Skip to main content

Advertisement

Log in

Platelets and cancer: a casual or causal relationship: revisited

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as “First Responders” during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Honn, K. V., Tang, D. G., & Crissman, J. D. (1992). Platelets and cancer metastasis: a causal relationship? Cancer Metastasis Reviews, 11(3–4), 325–351.

    PubMed  CAS  Google Scholar 

  2. Rados, C. (2004). Beyond bloodletting: FDA gives leeches a medical makeover. FDA Consumer, 38(5), 9.

    PubMed  Google Scholar 

  3. Winkel, R., Tajsic, N., Husum, H., Schlageter, M., Hanebuth, G., & Hoffmann, R. (2013). Saphenous perforator flap. Operative Orthopädie und Traumatologie, 25(2), 152–161.

    PubMed  CAS  Google Scholar 

  4. Kaushansky, K. (2008). Historical review: megakaryopoiesis and thrombopoiesis. Blood, 111(3), 981–986.

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Steinhubl, S. R. (2011). Historical observations on the discovery of platelets, platelet function testing and the first antiplatelet agent. Current Drug Targets, 12(12), 1792–1804.

    PubMed  CAS  Google Scholar 

  6. Addison, W. (1842). On the colourless corpuscles and on the molecules and cytoblasts in the blood. London Med Gaz, 30, 144–152.

    Google Scholar 

  7. Schultze, M. (1865). Ein heizbarer Objecttisch und seine Verwendung bei Untersuchungen des Blutes. Arch Mikrosc Anatomy, 1, 1–42.

    Google Scholar 

  8. Bizzozero, J. (1882). Über einen neuen Formbestandtheil des Blutes und dessen Rolle bei der Thrombose und der Blutgerinnung. Virchows Archiv für pathologische Anatomie und Physiologie und für klinische Medizin, 90, 261–332.

    Google Scholar 

  9. de Gaetano, G. (2001). A new blood corpuscle: an impossible interview with Giulio Bizzozero. Thrombosis and Haemostasis, 86(4), 973–979.

    PubMed  Google Scholar 

  10. Virchow, R. (1856). Gesammelte (ad) Handlungen zur wissenschaftlichen Medizin. Frankfurt Meidinger.

  11. Bizzozero, G. (1869). Sul midollo delle ossa. Napoli: Tipografia Italiana.

    Google Scholar 

  12. Osler, W., & Schäfer, E. A. (1873). über einige im Blute vorhandene bacterienbildende Massen. Centralbl Medicine Wissensch, 11, 577–578.

    Google Scholar 

  13. Howell, W. H. (1890). Observations upon the occurrence, structure, and function of the giant cells of the marrow. Journal of Morphology, 4, 117–130.

    Google Scholar 

  14. Wright, J. H. (1906). The origin and nature of the blood plates. Boston Medical and Surgical Journal, 23, 643–645.

    Google Scholar 

  15. Wright, J. H. (1910). The histogenesis of blood platelets. Journal of Morphology, 21, 263–278.

    Google Scholar 

  16. Nakeff, A., & Maat, B. (1974). Separation of megakaryocytes from mouse bone marrow by velocity sedimentation. Blood, 43(4), 591–595.

    PubMed  CAS  Google Scholar 

  17. Pease, D. C. (1956). An electron microscopic study of red bone marrow. Blood, 11(6), 501–526.

    PubMed  CAS  Google Scholar 

  18. Trousseau, A. (1865). Phlegmasia alba dolens. Lectures on clinical medicine. Delivered at the Hotel-Dieu, Paris, 5, 281–332.

  19. Bariety, M. (1947). Trousseau, 1801–1867 (pp. 234–235). Geneva: Mazenod.

    Google Scholar 

  20. Osler, W., & McCrae, T. (1900). Latent cancer of the stomach. Phil Medical Journal, 5, 245.

    Google Scholar 

  21. Sproul, E. (1938). Carcinoma and venous thrombosis: the frequency of association of carcinoma in the body and tail of the pancreas with multiple venous thrombosis. American Journal of Cancer, 34, 566–585.

    Google Scholar 

  22. Edwards, E. (1949). Migratory thrombophlebitis associated with carcinoma. The New England Journal of Medicine, 240, 1131–1135.

    Google Scholar 

  23. Gross, F. B., Jr., Jaehning, D. G., & Coker, W. G. (1951). The association of migratory thrombophlebitis with carcinoma. North Carolina Medical Journal, 12(3), 97–101.

    PubMed  Google Scholar 

  24. Henderson, P. H., Jr. (1955). Multiple migratory thrombophlebitis associated with ovarian carcinoma. American Journal of Obstetrics and Gynecology, 70(2), 452–453.

    PubMed  Google Scholar 

  25. Jain, S., Harris, J., & Ware, J. (2010). Platelets: linking hemostasis and cancer. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(12), 2362–2367.

    PubMed  CAS  PubMed Central  Google Scholar 

  26. Jarniou, A. P., & Moreau, A. (1959). Recurrent & migratory thrombophlebitis revealing a secondary cancer with mediastino-pulmonary form. Presse Médicale, 67(27), 1117–1118.

    PubMed  CAS  Google Scholar 

  27. Jennings, W., & Russel, W. (1948). Phlebothrombosis associated with mucin-producing carcinomas of the tail and body of the pancreas. Archives of Surgery, 56, 186–198.

    PubMed  CAS  Google Scholar 

  28. Kenney, W. (1943). The association of carcinoma in the body and tail of the pancreas with multiple venous thrombi. Surgery, 14, 600–609.

    Google Scholar 

  29. Linquette, M., Mesmacque, R., Fossati, P., Luez, G., & Beghin, B. (1964). Recurrent and migratory venous thromboses. Prog ress in Medical (Paris), 92, 689–698.

    CAS  Google Scholar 

  30. Mainoli, S., & Piccinelli, O. (1956). Migratory thrombophlebitis and malignant tumors; migratory thrombophlebitis occurring during two cases of reticulosarcoma. La Riforma Medica, 70(46), 1330–1334.

    PubMed  CAS  Google Scholar 

  31. McKay, D., & Wahle, G. (1955). Disseminated thrombosis in colon cancer. Cancer, 8, 970–978.

    PubMed  CAS  Google Scholar 

  32. Noble, S., & Pasi, J. (2010). Epidemiology and pathophysiology of cancer-associated thrombosis. British Journal of Cancer, 102(Suppl 1), S2–9.

