Song KS, Heo JY, Park JH, Seo KS, Han J, Wu T, Kweon GR, Park SK, Park JI, Lim K (2014). Docosahexaenoic acid-induced apoptosis is mediated by activation of mitogen-activated protein kinases in human cancer cells. Jeong S, Jing K, Kim N, Shin S, Kim S, Song KS, Heo JY, Park JH, Seo KS, Han J, Wu T, Kweon GR, Park SK, Park JI, Lim K, 3(14), 481.Google Scholar
  112. 112.
    Kapoor, S. (2009). Immunomodulatory properties of omega-3 fatty acids: a possible explanation for their systemic, anti-carcinogenic effects. Journal of Leukocyte Biology, 85(1), 2–3.PubMedCrossRefGoogle Scholar
  113. 113.
    Corsetto, P. A., Montorfano, G., Zava, S., Jovenitti, I. E., Cremona, A., Berra, B., et al. (2011). Effects of n-3 PUFAs on breast cancer cells through their incorporation in plasma membrane. Lipids in health and disease, 10, 73.Google Scholar
  114. 114.
    Xue, M., Wang, Q., Zhao, J., Dong, L., Ge, Y., Hou, L., et al. (2014). Docosahexaenoic acid inhibited the Wnt/beta-catenin pathway and suppressed breast cancer cells in vitro and in vivo. The Journal of Nutritional Biochemistry, 25(2), 104–110.PubMedCrossRefGoogle Scholar
  115. 115.
    Dyari, H. R., Rawling, T., Bourget, K., & Murray, M. (2014). Synthetic omega-3 epoxyfatty acids as antiproliferative and Pro-apoptotic agents in human breast cancer cells. Journal of Medicinal Chemistry, 57(17), 7459–7464.PubMedCrossRefGoogle Scholar
  116. 116.
    Mandal, C. C., Ghosh-Choudhury, T., Dey, N., Choudhury, G. G., & Ghosh-Choudhury, N. (2012). miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis, 33(10), 1897–1908.PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Thiebaut, A. C., Chajes, V., Gerber, M., Boutron-Ruault, M. C., Joulin, V., Lenoir, G., et al. (2009). Dietary intakes of omega-6 and omega-3 polyunsaturated fatty acids and the risk of breast cancer. International Journal of Cancer Journal International Du Cancer, 124(4), 924–931.PubMedCrossRefGoogle Scholar
  118. 118.
    Witt, P. M., Christensen, J. H., Schmidt, E. B., Dethlefsen, C., Tjonneland, A., Overvad, K., et al. (2009). Marine n-3 polyunsaturated fatty acids in adipose tissue and breast cancer risk: a case-cohort study from Denmark. Cancer Causes and Control : CCC, 20(9), 1715–1721. PubMedCrossRefGoogle Scholar
  119. 119.
    Brasky, T. M., Lampe, J. W., Potter, J. D., Patterson, R. E., & White, E. (2010). Specialty supplements and breast cancer risk in the VITamins And Lifestyle (VITAL) Cohort. Cancer Epidemiology, Biomarkers and Prevention : a Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 19(7), 1696–1708.CrossRefGoogle Scholar
  120. 120.
    Bougnoux, P., Hajjaji, N., Ferrasson, M. N., Giraudeau, B., Couet, C., & Le Floch, O. (2009). Improving outcome of chemotherapy of metastatic breast cancer by docosahexaenoic acid: a phase II trial. British Journal of Cancer, 101(12), 1978–1985.PubMedCentralPubMedCrossRefGoogle Scholar
  121. 121.
    Siegel, R., Desantis, C., & Jemal, A. (2014). Colorectal cancer statistics, 2014. CA: a Cancer Journal for Clinicians, 64(2), 104–117. Google Scholar
  122. 122.
    Yang, K., Yang, W., Mariadason, J., Velcich, A., Lipkin, M., & Augenlicht, L. (2005). Dietary components modify gene expression: implications for carcinogenesis. The Journal of Nutrition, 135(11), 2710–2714.PubMedGoogle Scholar
  123. 123.
    Fini, L., Piazzi, G., Ceccarelli, C., Daoud, Y., Belluzzi, A., Munarini, A., et al. (2010). Highly purified eicosapentaenoic acid as free fatty acids strongly suppresses polyps in Apc(Min/+) mice. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 16(23), 5703–5711.CrossRefGoogle Scholar
  124. 124.
    Skendera, B., Hofmanováa, J., Slavíkc, J., Jelínkováa, I., Machalac, M., Pat Moyerd, M., et al. (2014). Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1841(9), 1308–1317.CrossRefGoogle Scholar
  125. 125.
    Cai, F., Sorg, O., Granci, V., Lecumberri, E., Miralbell, R., Dupertuis, Y. M., et al. (2014). Interaction of omega-3 polyunsaturated fatty acids with radiation therapy in two different colorectal cancer cell lines. Clinical Nutrition, 33(1), 164–170.PubMedCrossRefGoogle Scholar
  126. 126.
    Vasudevan, A., Yu, Y., Banerjee, S., Woods, J., Farhana, L., Rajendra, S. G., et al. (2014). Omega-3 fatty acid is a potential preventive agent for recurrent colon cancer. Cancer Prevention Research, 7(11), 1138–1148.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    De Carlo, F., Witte, T. R., Hardman, W. E., & Claudio, P. P. (2013). Omega-3 eicosapentaenoic acid decreases CD133 colon cancer stem-like cell marker expression while increasing sensitivity to chemotherapy. PloS One, 8(7), e69760.PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Makar, K. W., Poole, E. M., Resler, A. J., Seufert, B., Curtin, K., Kleinstein, S. E., et al. (2013). COX-1 (PTGS1) and COX-2 (PTGS2) polymorphisms, NSAID interactions, and risk of colon and rectal cancers in two independent populations. Cancer Causes and Control : CCC, 24(12), 2059–2075.PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Habermann, N., Ulrich, C. M., Lundgreen, A., Makar, K. W., Poole, E. M., Caan, B., et al. (2013). PTGS1, PTGS2, ALOX5, ALOX12, ALOX15, and FLAP SNPs: interaction with fatty acids in colon cancer and rectal cancer. Genes and nutrition, 8(1), 115–126.PubMedCentralPubMedCrossRefGoogle Scholar
  130. 130.
    Higurashi, T., Hosono, K., Endo, H., Takahashi, H., Iida, H., Uchiyama, T., et al. (2012). Eicosapentaenoic acid (EPA) efficacy for colorectal aberrant crypt foci (ACF): a double-blind randomized controlled trial. [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov't]. BMC cancer, 12, 413.Google Scholar
  131. 131.