    PubMed  PubMed Central  Google Scholar 

  33. Nusbacher, J. (1964). Migratory venous thrombosis and cancer. New York State Journal of Medicine, 64, 2166–2173.

    PubMed  CAS  Google Scholar 

  34. Oster, M. W. (1976). Thrombophlebitis and cancer. A review. Angiology, 27(10), 557–567.

    PubMed  CAS  Google Scholar 

  35. Picard, R., Horeau, J., Guillon, J., & Robin, C. (1959). Migratory thrombophlebitis & bronchopulmonary cancer. Bulletins et Mémoires de la Société Médicale des Hôpitaux de Paris, 75(9–11), 327–329.

    PubMed  CAS  Google Scholar 

  36. Popesco, I., & Ciobanu, V. (1958). Migratory thrombophlebitis as a manifestation of visceral cancer. La Semaine des Hôpitaux, 34(1), 26–30.

    PubMed  CAS  Google Scholar 

  37. Rizzo, J. A. (1956). Migratory thrombophlebitis and visceral cancer. Revista de la Asociación Médica Argentina, 70(825–826), 236–238.

    PubMed  CAS  Google Scholar 

  38. Varki, A. (2007). Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood, 110(6), 1723–1729.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Womack, W. S., & Castellano, C. J. (1952). Migratory thrombophlebitis associated with ovarian carcinoma. American Journal of Obstetrics and Gynecology, 63(2), 467–469.

    PubMed  CAS  Google Scholar 

  40. Pineo, G. F., Regoeczi, E., Hatton, M. W., & Brain, M. C. (1973). The activation of coagulation by extracts of mucus: a possible pathway of intravascular coagulation accompanying adenocarcinomas. The Journal of Laboratory and Clinical Medicine, 82(2), 255–266.

    PubMed  CAS  Google Scholar 

  41. Brugarolas, A., Elias, E. G., Takita, H., Mink, I. B., Mittelman, A., & Ambrus, J. L. (1973). Blood coagulation and fibrinolysis in patients with carcinoma of the lung. Journal of Medicine, 4(2), 96–105.

    PubMed  CAS  Google Scholar 

  42. Peterson, H. I., Appelgren, K. L., & Rosengren, B. H. (1969). Fibrinogen metabolism in experimental tumours. European Journal of Cancer, 5(6), 535–542.

    PubMed  CAS  Google Scholar 

  43. Peterson, H. I., Appelgren, K. L., & Rosengren, B. H. (1972). Experimental studies on the mechanisms of fibrinogen uptake in a rat tumour. European Journal of Cancer, 8(6), 677–681.

    PubMed  CAS  Google Scholar 

  44. Peterson, H. I., & Zettergren, L. (1970). Thromboplastic and fibrinolytic properties of three transplantable rat tumours. Acta Chirurgica Scandinavica, 136(5), 365–368.

    PubMed  CAS  Google Scholar 

  45. Moolten, S. E., & Vroman, L. (1949). The adhesiveness of blood platelets in thromboembolism and hemorrhagic disorders; measurement of platelet adhesiveness by the glass-wool filter. American Journal of Clinical Pathology, 19(8), 701–709.

    PubMed  CAS  Google Scholar 

  46. Levin, J., & Conley, C. L. (1964). Thrombocytosis associated with malignant disease. Archives of Internal Medicine, 114, 497–500.

    PubMed  CAS  Google Scholar 

  47. Gasic, G. J., Gasic, T. B., Galanti, N., Johnson, T., & Murphy, S. (1973). Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. International Journal of Cancer, 11(3), 704–718.

    CAS  Google Scholar 

  48. Gasic, G. J., Gasic, T. B., & Stewart, C. C. (1968). Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences of the United States of America, 61(1), 46–52.

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Gastpar, H. (1973). Inhibition of “cancer cell stickiness” through bencylan-hydrogen fumarate (fluditate). Fortschritte der Medizin, 91(33), 1322–1328.

    PubMed  CAS  Google Scholar 

  50. Hilgard, P. (1973). The role of blood platelets in experimental metastases. British Journal of Cancer, 28(5), 429–435.

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Warren, B. A. (1973). Environment of the blood-borne tumor embolus adherent to vessel wall. Journal of Medicine, 4(3), 150–177.

    PubMed  CAS  Google Scholar 

  52. Warren, B. A., & Vales, O. (1972). The adhesion of thromboplastic tumour emboli to vessel walls in vivo. British Journal of Experimental Pathology, 53(3), 301–313.

    PubMed  CAS  PubMed Central  Google Scholar 

  53. Cliffton, E. E., & Grossi, C. E. (1956). Effect of human plasmin on the toxic effects and growth of blood borne metastatis of the Brown-Pearce carcinoma and the V2 carcinoma of rabbit. Cancer, 9(6), 1147–1152.

    PubMed  CAS  Google Scholar 

  54. Johnson, J. H., & Woods, J. R. (1963). An in vitro study of fibrinolytic agents on V2 carcinoma cells and intravascular thrombi in rabbits. Bulletin of the Johns Hopkins Hospital, 113, 335–346.

    PubMed  CAS  Google Scholar 

  55. Pearce, L., & Brown, W. H. (1923). Studies based on a malignant tumor of the rabbit: V. Metastases. Part 1. Description of the lesions with especial reference to their occurrence and distribution. The Journal of Experimental Medicine, 38(4), 347–366.

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Rous, P., & Kidd, J. G. (1938). The carcinogenic effect of a papilloma virus on the tarred skin of rabbits: I. Description of the phenomenon. The Journal of Experimental Medicine, 67(3), 399–428.

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Woods, J. R. (1964). Experimental studies of the intravascular dissemination of ascitic V2 carcinoma cells in the rabbit, with special reference to fibrinogen and fibrinolytic agents. Bulletin der Schweizerischen Akademie der Medizinischen Wissenschaften, 20, 92–121.

    PubMed  CAS  Google Scholar 

  58. Fidler, I. J. (1970). Metastasis: quantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2′-deoxyuridine. Journal of the National Cancer Institute, 45(4), 773–782.