    Ceccarelli, V., Racanicchi, S., Martelli, M. P., Nocentini, G., Fettucciari, K., Riccardi, C., et al. (2011). Eicosapentaenoic acid demethylates a single CpG that mediates expression of tumor suppressor CCAAT/enhancer-binding protein delta in U937 leukemia cells. The Journal of Biological Chemistry, 286(31), 27092–27102PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Ceccarelli, V., Nocentini, G., Billi, M., Racanicchi, S., Riccardi, C., Roberti, R., et al. (2014). Eicosapentaenoic acid activates RAS/ERK/C/EBPbeta pathway through H-Ras intron 1 CpG island demethylation in U937 leukemia cells. PloS One, 9(1), e85025.PubMedCentralPubMedCrossRefGoogle Scholar
  133. 133.
    Chiu, L. C., Ooi, V. E., & Wan, J. M. (2001). Eicosapentaenoic acid modulates cyclin expression and arrests cell cycle progression in human leukemic K-562 cells. International Journal of Oncology, 19(4), 845–849.PubMedGoogle Scholar
  134. 134.
    Gillis, R. C., Daley, B. J., Enderson, B. L., Kestler, D. P., & Karlstad, M. D. (2007). Regulation of apoptosis in eicosapentaenoic acid-treated HL-60 cells. The Journal of Surgical Research, 137(1), 141–150..PubMedCrossRefGoogle Scholar
  135. 135.
    Hegde, S., Kaushal, N., Ravindra, K. C., Chiaro, C., Hafer, K. T., Gandhi, U. H., et al. (2011). Delta12-prostaglandin J3, an omega-3 fatty acid-derived metabolite, selectively ablates leukemia stem cells in mice. Blood, 118(26), 6909–6919.PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Altenburg, J. D., Harvey, K. A., McCray, S., Xu, Z., & Siddiqui, R. A. (2011). A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines. Biochemical and Biophysical Research Communications, 411(2), 427–432.PubMedCrossRefGoogle Scholar
  137. 137.
    Zhou, J., & Chng, W. J. (2014). Identification and targeting leukemia stem cells: the path to the cure for acute myeloid leukemia. World Journal of Stem Cells, 6(4), 473–484.PubMedCentralPubMedCrossRefGoogle Scholar
  138. 138.
    Yamagami, T., Porada, C. D., Pardini, R. S., Zanjani, E. D., & Almeida-Porada, G. (2009). Docosahexaenoic acid induces dose dependent cell death in an early undifferentiated subtype of acute myeloid leukemia cell line. Cancer Biology & Therapy, 8(4), 331–337.CrossRefGoogle Scholar
  139. 139.
    Zhuo, Z., Zhang, L., Mu, Q., Lou, Y., Gong, Z., Shi, Y., et al. (2009). The effect of combination treatment with docosahexaenoic acid and 5-fluorouracil on the mRNA expression of apoptosis-related genes, including the novel gene BCL2L12, in gastric cancer cells. In Vitro Cellular & Developmental Biology. Animal, 45(1-2), 69–74. CrossRefGoogle Scholar
  140. 140.
    Otto, C., Kaemmerer, U., Illert, B., Muehling, B., Pfetzer, N., Wittig, R., et al. (2008). Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. [Comparative Study Research Support, Non-U.S. Gov't]. BMC cancer, 8, 122.Google Scholar
  141. 141.
    Farreras, N., Artigas, V., Cardona, D., Rius, X., Trias, M., & Gonzalez, J. A. (2005). Effect of early postoperative enteral immunonutrition on wound healing in patients undergoing surgery for gastric cancer. Clinical Nutrition, 24(1), 55–65.Google Scholar
  142. 142.
    Daly, J. M., Weintraub, F. N., Shou, J., Rosato, E. F., & Lucia, M. (1995). Enteral nutrition during multimodality therapy in upper gastrointestinal cancer patients. Annals of Surgery, 221(4), 327–338.PubMedCentralPubMedCrossRefGoogle Scholar
  143. 143.
    Braga, M., Vignali, A., Gianotti, L., Cestari, A., Profili, M., & Di Carlo, V. (1995). Benefits of early postoperative enteral feeding in cancer patients. Infusionstherapie und Transfusionsmedizin, 22(5), 280–284.PubMedGoogle Scholar
  144. 144.
    Arshad, A., Chung, W. Y., Isherwood, J., Mann, C. D., Al-Leswas, D., Steward, W. P., et al. (2014). Cellular and plasma uptake of parenteral omega-3 rich lipid emulsion fatty acids in patients with advanced pancreatic cancer. Clinical Nutrition, 33(5), 895–899.PubMedCrossRefGoogle Scholar
  145. 145.
    Arshad, A., Chung, W. Y., Steward, W., Metcalfe, M. S., & Dennison, A. R. (2013). Reduction in circulating pro-angiogenic and pro-inflammatory factors is related to improved outcomes in patients with advanced pancreatic cancer treated with gemcitabine and intravenous omega-3 fish oil. HPB (Oxford), 15(6), 428–432.CrossRefGoogle Scholar
  146. 146.
    Gong, Z., Holly, E. A., Wang, F., Chan, J. M., & Bracci, P. M. (2010). Intake of fatty acids and antioxidants and pancreatic cancer in a large population-based case-control study in the San Francisco Bay Area. International Journal of Cancer, 127(8), 1893–1904.CrossRefGoogle Scholar
  147. 147.
    Strouch, M. J., Ding, Y., Salabat, M. R., Melstrom, L. G., Adrian, K., Quinn, C., et al. (2011). A high omega-3 fatty acid diet mitigates murine pancreatic precancer development. Journal of Surgical Research, 165(1), 75–81.PubMedCentralPubMedCrossRefGoogle Scholar
  148. 148.
    MacLean, C. H., Newberry, S. J., Mojica, W. A., Khanna, P., Issa, A. M., Suttorp, M. J., et al. (2006). Effects of omega-3 fatty acids on cancer risk: a systematic review. JAMA, 295(4), 403–415.PubMedCrossRefGoogle Scholar
  149. 149.
    Hering, J., Garrean, S., Dekoj, T. R., Razzak, A., Saied, A., Trevino, J., et al. (2007). Inhibition of proliferation by omega-3 fatty acids in chemoresistant pancreatic cancer cells. Annals of Surgical Oncology, 14(12), 3620–3628. PubMedCrossRefGoogle Scholar
  150. 150.
    Song, K. S., Jing, K., Kim, J. S., Yun, E. J., Shin, S., Seo, K. S., et al. (2011). Omega-3-polyunsaturated fatty acids suppress pancreatic cancer cell growth in vitro and in vivo via downregulation of Wnt/Beta-catenin signaling. Pancreatology, 11(6), 574–584.PubMedCrossRefGoogle Scholar
  151. 151.
    Fukui, M., Kang, K. S., Okada, K., & Zhu, B. T. (2013). EPA, an omega-3 fatty acid, induces apoptosis in human pancreatic cancer cells: role of ROS accumulation, caspase-8 activation, and autophagy induction. Journal of Cellular Biochemistry, 114(1), 192–203.PubMedCrossRefGoogle Scholar
  152. 152.
    Godley, P. A., Campbell, M. K., Gallagher, P., Martinson, F. E., Mohler, J. L., & Sandler, R. S. (1996). Biomarkers of essential fatty acid consumption and risk of prostatic carcinoma. Cancer Epidemiology, Biomarkers and Prevention, 5(11), 889–895.PubMedGoogle Scholar
  153. 153.
    Norrish, A. E., Skeaff, C. M., Arribas, G. L., Sharpe, S. J., & Jackson, R. T. (1999). Prostate cancer risk and consumption of fish oils: a dietary biomarker-based case-control study. British Journal of Cancer, 81(7), 1238–1242.PubMedCentralPubMedCrossRefGoogle Scholar
  154. 154.
    Kobayashi, M., Sasaki, S., Hamada, G. S., & Tsugane, S. (1999). Serum n-3 fatty acids, fish consumption and cancer mortality in six Japanese populations in Japan and Brazil. Japanese Journal of Cancer Research, 90(9), 914–921.PubMedCrossRefGoogle Scholar
  155. 155.
    Aronson, W. J., Barnard, R. J., Freedland, S. J., Henning, S., Elashoff, D., Jardack, P. M., et al. (2010). Growth inhibitory effect of low fat diet on prostate cancer cells: results of a prospective, randomized dietary intervention trial in men with prostate cancer. Journal of Urology, 183(1), 345–350.PubMedCentralPubMedCrossRefGoogle Scholar
  156. 156.
    Brasky, T. M., Till, C., White, E., Neuhouser, M. L., Song, X., Goodman, P., et al. (2011). Serum phospholipid fatty acids and prostate cancer risk: results from the prostate cancer prevention trial. American Journal of Epidemiology, 173(12), 1429–1439.PubMedCentralPubMedCrossRefGoogle Scholar
  157. 157.
    Brasky, T. M., Darke, A. K., Song, X., Tangen, C. M., Goodman, P. J., Thompson, I. M., et al. (2013). Plasma phospholipid fatty acids and prostate cancer risk in the SELECT trial. Journal of the National Cancer Institute, 105(15), 1132–1141. PubMedCentralPubMedCrossRefGoogle Scholar
  158. 158.
    Brouwer, I. A., Geleijnse, J. M., Klaasen, V. M., Smit, L. A., Giltay, E. J., de Goede, J., et al. (2013). Effect of alpha linolenic acid supplementation on serum prostate specific antigen (PSA): results from the alpha omega trial. PloS One, 8(12), e81519.PubMedCentralPubMedCrossRefGoogle Scholar
  159. 159.
    Alexander, W. (2013). Prostate cancer risk and omega-3 fatty acid intake from fish oil: a closer look at media messages versus research findings. Pharmacy and Therapeutics, 38(9), 561–564.PubMedCentralPubMedGoogle Scholar
  160. 160.
    Koralek, D. O., Peters, U., Andriole, G., Reding, D., Kirsh, V., Subar, A., et al. (2006). A prospective study of dietary alpha-linolenic acid and the risk of prostate cancer (United States). Cancer Causes and Control, 17(6), 783–791.PubMedCrossRefGoogle Scholar
  161. 161.
    Berquin, I. M., Min, Y., Wu, R., Wu, J., Perry, D., Cline, J. M., et al. (2007). Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. Journal of Clinical Investigation, 117(7), 1866–1875.PubMedCentralPubMedCrossRefGoogle Scholar
  162. 162.
    Akinsete, J. A., Ion, G., Witte, T. R., & Hardman, W. E. (2012). Consumption of high omega-3 fatty acid diet suppressed prostate tumorigenesis in C3(1) Tag mice. Carcinogenesis, 33(1), 140–148.PubMedCentralPubMedCrossRefGoogle Scholar
  163. 163.
    Cavazos, D. A., Price, R. S., Apte, S. S., & deGraffenried, L. A. (2011). Docosahexaenoic acid selectively induces human prostate cancer cell sensitivity to oxidative stress through modulation of NF-kappaB. Prostate, 71(13), 1420–1428.PubMedCrossRefGoogle Scholar
  164. 164.
    Shin, S., Jing, K., Jeong, S., Kim, N., Song, K. S., Heo, J. Y., et al. (2013). The omega-3 polyunsaturated fatty acid DHA induces simultaneous apoptosis and autophagy via mitochondrial ROS-mediated Akt-mTOR signaling in prostate cancer cells expressing mutant p53. Biomed Research International, 2013, 568671.PubMedCentralPubMedCrossRefGoogle Scholar
  165. 165.
    Gu, Z., Suburu, J., Chen, H., & Chen, Y. Q. (2013). Mechanisms of omega-3 polyunsaturated fatty acids in prostate cancer prevention. Biomed Research International, 2013, 824563.PubMedCentralPubMedGoogle Scholar
  166. 166.
    Veierod, M. B., Laake, P., & Thelle, D. S. (1997). Dietary fat intake and risk of lung cancer: a prospective study of 51,452 Norwegian men and women. European Journal of Cancer Prevention, 6(6), 540–549.PubMedCrossRefGoogle Scholar
  167. 167.
    Suzuki, S., Akechi, T., Kobayashi, M., Taniguchi, K., Goto, K., Sasaki, S., et al. (2004). Daily omega-3 fatty acid intake and depression in Japanese patients with newly diagnosed lung cancer. British Journal of Cancer, 90(4), 787–793.PubMedCentralPubMedCrossRefGoogle Scholar
  168. 168.
    Kobayakawa, M., Yamawaki, S., Hamazaki, K., Akechi, T., Inagaki, M., & Uchitomi, Y. (2005). Levels of omega-3 fatty acid in serum phospholipids and depression in patients with lung cancer. British Journal of Cancer, 93(12), 1329–1333.PubMedCentralPubMedCrossRefGoogle Scholar
  169. 169.
    Yao, Q. H., Zhang, X. C., Fu, T., Gu, J. Z., Wang, L., Wang, Y., et al. (2014). Omega-3 polyunsaturated fatty acids inhibit the proliferation of the lung adenocarcinoma cell line A549 in vitro. Molecular Medicine Reports, 9(2), 401–406.Google Scholar
  170. 170.
    Yang, P., Cartwright, C., Chan, D., Ding, J., Felix, E., Pan, Y., et al. (2014). Anticancer activity of fish oils against human lung cancer is associated with changes in formation of PGE2 and PGE3 and alteration of Akt phosphorylation. Molecular Carcinogenesis, 53(7), 566–577.PubMedCentralPubMedCrossRefGoogle Scholar
  171. 171.