    PubMed  CAS  Google Scholar 

  59. Honn, K. V., Menter, D., Cavanaugh, P. G., Neagos, G., Moilanen, D., Taylor, J. D., et al. (1983). A review of prostaglandins and the treatment of tumor metastasis. Acta Clinica Belgica, 38(1), 53–67.

    PubMed  CAS  Google Scholar 

  60. Honn, K. V., Bockman, R. S., & Marnett, L. J. (1981). Prostaglandins and cancer: a review of tumor initiation through tumor metastasis. Prostaglandins, 21(5), 833–864.

    PubMed  CAS  Google Scholar 

  61. Menter, D., Dunn, J., Palazzo, R., Tchen, T., Taylor, J., & Honn, K. (1982). Tumor cell induced platelet aggregation: inhibition by prostacyclin, thromboxane A2 and phosphodiesterase inhibitors. In: Prostaglandins and cancer. New York: Alan R. Liss.

  62. Menter, D. G., Harkins, C., Onoda, J., Riorden, W., Sloane, B. F., Taylor, J. D., et al. (1987). Inhibition of tumor cell induced platelet aggregation by prostacyclin and carbacyclin: an ultrastructural study. Invasion & Metastasis, 7(2), 109–128.

    CAS  Google Scholar 

  63. Menter, D. G., Onoda, J. M., Taylor, J. D., & Honn, K. V. (1984). Effects of prostacyclin on tumor cell-induced platelet aggregation. Cancer Research, 44(2), 450–456.

    PubMed  CAS  Google Scholar 

  64. Cavanaugh, P. G., Sloane, B. F., Bajkowski, A. S., Gasic, G. J., Gasic, T. B., & Honn, K. V. (1983). Involvement of a cathepsin B-like cysteine proteinase in platelet aggregation induced by tumor cells and their shed membrane vesicles. Clinical & Experimental Metastasis, 1(4), 297–307.

    CAS  Google Scholar 

  65. Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., & Honn, K. V. (1985). Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Laboratory Investigation, 53(4), 470–478.

    PubMed  CAS  Google Scholar 

  66. Crissman, J. D., Hatfield, J. S., & Honn, K. V. (1986). Clinical and experimental morphologic parameters predictive of tumor metastasis. Progress in Clinical and Biological Research, 212, 251–267.

    PubMed  CAS  Google Scholar 

  67. Crissman, J. D., Hatfield, J. S., Menter, D. G., Sloane, B., & Honn, K. V. (1988). Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Research, 48(14), 4065–4072.

    PubMed  CAS  Google Scholar 

  68. Kinjo, M. (1978). Lodgement and extravasation of tumour cells in blood-borne metastasis: an electron microscope study. British Journal of Cancer, 38(2), 293–301.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Machlus, K. R., & Italiano, J. E., Jr. (2013). The incredible journey: from megakaryocyte development to platelet formation. The Journal of Cell Biology, 201(6), 785–796.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Menter, D. G., Hatfield, J. S., Harkins, C., Sloane, B. F., Taylor, J. D., Crissman, J. D., et al. (1987). Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clinical & Experimental Metastasis, 5(1), 65–78.

    CAS  Google Scholar 

  71. Sloane, B. F., Rozhin, J., Hatfield, J. S., Crissman, J. D., & Honn, K. V. (1987). Plasma membrane-associated cysteine proteinases in human and animal tumors. Experimental Cell Biology, 55(4), 209–224.

    PubMed  CAS  Google Scholar 

  72. White, J. G. (1967). A simple method for preservation of fine structure in blood cells. Thrombosis et Diathesis Haemorrhagica, 18(3–4), 745–753.

    PubMed  CAS  Google Scholar 

  73. White, J. G., & Krivit, W. (1967). The canalicular system of blood platelets: apossible sarcoplasmic reticulum. The Journal of Laboratory and Clinical Medicine, 49, 60.

    Google Scholar 

  74. White, J. G., & Krivit, W. (1967). Changes in platelet microtubules and granules during early clot development. Thrombosis et Diathesis Haemorrhagica. Supplementum, 26, 29–42.

    PubMed  CAS  Google Scholar 

  75. Grossi, I. M., Fitzgerald, L. A., Kendall, A., Taylor, J. D., Sloane, B. F., & Honn, K. V. (1987). Inhibition of human tumor cell induced platelet aggregation by antibodies to platelet glycoproteins Ib and IIb/IIIa. Proceedings of the Society for Experimental Biology and Medicine, 186(3), 378–383.

    PubMed  CAS  Google Scholar 

  76. Bluteau, D., Lordier, L., Di Stefano, A., Chang, Y., Raslova, H., Debili, N., et al. (2009). Regulation of megakaryocyte maturation and platelet formation. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 227–234.

    PubMed  CAS  Google Scholar 

  77. Geddis, A. E. (2010). Megakaryopoiesis. Seminars in Hematology, 47(3), 212–219.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Thon, J. N., & Italiano, J. E. (2010). Platelet formation. Seminars in Hematology, 47(3), 220–226.

    PubMed  CAS  PubMed Central  Google Scholar 

  79. McGrath, K., & Palis, J. (2008). Ontogeny of erythropoiesis in the mammalian embryo. Current Topics in Developmental Biology, 82, 1–22.

    PubMed  CAS  Google Scholar 

  80. Travlos, G. S. (2006). Normal structure, function, and histology of the bone marrow. Toxicologic Pathology, 34(5), 548–565.

    PubMed  Google Scholar 

  81. Kelly, P. J. (1968). Anatomy, physiology, and pathology of the blood supply of bones. The Journal of Bone and Joint Surgery. American Volume, 50(4), 766–783.

    PubMed  CAS  Google Scholar 

  82. Augello, A., Kurth, T. B., & De Bari, C. (2010). Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. European Cells & Materials, 20, 121–133.

    CAS  Google Scholar 

  83. Chasis, J. A., & Mohandas, N. (2008). Erythroblastic islands: niches for erythropoiesis. Blood, 112(3), 470–478.

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Kiel, M. J., & Morrison, S. J. (2008). Uncertainty in the niches that maintain haematopoietic stem cells. Nature Reviews. Immunology, 8(4), 290–301.

    PubMed  CAS  Google Scholar 

  85. Oh, I. H., & Kwon, K. R. (2010). Concise review: multiple niches for hematopoietic stem cell regulations. Stem Cells, 28(7), 1243–1249.