    Casas-Rodera, P., Gomez-Candela, C., Benitez, S., Mateo, R., Armero, M., Castillo, R., et al. (2008). Immunoenhanced enteral nutrition formulas in head and neck cancer surgery: a prospective, randomized clinical trial. Nutrición Hospitalaria, 23(2), 105–110.PubMedGoogle Scholar
  172. 172.
    Felekis, D., Eleftheriadou, A., Papadakos, G., Bosinakou, I., Ferekidou, E., Kandiloros, D., et al. (2010). Effect of perioperative immuno-enhanced enteral nutrition on inflammatory response, nutritional status, and outcomes in head and neck cancer patients undergoing major surgery. Nutrition and Cancer, 62(8), 1105–1112.PubMedCrossRefGoogle Scholar
  173. 173.
    de Luis, D. A., Izaola, O., Aller, R., Cuellar, L., Terroba, M. C., & Martin, T. (2008). A randomized clinical trial with two omega 3 fatty acid enhanced oral supplements in head and neck cancer ambulatory patients. European Review for Medical and Pharmacological Sciences, 12(3), 177–181.PubMedGoogle Scholar
  174. 174.
    de Luis, D. A., Izaola, O., Cuellar, L., Terroba, M. C., de la Fuente, B., & Cabezas, G. (2013). A randomized clinical trial with two doses of a omega 3 fatty acids oral and arginine enhanced formula in clinical and biochemical parameters of head and neck cancer ambulatory patients. European Review for Medical and Pharmacological Sciences, 17(8), 1090–1094.PubMedGoogle Scholar
  175. 175.
    Vasson, M. P., Talvas, J., Perche, O., Dillies, A. F., Bachmann, P., Pezet, D., et al. (2014). Immunonutrition improves functional capacities in head and neck and esophageal cancer patients undergoing radiochemotherapy: a randomized clinical trial. Clinical Nutrition, 33(2), 204–210.PubMedCrossRefGoogle Scholar
  176. 176.
    Machon, C., Thezenas, S., Dupuy, A. M., Assenat, E., Michel, F., Mas, E., et al. (2012). Immunonutrition before and during radiochemotherapy: improvement of inflammatory parameters in head and neck cancer patients. Support Care Cancer, 20(12), 3129–3135.PubMedCrossRefGoogle Scholar
  177. 177.
    Aiko, S., Yoshizumi, Y., Tsuwano, S., Shimanouchi, M., Sugiura, Y., & Maehara, T. (2005). The effects of immediate enteral feeding with a formula containing high levels of omega-3 fatty acids in patients after surgery for esophageal cancer. JPEN Journal of Parenteral and Enteral Nutrition, 29(3), 141–147.PubMedCrossRefGoogle Scholar
  178. 178.
    Aiko, S., Yoshizumi, Y., Ishizuka, T., Horio, T., Sakano, T., Kumano, I., et al. (2008). Enteral immuno-enhanced diets with arginine are safe and beneficial for patients early after esophageal cancer surgery. Diseases of the Esophagus, 21(7), 619–627.Google Scholar
  179. 179.
    Long, H., Yang, H., Lin, Y., Situ, D., & Liu, W. (2013). Fish oil-supplemented parenteral nutrition in patients following esophageal cancer surgery: effect on inflammation and immune function. Nutrition and Cancer, 65(1), 71–75.Google Scholar
  180. 180.
    Mudge, L., Isenring, E., & Jamieson, G. G. (2011). Immunonutrition in patients undergoing esophageal cancer resection. Diseases of the Esophagus, 24(3), 160–165.PubMedCrossRefGoogle Scholar
  181. 181.
    von Haehling, S., & Anker, S. D. (2010). Cachexia as a major underestimated and unmet medical need: facts and numbers. Journal of Cachexia, Sarcopenia and Muscle, 1(1), 1–5.CrossRefGoogle Scholar
  182. 182.
    Morley, J. E., Thomas, D. R., & Wilson, M.-M. G. (2006). Cachexia: pathophysiology and clinical relevance. The American Journal of Clinical Nutrition, 83(4), 735–743.PubMedGoogle Scholar
  183. 183.
    Fearon, K. C. (2011). Cancer cachexia and fat–muscle physiology. New England Journal of Medicine, 365(6), 565–567.PubMedCrossRefGoogle Scholar
  184. 184.
    Chamberlain, J. S. (2004). Cachexia in cancer-zeroing in on myosin. New England Journal of Medicine, 351, 2124–2125.PubMedCrossRefGoogle Scholar
  185. 185.
    Hopkinson, J. B., Wright, D. N., McDonald, J. W., & Corner, J. L. (2006). The prevalence of concern about weight loss and change in eating habits in people with advanced cancer. Journal of Pain and Symptom Management, 32(4), 322–331.PubMedCrossRefGoogle Scholar
  186. 186.
    Inui, A. (2002). Cancer anorexia‐cachexia syndrome: current issues in research and management. CA: a Cancer Journal for Clinicians, 52(2), 72–91.Google Scholar
  187. 187.
    MacDonald, N., Easson, A. M., Mazurak, V. C., Dunn, G. P., & Baracos, V. E. (2003). Understanding and managing cancer cachexia. Journal of the American College of Surgeons, 197(1), 143–161.PubMedCrossRefGoogle Scholar
  188. 188.
    Gullett, N. P., Mazurak, V., Hebbar, G., & Ziegler, T. R. (2011). Nutritional interventions for cancer-induced cachexia. Current Problems in Cancer, 35(2), 58.PubMedCentralPubMedCrossRefGoogle Scholar
  189. 189.
    Andreyev, H., Norman, A., Oates, J., & Cunningham, D. (1998). Why do patients with weight loss have a worse outcome when undergoing chemotherapy for gastrointestinal malignancies? European Journal of Cancer, 34(4), 503–509.PubMedCrossRefGoogle Scholar
  190. 190.
    O'Gorman, P., McMillan, D. C., & McArdle, C. S. (1998). Impact of weight loss, appetite, and the inflammatory response on quality of life in gastrointestinal cancer patients. Nutrition and Cancer 32(2):76–80.Google Scholar
  191. 191.
    Tisdale, M. J. (2002). Cachexia in cancer patients. Nature Reviews Cancer, 2(11), 862–871.PubMedCrossRefGoogle Scholar
  192. 192.
    Windsor, J. A., & Hill, G. L. (1988). Risk factors for postoperative pneumonia. The importance of protein depletion. Annals of Surgery, 208(2), 209.PubMedCentralPubMedCrossRefGoogle Scholar
  193. 193.
    Smith, K., & Tisdale, M. (1993). Increased protein degradation and decreased protein synthesis in skeletal muscle during cancer cachexia. British Journal of Cancer, 67, 680–680.PubMedCentralPubMedCrossRefGoogle Scholar
  194. 194.