    PubMed  CAS  Google Scholar 

  86. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10(8), 858–864.

    PubMed  CAS  Google Scholar 

  87. Hevehan, D. L., Papoutsakis, E. T., & Miller, W. M. (2000). Physiologically significant effects of pH and oxygen tension on granulopoiesis. Experimental Hematology, 28(3), 267–275.

    PubMed  CAS  Google Scholar 

  88. Doan, P. L., & Chute, J. P. (2012). The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia, 26(1), 54–62.

    PubMed  CAS  Google Scholar 

  89. Kaplan, R. N., Psaila, B., & Lyden, D. (2007). Niche-to-niche migration of bone-marrow-derived cells. Trends in Molecular Medicine, 13(2), 72–81.

    PubMed  CAS  Google Scholar 

  90. Lilly, A. J., Johnson, W. E., & Bunce, C. M. (2011). The haematopoietic stem cell niche: new insights into the mechanisms regulating haematopoietic stem cell behaviour. Stem Cells International, 2011, 274564.

    PubMed  PubMed Central  Google Scholar 

  91. Nagasawa, T., Omatsu, Y., & Sugiyama, T. (2011). Control of hematopoietic stem cells by the bone marrow stromal niche: the role of reticular cells. Trends in Immunology, 32(7), 315–320.

    PubMed  CAS  Google Scholar 

  92. Deutsch, V. R., & Tomer, A. (2013). Advances in megakaryocytopoiesis and thrombopoiesis: from bench to bedside. British Journal of Haematology, 161(6), 778–793.

    PubMed  CAS  Google Scholar 

  93. Yu, M., & Cantor, A. B. (2012). Megakaryopoiesis and thrombopoiesis: an update on cytokines and lineage surface markers. Methods in Molecular Biology, 788, 291–303.

    PubMed  CAS  Google Scholar 

  94. Kanz, L., Lohr, G. W., & Fauser, A. A. (1987). Human megakaryocytic progenitor cells. Klinische Wochenschrift, 65(7), 297–307.

    PubMed  CAS  Google Scholar 

  95. Tijssen, M. R., & Ghevaert, C. (2013). Transcription factors in late megakaryopoiesis and related platelet disorders. Journal of Thrombosis and Haemostasis, 11(4), 593–604.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Kaur, G., Jalagadugula, G., Mao, G., & Rao, A. K. (2010). RUNX1/core binding factor A2 regulates platelet 12-lipoxygenase gene (ALOX12): studies in human RUNX1 haplodeficiency. Blood, 115(15), 3128–3135.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Fowler, M., Borazanci, E., McGhee, L., Pylant, S. W., Williams, B. J., Glass, J., et al. (2006). RUNX1 (AML-1) and RUNX2 (AML-3) cooperate with prostate-derived Ets factor to activate transcription from the PSA upstream regulatory region. Journal of Cellular Biochemistry, 97(1), 1–17.

    PubMed  CAS  Google Scholar 

  98. Dakic, A., Metcalf, D., Di Rago, L., Mifsud, S., Wu, L., & Nutt, S. L. (2005). PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. The Journal of Experimental Medicine, 201(9), 1487–1502.

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Nutt, S. L., Metcalf, D., D'Amico, A., Polli, M., & Wu, L. (2005). Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. The Journal of Experimental Medicine, 201(2), 221–231.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Arinobu, Y., Mizuno, S., Chong, Y., Shigematsu, H., Iino, T., Iwasaki, H., et al. (2007). Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell, 1(4), 416–427.

    PubMed  CAS  Google Scholar 

  101. Chlon, T. M., Dore, L. C., & Crispino, J. D. (2012). Cofactor-mediated restriction of GATA-1 chromatin occupancy coordinates lineage-specific gene expression. Molecular Cell, 47(4), 608–621.

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Dore, L. C., Chlon, T. M., Brown, C. D., White, K. P., & Crispino, J. D. (2012). Chromatin occupancy analysis reveals genome-wide GATA factor switching during hematopoiesis. Blood, 119(16), 3724–3733.

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Malinge, S., Thiollier, C., Chlon, T. M., Dore, L. C., Diebold, L., Bluteau, O., et al. (2013). Ikaros inhibits megakaryopoiesis through functional interaction with GATA-1 and NOTCH signaling. Blood, 121(13), 2440–2451.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Chagraoui, H., Kassouf, M., Banerjee, S., Goardon, N., Clark, K., Atzberger, A., et al. (2011). SCL-mediated regulation of the cell-cycle regulator p21 is critical for murine megakaryopoiesis. Blood, 118(3), 723–735.

    PubMed  CAS  Google Scholar 

  105. Lordier, L., Bluteau, D., Jalil, A., Legrand, C., Pan, J., Rameau, P., et al. (2012). RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization. Nature Communications, 3, 717.

    PubMed  Google Scholar 

  106. Krumsiek, J., Marr, C., Schroeder, T., & Theis, F. J. (2011). Hierarchical differentiation of myeloid progenitors is encoded in the transcription factor network. PLoS One, 6(8), e22649.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Takayama, M., Fujita, R., Suzuki, M., Okuyama, R., Aiba, S., Motohashi, H., et al. (2010). Genetic analysis of hierarchical regulation for Gata1 and NF-E2 p45 gene expression in megakaryopoiesis. Molecular and Cellular Biology, 30(11), 2668–2680.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Vitrat, N., Letestu, R., Masse, A., Lazar, V., Vainchenker, W., & Debili, N. (2000). Thromboxane synthase has the same pattern of expression as platelet specific glycoproteins during human megakaryocyte differentiation. Thrombosis and Haemostasis, 83(5), 759–768.

    PubMed  CAS  Google Scholar 

  109. Bray, P. F., McKenzie, S. E., Edelstein, L. C., Nagalla, S., Delgrosso, K., Ertel, A., et al. (2013). The complex transcriptional landscape of the anucleate human platelet. BMC Genomics, 14, 1.

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Edelstein, L. C., McKenzie, S. E., Shaw, C., Holinstat, M. A., Kunapuli, S. P., & Bray, P. F. (2013). MicroRNAs in platelet production and activation. Journal of Thrombosis and Haemostasis, 11(Suppl 1), 340–350.

    PubMed  Google Scholar 

  111. Guo, S., Lu, J., Schlanger, R., Zhang, H., Wang, J. Y., Fox, M. C., et al. (2010). MicroRNA miR-125a controls hematopoietic stem cell number. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14229–14234.

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Lu, J., Guo, S., Ebert, B. L., Zhang, H., Peng, X., Bosco, J., et al. (2008). MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Developmental Cell, 14(6), 843–853.

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Nagalla, S., Shaw, C., Kong, X., Kondkar, A. A., Edelstein, L. C., Ma, L., et al. (2011). Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood, 117(19), 5189–5197.

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Carpinelli, M. R., Hilton, D. J., Metcalf, D., Antonchuk, J. L., Hyland, C. D., Mifsud, S. L., et al. (2004). Suppressor screen in Mpl−/− mice: c-Myb mutation causes supraphysiological production of platelets in the absence of thrombopoietin signaling. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6553–6558.

    PubMed  CAS  PubMed Central  Google Scholar 

  115. de Graaf, C. A., Kauppi, M., Baldwin, T., Hyland, C. D., Metcalf, D., Willson, T. A., et al. (2010). Regulation of hematopoietic stem cells by their mature progeny. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21689–21694.

    PubMed  PubMed Central  Google Scholar 

  116. Metcalf, D., Carpinelli, M. R., Hyland, C., Mifsud, S., Dirago, L., Nicola, N. A., et al. (2005). Anomalous megakaryocytopoiesis in mice with mutations in the c-Myb gene. Blood, 105(9), 3480–3487.

    PubMed  CAS  Google Scholar 

  117. Kumar, M. S., Narla, A., Nonami, A., Mullally, A., Dimitrova, N., Ball, B., et al. (2011). Coordinate loss of a microRNA and protein-coding gene cooperate in the pathogenesis of 5q- syndrome. Blood, 118(17), 4666–4673.

    PubMed  CAS  PubMed Central  Google Scholar 

  118. Hussein, K., Dralle, W., Theophile, K., Kreipe, H., & Bock, O. (2009). Megakaryocytic expression of miRNA 10a, 17-5p, 20a and 126 in Philadelphia chromosome-negative myeloproliferative neoplasm. Annals of Hematology, 88(4), 325–332.

    PubMed  CAS  Google Scholar 

  119. Lin, J., & Zhan, R. (2011). Advance of studies on role of miRNA in hematopoietic regulation and myeloproliferative neoplasms. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 19(4), 1071–1074.

    PubMed  CAS  Google Scholar 

  120. Edelstein, L. C., & Bray, P. F. (2012). Small RNAs as potential platelet therapeutics. Handbook of Experimental Pharmacology, 210, 435–445.

    PubMed  CAS  Google Scholar 

  121. Vigon, I., Mornon, J. P., Cocault, L., Mitjavila, M. T., Tambourin, P., Gisselbrecht, S., et al. (1992). Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily. Proceedings of the National Academy of Sciences of the United States of America, 89(12), 5640–5644.

    PubMed  CAS  PubMed Central  Google Scholar 

  122. Bartley, T. D., Bogenberger, J., Hunt, P., Li, Y. S., Lu, H. S., Martin, F., et al. (1994). Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell, 77(7), 1117–1124.

    PubMed  CAS  Google Scholar 

  123. de Sauvage, F. J., Hass, P. E., Spencer, S. D., Malloy, B. E., Gurney, A. L., Spencer, S. A., et al. (1994). Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature, 369(6481), 533–538.

    PubMed  Google Scholar 

  124. Kaushansky, K. (1994). The mpl ligand: molecular and cellular biology of the critical regulator of megakaryocyte development. Stem Cells, 12(Suppl 1), 91–96. discussion 96-97.

    PubMed  Google Scholar 

  125. Sohma, Y., Akahori, H., Seki, N., Hori, T., Ogami, K., Kato, T., et al. (1994). Molecular cloning and chromosomal localization of the human thrombopoietin gene. FEBS Letters, 353(1), 57–61.

    PubMed  CAS  Google Scholar 

  126. Wendling, F., Maraskovsky, E., Debili, N., Florindo, C., Teepe, M., Titeux, M., et al. (1994). cMpl ligand is a humoral regulator of megakaryocytopoiesis. Nature, 369(6481), 571–574.

    PubMed  CAS  Google Scholar 

  127. Douglas, V. K., Tallman, M. S., Cripe, L. D., & Peterson, L. C. (2002). Thrombopoietin administered during induction chemotherapy to patients with acute myeloid leukemia induces transient morphologic changes that may resemble chronic myeloproliferative disorders. American Journal of Clinical Pathology, 117(6), 844–850.

    PubMed  CAS  Google Scholar 

  128. Neumann, T. A., & Foote, M. (2000). Megakaryocyte growth and development factor (MGDF): an Mpl ligand and cytokine that regulates thrombopoiesis. Cytokines, Cellular & Molecular Therapy, 6(1), 47–56.

    CAS  Google Scholar 

  129. Dong-Feng, Z., Ting, L., Yong, Z., Cheng, C., Xi, Z., & Pei-Yan, K. (2013). The TPO/c-MPL pathway in the bone marrow may protect leukemia cells from chemotherapy in AML patients. Pathology and Oncology Research. doi:10.1007/s12253-013-9696-z.

    PubMed  Google Scholar 

  130. Cosgrove, L. J., Sandrin, M. S., Rajasekariah, P., & McKenzie, I. F. (1986). A genomic clone encoding the alpha chain of the OKM1, LFA-1, and platelet glycoprotein IIb-IIIa molecules. Proceedings of the National Academy of Sciences of the United States of America, 83(3), 752–756.

    PubMed  CAS  PubMed Central  Google Scholar 

  131. Fitzgerald, L. A., Poncz, M., Steiner, B., Rall, S. C., Jr., Bennett, J. S., & Phillips, D. R. (1987). Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor alpha-subunits and platelet glycoprotein IIb. Biochemistry, 26(25), 8158–8165.

    PubMed  CAS  Google Scholar 

  132. Kostyak, J. C., & Naik, U. P. (2007). Megakaryopoiesis: transcriptional insights into megakaryocyte maturation. Frontiers in Bioscience, 12, 2050–2062.