    Khal, J., Wyke, S., Russell, S. T., Hine, A. V., & Tisdale, M. J. (2005). Expression of the ubiquitin-proteasome pathway and muscle loss in experimental cancer cachexia. British Journal of Cancer, 93(7), 774–780.PubMedCentralPubMedCrossRefGoogle Scholar
  195. 195.
    Acharyya, S., Butchbach, M. E., Sahenk, Z., Wang, H., Saji, M., Carathers, M., et al. (2005). Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell, 8(5), 421–432.PubMedCrossRefGoogle Scholar
  196. 196.
    Tisdale, M. J. (2009). Mechanisms of cancer cachexia. Physiological Reviews, 89(2), 381–410.PubMedCrossRefGoogle Scholar
  197. 197.
    Das, S. K., Eder, S., Schauer, S., Diwoky, C., Temmel, H., Guertl, B., et al. (2011). Adipose triglyceride lipase contributes to cancer-associated cachexia. Science, 333(6039), 233–238.PubMedCrossRefGoogle Scholar
  198. 198.
    Lira, F. S., Rosa, J. C., Zanchi, N. E., Yamashita, A. S., Lopes, R. D., Lopes, A. C., et al. (2009). Regulation of inflammation in the adipose tissue in cancer cachexia: effect of exercise. Cell Biochemistry and Function, 27(2), 71–75.PubMedCrossRefGoogle Scholar
  199. 199.
    Sharma, R., & Anker, S. D. (2002). Cytokines, apoptosis and cachexia: the potential for TNF antagonism. International Journal of Cardiology, 85(1), 161–171.PubMedCrossRefGoogle Scholar
  200. 200.
    Bing, C., Bao, Y., Jenkins, J., Sanders, P., Manieri, M., Cinti, S., et al. (2004). Zinc-α2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proceedings of the National Academy of Sciences of the United States of America, 101(8), 2500–2505.PubMedCentralPubMedCrossRefGoogle Scholar
  201. 201.
    Tisdale, M. J. (2003). Pathogenesis of cancer cachexia. Journal of Supportive Oncology, 1(3), 159–168.PubMedGoogle Scholar
  202. 202.
    Zhou, W., Jiang, Z.-W., Tian, J., Jiang, J., Li, N., & Li, J.-S. (2003). Role of NF-kB and cytokine in experimental cancer cachexia. World Journal of Gastroenterology, 9(7), 1567–1570.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Argilés, J. M., Busquets, S., Toledo, M., & López-Soriano, F. J. (2009). The role of cytokines in cancer cachexia. Current Opinion in Supportive and Palliative Care, 3(4), 263–268.PubMedCrossRefGoogle Scholar
  204. 204.
    Langstein, H. N., Doherty, G. M., Fraker, D. L., Buresh, C. M., & Norton, J. A. (1991). The roles of γ-interferon and tumor necrosis factor α in an experimental rat model of cancer cachexia. Cancer Research, 51(9), 2302–2306.PubMedGoogle Scholar
  205. 205.
    Kumar, N. B., Kazi, A., Smith, T., Crocker, T., Yu, D., Reich, R. R., et al. (2010). Cancer cachexia: traditional therapies and novel molecular mechanism-based approaches to treatment. Current Treatment Options in Oncology, 11(3-4), 107–117.PubMedCentralPubMedCrossRefGoogle Scholar
  206. 206.
    Granda-Cameron, C., DeMille, D., Lynch, M. P., Huntzinger, C., Alcorn, T., Levicoff, J., et al. (2010). An interdisciplinary approach to manage cancer cachexia. Clinical Journal of Oncology Nursing, 14(1), 72–80.PubMedCrossRefGoogle Scholar
  207. 207.
    Berquin, I. M., Edwards, I. J., & Chen, Y. Q. (2008). Multi-targeted therapy of cancer by omega-3 fatty acids. Cancer Letters, 269(2), 363–377.PubMedCentralPubMedCrossRefGoogle Scholar
  208. 208.
    Tisdale, M. J., & Dhesi, J. K. (1990). Inhibition of weight loss by ω-3 fatty acids in an experimental cachexia model. Cancer Research, 50(16), 5022–5026.PubMedGoogle Scholar
  209. 209.
    Russell, S., & Tisdale, M. (2005). Effect of eicosapentaenoic acid (EPA) on expression of a lipid mobilizing factor in adipose tissue in cancer cachexia. Prostaglandins, Leukotrienes and Essential Fatty Acids, 72(6), 409–414.CrossRefGoogle Scholar
  210. 210.
    Whitehouse, A. S., Smith, H. J., Drake, J. L., & Tisdale, M. J. (2001). Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Research, 61(9), 3604–3609.PubMedGoogle Scholar
  211. 211.
    Hussey, H., & Tisdale, M. (1999). Effect of a cachectic factor on carbohydrate metabolism and attenuation by eicosapentaenoic acid. British Journal of Cancer, 80(8), 1231.PubMedCentralPubMedCrossRefGoogle Scholar
  212. 212.
    Price, S. A., & Tisdale, M. J. (1998). Mechanism of inhibition of a tumor lipid-mobilizing factor by eicosapentaenoic acid. Cancer Research, 58(21), 4827–4831.PubMedGoogle Scholar
  213. 213.
    Ohira, T., Nishio, K., Ohe, Y., Arioka, H., Nishio, M., Funayama, Y., et al. (1996). Improvement by eicosanoids in cancer cachexia induced by LLC-IL6 transplantation. Journal of Cancer Research and Clinical Oncology, 122(12), 711–715.PubMedCrossRefGoogle Scholar
  214. 214.
    Tisdale, M. J. (1996). Inhibition of lipolysis and muscle protein degradation by EPA in cancer cachexia. Nutrition, 12(1), S31–S33.PubMedCrossRefGoogle Scholar
  215. 215.
    Beck, S. A., Smith, K. L., & Tisdale, M. J. (1991). Anticachectic and antitumor effect of eicosapentaenoic acid and its effect on protein turnover. Cancer Research, 51(22), 6089–6093.PubMedGoogle Scholar
  216. 216.
    Tisdale, M. J., & Beck, S. A. (1991). Inhibition of tumour-induced lipolysis in vitro and cachexia and tumour growth in vivo by eicosapentaenoic acid. Biochemical Pharmacology, 41(1), 103–107.PubMedCrossRefGoogle Scholar
  217. 217.
    Jho, D. H., Babcock, T. A., Tevar, R., Helton, W. S., & Espat, N. J. (2002). Eicosapentaenoic acid supplementation reduces tumor volume and attenuates cachexia in a rat model of progressive non-metastasizing malignancy. Journal of Parenteral and Enteral Nutrition, 26(5), 291–297.PubMedCrossRefGoogle Scholar
  218. 218.