    PubMed  CAS  Google Scholar 

  133. Lanza, F., Kieffer, N., Phillips, D. R., & Fitzgerald, L. A. (1990). Characterization of the human platelet glycoprotein IIIa gene. Comparison with the fibronectin receptor beta-subunit gene. The Journal of Biological Chemistry, 265(30), 18098–18103.

    PubMed  CAS  Google Scholar 

  134. Levene, R. B., Williams, N. T., Lamaziere, J. M., & Rabellino, E. M. (1987). Human megakaryocytes. IV. Growth and characterization of clonable megakaryocyte progenitors in agar. Experimental Hematology, 15(2), 181–189.

    PubMed  CAS  Google Scholar 

  135. Majka, M., Ratajczak, J., Villaire, G., Kubiczek, K., Marquez, L. A., Janowska-Wieczorek, A., et al. (2002). Thrombopoietin, but not cytokines binding to gp130 protein-coupled receptors, activates MAPKp42/44, AKT, and STAT proteins in normal human CD34+ cells, megakaryocytes, and platelets. Experimental Hematology, 30(7), 751–760.

    PubMed  CAS  Google Scholar 

  136. Miyazaki, H. (1996). Physiologic role of TPO in thrombopoiesis. Stem Cells, 14(Suppl 1), 133–138.

    PubMed  Google Scholar 

  137. Monzen, S., Takahashi, K., Yoshino, H., Kasai-Eguchi, K., & Kashiwakura, I. (2011). Terminal maturation of megakaryocytes and platelet production by hematopoietic stem cells irradiated with heavy-ion beams. Radiation Research, 176(1), 8–16.

    PubMed  CAS  Google Scholar 

  138. Sumner, R., Crawford, A., Mucenski, M., & Frampton, J. (2000). Initiation of adult myelopoiesis can occur in the absence of c-Myb whereas subsequent development is strictly dependent on the transcription factor. Oncogene, 19(30), 3335–3342.

    PubMed  CAS  Google Scholar 

  139. Zimmet, J., & Ravid, K. (2000). Polyploidy: occurrence in nature, mechanisms, and significance for the megakaryocyte-platelet system. Experimental Hematology, 28(1), 3–16.

    PubMed  CAS  Google Scholar 

  140. Thon, J. N., & Italiano, J. E. (2012). Visualization and manipulation of the platelet and megakaryocyte cytoskeleton. Methods in Molecular Biology, 788, 109–125.

    PubMed  CAS  Google Scholar 

  141. Yamada, E. (1957). The fine structure of the megakaryocyte in the mouse spleen. Acta Anatomica (Basel), 29(3), 267–290.

    CAS  Google Scholar 

  142. Behnke, O. (1968). An electron microscope study of the megacaryocyte of the rat bone marrow. I. The development of the demarcation membrane system and the platelet surface coat. Journal of Ultrastructure Research, 24(5), 412–433.

    PubMed  CAS  Google Scholar 

  143. Radley, J. M., & Haller, C. J. (1982). The demarcation membrane system of the megakaryocyte: a misnomer? Blood, 60(1), 213–219.

    PubMed  CAS  Google Scholar 

  144. Chen, Y., Aardema, J., Kale, S., Whichard, Z. L., Awomolo, A., Blanchard, E., et al. (2013). Loss of the F-BAR protein CIP4 reduces platelet production by impairing membrane-cytoskeleton remodeling. Blood, 122(10), 1695–706.

    PubMed  CAS  Google Scholar 

  145. Wang, W., Gilligan, D. M., Sun, S., Wu, X., & Reems, J. A. (2011). Distinct functional effects for dynamin 3 during megakaryocytopoiesis. Stem Cells and Development, 20(12), 2139–2151.

    PubMed  CAS  PubMed Central  Google Scholar 

  146. Patel-Hett, S., Wang, H., Begonja, A. J., Thon, J. N., Alden, E. C., Wandersee, N. J., et al. (2011). The spectrin-based membrane skeleton stabilizes mouse megakaryocyte membrane systems and is essential for proplatelet and platelet formation. Blood, 118(6), 1641–1652.

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Van Nispen, T. O. T., Pannerden, H., De Haas, F., Geerts, W., Posthuma, G., Van Dijk, S., & Heijnen, H. F. (2010). The platelet interior revisited: electron tomography reveals tubular alpha-granule subtypes. Blood, 116(7), 1147–1156.

    Google Scholar 

  148. Kamykowski, J., Carlton, P., Sehgal, S., & Storrie, B. (2011). Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet alpha-granules. Blood, 118(5), 1370–1373.

    PubMed  CAS  Google Scholar 

  149. Blair, P., & Flaumenhaft, R. (2009). Platelet alpha-granules: basic biology and clinical correlates. Blood Reviews, 23(4), 177–189.

    PubMed  CAS  PubMed Central  Google Scholar 

  150. Koseoglu, S., & Flaumenhaft, R. (2013). Advances in platelet granule biology. Current Opinion in Hematology, 20(5), 464–471.

    PubMed  Google Scholar 

  151. Albers, C. A., Cvejic, A., Favier, R., Bouwmans, E. E., Alessi, M. C., Bertone, P., et al. (2011). Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nature Genetics, 43(8), 735–737.

    PubMed  CAS  PubMed Central  Google Scholar 

  152. Gissen, P., Johnson, C. A., Morgan, N. V., Stapelbroek, J. M., Forshew, T., Cooper, W. N., et al. (2004). Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nature Genetics, 36(4), 400–404.

    PubMed  CAS  Google Scholar 

  153. Gunay-Aygun, M., Falik-Zaccai, T. C., Vilboux, T., Zivony-Elboum, Y., Gumruk, F., Cetin, M., et al. (2011). NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet alpha-granules. Nature Genetics, 43(8), 732–734.

    PubMed  CAS  PubMed Central  Google Scholar 

  154. Kahr, W. H., Hinckley, J., Li, L., Schwertz, H., Christensen, H., Rowley, J. W., et al. (2011). Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nature Genetics, 43(8), 738–740.

    PubMed  CAS  Google Scholar 

  155. Urban, D., Li, L., Christensen, H., Pluthero, F. G., Chen, S. Z., Puhacz, M., et al. (2012). The VPS33B-binding protein VPS16B is required in megakaryocyte and platelet alpha-granule biogenesis. Blood, 120(25), 5032–5040.