    Dauchy, R. T., Blask, D. E., Sauer, L. A., Davidson, L. K., Krause, J. A., Smith, L. C., et al. (2003). Physiologic melatonin concentration, omega-3 fatty acids, and conjugated linoleic acid inhibit fatty acid transport in rodent hind limb skeletal muscle in vivo. Comparative Medicine, 53(2), 186–190.PubMedGoogle Scholar
  219. 219.
    Ogilvie, G. K., Fettman, M. J., Mallinckrodt, C. H., Walton, J. A., Hansen, R. A., Davenport, D. J., et al. (2000). Effect of fish oil, arginine, and doxorubicin chemotherapy on remission and survival time for dogs with lymphoma. Cancer, 88(8), 1916–1928.PubMedCrossRefGoogle Scholar
  220. 220.
    Tisdale, M. (1993). Mechanism of lipid mobilization associated with cancer cachexia: interaction between the polyunsaturated fatty acid, eicosapentaenoic acid, and inhibitory guanine nucleotide-regulatory protein. Prostaglandins, Leukotrienes and Essential Fatty Acids, 48(1), 105–109.CrossRefGoogle Scholar
  221. 221.
    Damsbo-Svendsen, S., Rønsholdt, M. D., & Lauritzen, L. (2013). Fish oil-supplementation increases appetite in healthy adults a randomized controlled cross-over trial. Appetite, 66, 62–66.PubMedCrossRefGoogle Scholar
  222. 222.
    Cerchietti, L. C., Navigante, A. H., & Castro, M. A. (2007). Effects of eicosapentaenoic and docosahexaenoic n-3 fatty acids from fish oil and preferential Cox-2 inhibition on systemic syndromes in patients with advanced lung cancer. Nutrition and Cancer, 59(1), 14–20.PubMedCrossRefGoogle Scholar
  223. 223.
    Murphy, R., Yeung, E., Mazurak, V., & Mourtzakis, M. (2011). Influence of eicosapentaenoic acid supplementation on lean body mass in cancer cachexia. British Journal of Cancer, 105(10), 1469–1473.PubMedCentralPubMedCrossRefGoogle Scholar
  224. 224.
    Weed, H. G., Ferguson, M. L., Gaff, R. L., Hustead, D. S., Nelson, J. L., & Voss, A. C. (2011). Lean body mass gain in patients with head and neck squamous cell cancer treated perioperatively with a protein‐and energy‐dense nutritional supplement containing eicosapentaenoic acid. Head & Neck, 33(7), 1027–1033.CrossRefGoogle Scholar
  225. 225.
    Harle, L., Brown, T., Laheru, D., & Dobs, A. S. (2005). Omega-3 fatty acids for the treatment of cancer cachexia: issues in designing clinical trials of dietary supplements. Journal of Alternative and Complementary Medicine: Research on Paradigm, Practice, and Policy, 11(6), 1039–1046.CrossRefGoogle Scholar
  226. 226.
    Barber, M., Ross, J., Voss, A., Tisdale, M., & Fearon, K. (1999). The effect of an oral nutritional supplement enriched with fish oil on weight-loss in patients with pancreatic cancer. British Journal of Cancer, 81(1), 80.PubMedCentralPubMedCrossRefGoogle Scholar
  227. 227.
    Moses, A., Slater, C., Preston, T., Barber, M., & Fearon, K. (2004). Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n-3 fatty acids. British Journal of Cancer, 90(5), 996–1002.PubMedCentralPubMedCrossRefGoogle Scholar
  228. 228.
    Barber, M. D., Fearon, K. C., Tisdale, M. J., McMillan, D. C., & Ross, J. A. (2001). Effect of a fish oil-enriched nutritional supplement on metabolic mediators in patients with pancreatic cancer cachexia. Nutrition and Cancer, 40(2), 118–124.PubMedCrossRefGoogle Scholar
  229. 229.
    Hamamura, K., Nakaya, M., Nakagawa, M., Miyazaki, M., & Miki, C. (2011). A case of stage IV rectal cancer with whom EPA oral nutritional supplements could resolve cachectic condition and promote patient compliance with cancer chemotherapy. Gan to Kagaku Ryoho Cancer and Chemotherapy, 38(5), 845–848.PubMedGoogle Scholar
  230. 230.
    Kanat, O., Cubukcu, E., Avci, N., Budak, F., Ercan, I., Canhoroz, M., et al. (2012). Comparison of three different treatment modalities in the management of cancer cachexia. Tumori, 99(2), 229–233.Google Scholar
  231. 231.
    Yeh, K.-Y., Wang, H.-M., Chang, J. W.-C., Huang, J.-S., Lai, C.-H., Lan, Y.-J., et al. (2013). Omega-3 fatty acid-, micronutrient-, and probiotic-enriched nutrition helps body weight stabilization in head and neck cancer cachexia. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 116(1), 41–48.PubMedCrossRefGoogle Scholar
  232. 232.
    Wigmore, S. J., Fearon, K. C., Maingay, J. P., & Ross, J. A. (1997). Down-regulation of the acute-phase response in patients with pancreatic cancer cachexia receiving oral eicosapentaenoic acid is mediated via suppression of interleukin-6. Clinical Science, 92(Pt 2), 215–221.PubMedCrossRefGoogle Scholar
  233. 233.
    Wigmore, S. J., Ross, J. A., Stuart Falconer, J., Plester, C. E., Tisdale, M. J., Carter, D. C., et al. (1996). The effect of polyunsaturated fatty acids on the progress of cachexia in patients with pancreatic cancer. Nutrition, 12(1), S27–S30.PubMedCrossRefGoogle Scholar
  234. 234.
    Colomer, R., Moreno-Nogueira, J. M., García-Luna, P. P., García-Peris, P., García-de-Lorenzo, A., Zarazaga, A., et al. (2007). N-3 fatty acids, cancer and cachexia: a systematic review of the literature. British Journal of Nutrition, 97(05), 823–831.PubMedCrossRefGoogle Scholar
  235. 235.
    Dewey, A., Baughan, C., Dean, T., Higgins, B., & Johnson, I. (2007). Eicosapentaenoic acid (EPA, an omega-3 fatty acid from fish oils) for the treatment of cancer cachexia. Cochrane Database Syst Rev, 1.Google Scholar
  236. 236.
    Fearon, K. C., Barber, M. D., Moses, A. G., Ahmedzai, S. H., Taylor, G. S., Tisdale, M. J., et al. (2006). Double-blind, placebo-controlled, randomized study of eicosapentaenoic acid diester in patients with cancer cachexia. Journal of Clinical Oncology, 24(21), 3401–3407.PubMedCrossRefGoogle Scholar
  237. 237.
    Ries, A., Trottenberg, P., Elsner, F., Stiel, S., Haugen, D., Kaasa, S., et al. (2012). A systematic review on the role of fish oil for the treatment of cachexia in advanced cancer: an EPCRC cachexia guidelines project. Palliative Medicine, 26(4), 294–304.PubMedCrossRefGoogle Scholar
  238. 238.