    PubMed  CAS  PubMed Central  Google Scholar 

  156. Ambrosio, A. L., Boyle, J. A., & Di Pietro, S. M. (2012). Mechanism of platelet dense granule biogenesis: study of cargo transport and function of Rab32 and Rab38 in a model system. Blood, 120(19), 4072–4081.

    PubMed  CAS  PubMed Central  Google Scholar 

  157. Jedlitschky, G., Greinacher, A., & Kroemer, H. K. (2012). Transporters in human platelets: physiologic function and impact for pharmacotherapy. Blood, 119(15), 3394–3402.

    PubMed  CAS  Google Scholar 

  158. Niessen, J., Jedlitschky, G., Grube, M., Kawakami, H., Kamiie, J., Ohtsuki, S., et al. (2010). Expression of ABC-type transport proteins in human platelets. Pharmacogenetics and Genomics, 20(6), 396–400.

    PubMed  CAS  Google Scholar 

  159. Dhanjal, T. S., Pendaries, C., Ross, E. A., Larson, M. K., Protty, M. B., Buckley, C. D., et al. (2007). A novel role for PECAM-1 in megakaryocytokinesis and recovery of platelet counts in thrombocytopenic mice. Blood, 109(10), 4237–4244.

    PubMed  CAS  Google Scholar 

  160. Mazharian, A. (2012). Assessment of megakaryocyte migration and chemotaxis. Methods in Molecular Biology, 788, 275–288.

    PubMed  CAS  Google Scholar 

  161. Mazharian, A., Thomas, S. G., Dhanjal, T. S., Buckley, C. D., & Watson, S. P. (2010). Critical role of Src-Syk-PLC{gamma}2 signaling in megakaryocyte migration and thrombopoiesis. Blood, 116(5), 793–800.

    PubMed  CAS  Google Scholar 

  162. Reddi, A. H., Gay, R., Gay, S., & Miller, E. J. (1977). Transitions in collagen types during matrix-induced cartilage, bone, and bone marrow formation. Proceedings of the National Academy of Sciences of the United States of America, 74(12), 5589–5592.

    PubMed  CAS  PubMed Central  Google Scholar 

  163. Sabri, S., Jandrot-Perrus, M., Bertoglio, J., Farndale, R. W., Mas, V. M., Debili, N., et al. (2004). Differential regulation of actin stress fiber assembly and proplatelet formation by alpha2beta1 integrin and GPVI in human megakaryocytes. Blood, 104(10), 3117–3125.

    PubMed  CAS  Google Scholar 

  164. Zou, Z., Schmaier, A. A., Cheng, L., Mericko, P., Dickeson, S. K., Stricker, T. P., et al. (2009). Negative regulation of activated alpha-2 integrins during thrombopoiesis. Blood, 113(25), 6428–6439.

    PubMed  CAS  Google Scholar 

  165. Pallotta, I., Lovett, M., Rice, W., Kaplan, D. L., & Balduini, A. (2009). Bone marrow osteoblastic niche: a new model to study physiological regulation of megakaryopoiesis. PLoS One, 4(12), e8359.

    PubMed  PubMed Central  Google Scholar 

  166. Kopp, H. G., & Rafii, S. (2007). Thrombopoietic cells and the bone marrow vascular niche. Annals of the New York Academy of Sciences, 1106, 175–179.

    PubMed  CAS  Google Scholar 

  167. Schachtner, H., Calaminus, S. D., Sinclair, A., Monypenny, J., Blundell, M. P., Leon, C., et al. (2013). Megakaryocytes assemble podosomes that degrade matrix and protrude through basement membrane. Blood, 121(13), 2542–2552.

    PubMed  CAS  Google Scholar 

  168. Tavassoli, M., & Aoki, M. (1989). Localization of megakaryocytes in the bone marrow. Blood Cells, 15(1), 3–14.

    PubMed  CAS  Google Scholar 

  169. Corselli, M., Chin, C. J., Parekh, C., Sahaghian, A., Wang, W., Ge, S., et al. (2013). Perivascular support of human hematopoietic stem/progenitor cells. Blood, 121(15), 2891–2901.

    PubMed  CAS  PubMed Central  Google Scholar 

  170. Diaz-Flores, L., Jr., Gutierrez, R., Madrid, J. F., Acosta, E., Avila, J., Diaz-Flores, L., et al. (2012). Cell sources for cartilage repair; contribution of the mesenchymal perivascular niche. Frontiers in Bioscience (Scholar Edition), 4, 1275–1294.

    Google Scholar 

  171. Diaz-Flores, L., Gutierrez, R., Madrid, J. F., Varela, H., Valladares, F., Acosta, E., et al. (2009). Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histology and Histopathology, 24(7), 909–969.

    PubMed  CAS  Google Scholar 

  172. Ding, L., Saunders, T. L., Enikolopov, G., & Morrison, S. J. (2012). Endothelial and perivascular cells maintain haematopoietic stem cells. Nature, 481(7382), 457–462.

    PubMed  CAS  PubMed Central  Google Scholar 

  173. Kunert, S., Meyer, I., Fleischhauer, S., Wannack, M., Fiedler, J., Shivdasani, R. A., et al. (2009). The microtubule modulator RanBP10 plays a critical role in regulation of platelet discoid shape and degranulation. Blood, 114(27), 5532–5540.

    PubMed  CAS  Google Scholar 

  174. Mazhuga, P. M., & Nosova, L. I. (1975). Proliferative characteristics of the endothelial cells and pericytes from the capillary vessels of rabbit bone marrow. Tsitologiia i Genetika, 9(5), 416–419.

    PubMed  CAS  Google Scholar 

  175. Wang, C. H., Wang, T. M., Young, T. H., Lai, Y. K., & Yen, M. L. (2013). The critical role of ECM proteins within the human MSC niche in endothelial differentiation. Biomaterials, 34(17), 4223–4234.

    PubMed  CAS  Google Scholar 

  176. Eto, K., Murphy, R., Kerrigan, S. W., Bertoni, A., Stuhlmann, H., Nakano, T., et al. (2002). Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12819–12824.