    Mazzotta, P., & Jeney, C. M. (2009). Anorexia-cachexia syndrome: a systematic review of the role of dietary polyunsaturated fatty acids in the management of symptoms, survival, and quality of life. Journal of Pain and Symptom Management, 37(6), 1069–1077.PubMedCrossRefGoogle Scholar
  239. 239.
    Stehr, S. N., & Heller, A. R. (2006). Omega-3 fatty acid effects on biochemical indices following cancer surgery. Clinica Chimica Acta, 373(1), 1–8.CrossRefGoogle Scholar
  240. 240.
    Smith, G. I., Atherton, P., Reeds, D. N., Mohammed, B. S., Rankin, D., Rennie, M. J., et al. (2011). Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women. Clinical Science, 121(6), 267–278.PubMedCentralPubMedCrossRefGoogle Scholar
  241. 241.
    Mantovani, G., Macciò, A., Madeddu, C., Gramignano, G., Lusso, M. R., Serpe, R., et al. (2006). A phase II study with antioxidants, both in the diet and supplemented, pharmaconutritional support, progestagen, and anti-cyclooxygenase-2 showing efficacy and safety in patients with cancer-related anorexia/cachexia and oxidative stress. Cancer Epidemiology, Biomarkers & Prevention, 15(5), 1030–1034.CrossRefGoogle Scholar
  242. 242.
    Mantovani, G., Macciò, A., Madeddu, C., Serpe, R., Massa, E., Dessì, M., et al. (2010). Randomized phase III clinical trial of five different arms of treatment in 332 patients with cancer cachexia. The Oncologist, 15(2), 200–211.PubMedCentralPubMedCrossRefGoogle Scholar
  243. 243.
    Brown, T. T., Zelnik, D. L., & Dobs, A. S. (2003). Fish oil supplementation in the treatment of cachexia in pancreatic cancer patients. International Journal of Gastrointestinal Cancer, 34(2-3), 143–150.PubMedCrossRefGoogle Scholar
  244. 244.
    Smith, H. J., Greenberg, N., & Tisdale, M. J. (2004). Effect of eicosapentaenoic acid, protein and amino acids on protein synthesis and degradation in skeletal muscle of cachectic mice. British Journal of Cancer, 91(2), 408–412.PubMedCentralPubMedGoogle Scholar
  245. 245.
    Mcmillan, D. (2004). Modulation of the liver export protein synthetic response to feeding by an n-3 fatty-acid-enriched nutritional supplement is associated with anabolism in cachectic cancer patients. Clinical Science, 106, 359–364.PubMedCrossRefGoogle Scholar
  246. 246.
    Burns, C. P., Halabi, S., Clamon, G. H., Hars, V., Wagner, B. A., Hohl, R. J., et al. (1999). Phase I clinical study of fish oil fatty acid capsules for patients with cancer cachexia: cancer and leukemia group B study 9473. Clinical Cancer Research, 5(12), 3942–3947.PubMedGoogle Scholar
  247. 247.
    Ghosh, S., DeCoffe, D., Brown, K., Rajendiran, E., Estaki, M., Dai, C., et al. (2013). Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis. PLoS ONE, 8(2), e55468.PubMedCentralPubMedCrossRefGoogle Scholar
  248. 248.
    Calder, P. C. (2004). n-3 Fatty acids, inflammation, and immunity—relevance to postsurgical and critically III patients. Lipids, 39(12), 1147–1161.PubMedCrossRefGoogle Scholar
  249. 249.
    Xia, S., Li, X., Cheng, L., Han, M., Zhang, M., Liu, X., et al. (2014). Chronic intake of high fish oil diet induces myeloid-derived suppressor cells to promote tumor growth. Cancer Immunology, Immunotherapy, 1–11.Google Scholar
  250. 250.
    Brasky, T. M., Till, C., White, E., Neuhouser, M. L., Song, X., Goodman, P., et al. (2011). Serum phospholipid fatty acids and prostate cancer risk: results from the prostate cancer prevention trial. American Journal of Epidemiology, 173(12), 1429–1439.PubMedCentralPubMedCrossRefGoogle Scholar
  251. 251.
    Miller, M. R., Pereira, R. I., Langefeld, C. D., Lorenzo, C., Rotter, J. I., Chen, Y.-D. I., et al. (2012). Levels of free fatty acids (FFA) are associated with insulin resistance but do not explain the relationship between adiposity and insulin resistance in Hispanic Americans: the IRAS Family Study. The Journal of Clinical Endocrinology and Metabolism, 97(9), 3285–3291.PubMedCentralPubMedCrossRefGoogle Scholar
  252. 252.
    Sarbolouki, S., Javanbakht, M. H., Derakhshanian, H., Hosseinzadeh, P., Zareei, M., Hashemi, S. B., et al. (2013). Eicosapentaenoic acid improves insulin sensitivity and blood sugar in overweight type 2 diabetes mellitus patients: a double-blind randomised clinical trial. Singapore Medical Journal, 54(7), 387–390.PubMedCrossRefGoogle Scholar
  253. 253.
    Lichtenstein, A. H., Kennedy, E., Barrier, P., Danford, D., Ernst, N. D., Grundy, S. M., et al. (1998). Dietary fat consumption and health. Nutrition Reviews, 56(5), 3–19.CrossRefGoogle Scholar
  254. 254.
    Hlais, S., El-Bistami, D., El Rahi, B., Mattar, M. A., & Obeid, O. A. (2013). Combined fish oil and high oleic sunflower oil supplements neutralize their individual effects on the lipid profile of healthy men. Lipids, 48(9), 853–861.PubMedCrossRefGoogle Scholar
  255. 255.
    Ozyazgan, S., Karaoglu, K., Kurt, A., Altinok, A., Konukoglu, D., Osar, S. Z., et al. (2013). Effects of omega-3 polyunsaturated fatty acid supplementation on serum fetuin-a levels in type 2 diabetic patients. Minerva Medica, 104(3), 287–293.PubMedGoogle Scholar
  256. 256.
    Giacco, R., Cuomo, V., Vessby, B., Uusitupa, M., Hermansen, K., Meyer, B. J., et al. (2007). Fish oil, insulin sensitivity, insulin secretion and glucose tolerance in healthy people: Is there any effect of fish oil supplementation in relation to the type of background diet and habitual dietary intake of n-6 and n-3 fatty acids? Nutrition Metabolism and Cardiovascular Diseases, 17(8), 572–580.CrossRefGoogle Scholar
  257. 257.
    Mostad, I. L., Bjerve, K. S., Bjorgaas, M. R., Lydersen, S., & Grill, V. (2006). Effects of n-3 fatty acids in subjects with type 2 diabetes: reduction of insulin sensitivity and time-dependent alteration from carbohydrate to fat oxidation. The American Journal of Clinical Nutrition, 84(3), 540–550.PubMedGoogle Scholar
  258. 258.
    Galgani, J. E., Uauy, R. D., Aguirre, C. A., & Díaz, E. O. (2008). Effect of the dietary fat quality on insulin sensitivity. British Journal of Nutrition, 100(03), 471–479.PubMedCrossRefGoogle Scholar
  259. 259.
    De Caterina, R., Madonna, R., Bertolotto, A., & Schmidt, E. B. (2007). n-3 Fatty acids in the treatment of diabetic patients biological rationale and clinical data. Diabetes Care, 30(4), 1012–1026.PubMedCrossRefGoogle Scholar
  260. 260.
    Hartweg, J., Perera, R., Montori, V., Dinneen, S., Neil, H., & Farmer, A. (2008). Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev, 1.Google Scholar
  261. 261.
    Hartweg, J., Farmer, A. J., Holman, R. R., & Neil, A. (2009). Potential impact of omega-3 treatment on cardiovascular disease in type 2 diabetes. Current Opinion in Lipidology, 20(1), 30–38.PubMedCrossRefGoogle Scholar
  262. 262.
    Hendrich, S. (2010). (n-3) fatty acids: clinical trials in people with type 2 diabetes. Advances in Nutrition: an International Review Journal, 1(1), 3–7.CrossRefGoogle Scholar
  263. 263.
    Tremoli, E., Maderna, P., Marangoni, F., Colli, S., Eligini, S., Catalano, I., et al. (1995). Prolonged inhibition of platelet aggregation after n-3 fatty acid ethyl ester ingestion by healthy volunteers. The American Journal of Clinical Nutrition, 61(3), 607–613.PubMedGoogle Scholar
  264. 264.
    Nordøy, A., Bønaa, K. H., Sandset, P. M., Hansen, J.-B., & Nilsen, H. (2000). Effect of ω-3 fatty acids and simvastatin on hemostatic risk factors and postprandial hyperlipemia in patients with combined hyperlipemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(1), 259–265.PubMedCrossRefGoogle Scholar
  265. 265.
    Barcelli, U., Glas-Greenwalt, P., & Pollak, V. E. (1985). Enhancing effect of dietary supplementation with ω-3 fatty acids on plasma fibrinolysis in normal subjects. Thrombosis Research, 39(3), 307–312.PubMedCrossRefGoogle Scholar
  266. 266.
    Vanschoonbeek, K., Feijge, M. A., Paquay, M., Rosing, J., Saris, W., Kluft, C., et al. (2004). Variable hypocoagulant effect of fish oil intake in humans modulation of fibrinogen level and thrombin generation. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(9), 1734–1740.PubMedCrossRefGoogle Scholar
  267. 267.
    Vanschoonbeek, K., Wouters, K., van der Meijden, P. E., van Gorp, P. J., Feijge, M. A., Herfs, M., et al. (2008). Anticoagulant effect of dietary fish oil in hyperlipidemia a study of hepatic gene expression in APOE2 knock-in mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(11), 2023–2029.PubMedCrossRefGoogle Scholar
  268. 268.
    Goodnight, S. J., Harris, W. S., & Connor, W. E. (1981). The effects of dietary omega 3 fatty acids on platelet composition and function in man: a prospective, controlled study. Blood, 58(5), 880–885.PubMedGoogle Scholar
  269. 269.
    Knapp, H. R. (1997). Dietary fatty acids in human thrombosis and hemostasis. The American Journal of Clinical Nutrition, 65(5), 1687S–1698S.PubMedGoogle Scholar
  270. 270.
    von Schacky, C., & Weber, P. C. (1985). Metabolism and effects on platelet function of the purified eicosapentaenoic and docosahexaenoic acids in humans. Journal of Clinical Investigation, 76(6), 2446–2450.CrossRefGoogle Scholar
  271. 271.
    Calò, L., Bianconi, L., Colivicchi, F., Lamberti, F., Loricchio, M. L., de Ruvo, E., et al. (2005). N-3 fatty acids for the prevention of atrial fibrillation after coronary artery bypass surgery: a randomized, controlled trial. Journal of the American College of Cardiology, 45(10), 1723–1728.PubMedCrossRefGoogle Scholar
  272. 272.
    Meredith, D. S., Kepler, C. K., Hirsch, B., Nguyen, J., Farmer, J. C., Girardi, F. P., et al. (2012). The effect of omega-3 fatty-acid supplements on perioperative bleeding following posterior spinal arthrodesis. European Spine Journal, 21(12), 2659–2663.PubMedCentralPubMedCrossRefGoogle Scholar
  273. 273.
    Heller, A., Fischer, S., Rössel, T., Geiger, S., Siegert, G., Ragaller, M., et al. (2002). Impact of n-3 fatty acid supplemented parenteral nutrition on haemostasis patterns after major abdominal surgery. British Journal of Nutrition, 87(S1), S95–S101.PubMedCrossRefGoogle Scholar
  274. 274.
    Cohen, M. G., Rossi, J. S., Garbarino, J., Bowling, R., Motsinger-Reif, A. A., Schuler, C., et al. (2011). Insights into the inhibition of platelet activation by omega-3 polyunsaturated fatty acids: beyond aspirin and clopidogrel. Thrombosis Research, 128(4), 335–340.PubMedCrossRefGoogle Scholar
  275. 275.
    Wachira, J. K., Larson, M. K., & Harris, W. S. (2014). n-3 Fatty acids affect haemostasis but do not increase the risk of bleeding: clinical observations and mechanistic insights. British Journal of Nutrition, 111(09), 1652–1662.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Seyed Fazel Nabavi
    • 1
  • Stefania Bilotto
    • 2
  • Gian Luigi Russo
    • 2
  • Ilkay Erdogan Orhan
    • 3
  • Solomon Habtemariam
    • 4
  • Maria Daglia
    • 5
  • Kasi Pandima Devi
    • 6
  • Monica Rosa Loizzo
    • 7
  • Rosa Tundis
    • 7
  • Seyed Mohammad Nabavi
    • 1
  1. 1.Applied Biotechnology Research CenterBaqiyatallah University of Medical SciencesTehranIran
  2. 2.National Research CouncilInstitute of Food SciencesAvellinoItaly
  3. 3.Department of Pharmacognosy, Faculty of PharmacyGazi UniversityAnkaraTurkey
  4. 4.Pharmacognosy Research Laboratories, Medway School of ScienceUniversity of GreenwichChatham-MaritimeUK
  5. 5.Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology SectionUniversity of PaviaPaviaItaly
  6. 6.Department of BiotechnologyAlagappa UniversityKaraikudiIndia
  7. 7.Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaRendeItaly

Personalised recommendations