    PubMed  CAS  PubMed Central  Google Scholar 

  177. Larson, M. K., & Watson, S. P. (2006). Regulation of proplatelet formation and platelet release by integrin alpha IIb beta3. Blood, 108(5), 1509–1514.

    PubMed  CAS  Google Scholar 

  178. Lu, X. G., Zhu, L., Wang, W. Q., Zhang, X. H., Zhao, X. Y., Xu, G. B., et al. (2005). Morphological study on the megakaryocytes with nuclear extrusion and nucleocytoplasmic separation in four cases. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 13(6), 1082–1085.

    PubMed  Google Scholar 

  179. Hartwig, J. H., & Italiano, J. E., Jr. (2006). Cytoskeletal mechanisms for platelet production. Blood Cells, Molecules & Diseases, 36(2), 99–103.

    CAS  Google Scholar 

  180. Richardson, J. L., Shivdasani, R. A., Boers, C., Hartwig, J. H., & Italiano, J. E., Jr. (2005). Mechanisms of organelle transport and capture along proplatelets during platelet production. Blood, 106(13), 4066–4075.

    PubMed  CAS  PubMed Central  Google Scholar 

  181. Italiano, J. E., Jr., Patel-Hett, S., & Hartwig, J. H. (2007). Mechanics of proplatelet elaboration. Journal of Thrombosis and Haemostasis, 5(Suppl 1), 18–23.

    PubMed  CAS  Google Scholar 

  182. Schulze, H., Dose, M., Korpal, M., Meyer, I., Italiano, J. E., Jr., & Shivdasani, R. A. (2008). RanBP10 is a cytoplasmic guanine nucleotide exchange factor that modulates noncentrosomal microtubules. The Journal of Biological Chemistry, 283(20), 14109–14119.

    PubMed  CAS  PubMed Central  Google Scholar 

  183. Schwer, H. D., Lecine, P., Tiwari, S., Italiano, J. E., Jr., Hartwig, J. H., & Shivdasani, R. A. (2001). A lineage-restricted and divergent beta-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Current Biology, 11(8), 579–586.

    PubMed  CAS  Google Scholar 

  184. Junt, T., Schulze, H., Chen, Z., Massberg, S., Goerge, T., Krueger, A., et al. (2007). Dynamic visualization of thrombopoiesis within bone marrow. Science, 317(5845), 1767–1770.

    PubMed  CAS  Google Scholar 

  185. Italiano, J. E., Jr., Bergmeier, W., Tiwari, S., Falet, H., Hartwig, J. H., Hoffmeister, K. M., et al. (2003). Mechanisms and implications of platelet discoid shape. Blood, 101(12), 4789–4796.

    PubMed  CAS  Google Scholar 

  186. Zhang, L., Orban, M., Lorenz, M., Barocke, V., Braun, D., Urtz, N., et al. (2012). A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. The Journal of Experimental Medicine, 209(12), 2165–2181.

    PubMed  CAS  PubMed Central  Google Scholar 

  187. Mazo, I. B., & von Andrian, U. H. (1999). Adhesion and homing of blood-borne cells in bone marrow microvessels. Journal of Leukocyte Biology, 66(1), 25–32.

    PubMed  CAS  Google Scholar 

  188. Schmitt, A., Guichard, J., Masse, J. M., Debili, N., & Cramer, E. M. (2001). Of mice and men: comparison of the ultrastructure of megakaryocytes and platelets. Experimental Hematology, 29(11), 1295–1302.

    PubMed  CAS  Google Scholar 

  189. Di Michele, M., Van Geet, C., & Freson, K. (2012). Recent advances in platelet proteomics. Expert Review of Proteomics, 9(4), 451–466.

    PubMed  Google Scholar 

  190. Krishnan, S., Gaspari, M., Della Corte, A., Bianchi, P., Crescente, M., Cerletti, C., et al. (2011). OFFgel-based multidimensional LC-MS/MS approach to the cataloguing of the human platelet proteome for an interactomic profile. Electrophoresis, 32(6–7), 686–695.

    PubMed  CAS  Google Scholar 

  191. Premsler, T., Lewandrowski, U., Sickmann, A., & Zahedi, R. P. (2011). Phosphoproteome analysis of the platelet plasma membrane. Methods in Molecular Biology, 728, 279–290.

    PubMed  CAS  Google Scholar 

  192. Qureshi, A. H., Chaoji, V., Maiguel, D., Faridi, M. H., Barth, C. J., Salem, S. M., et al. (2009). Proteomic and phospho-proteomic profile of human platelets in basal, resting state: insights into integrin signaling. PLoS One, 4(10), e7627.

    PubMed  PubMed Central  Google Scholar 

  193. Senis, Y., & Garcia, A. (2012). Platelet proteomics: state of the art and future perspective. Methods in Molecular Biology, 788, 367–399.

    PubMed  CAS  Google Scholar 

  194. Zufferey, A., Fontana, P., Reny, J. L., Nolli, S., & Sanchez, J. C. (2012). Platelet proteomics. Mass Spectrometry Reviews, 31(2), 331–351.

    PubMed  CAS  Google Scholar 

  195. Di Michele, M., Van Geet, C., & Freson, K. (2012). Proteomics to unravel platelet-related diseases and identify novel anti-platelet drugs. Current Medicinal Chemistry, 19(27), 4662–4670.

    PubMed  Google Scholar 

  196. Parguina, A. F., Rosa, I., & Garcia, A. (2012). Proteomics applied to the study of platelet-related diseases: aiding the discovery of novel platelet biomarkers and drug targets. Journal of Proteomics, 76, 275–286.

    PubMed  CAS  Google Scholar 

  197. Aatonen, M., Gronholm, M., & Siljander, P. R. (2012). Platelet-derived microvesicles: multitalented participants in intercellular communication. Seminars in Thrombosis and Hemostasis, 38(1), 102–113.

    PubMed  CAS  Google Scholar 

  198. Hess, M. W., & Siljander, P. (2001). Procoagulant platelet balloons: evidence from cryopreparation and electron microscopy. Histochemistry and Cell Biology, 115(5), 439–443.

    PubMed  CAS  Google Scholar 

  199. Siljander, P. R. (2011). Platelet-derived microparticles—an updated perspective. Thrombosis Research, 127(Suppl 2), S30–33.

    PubMed  CAS  Google Scholar 

  200. Shai, E., Rosa, I., Parguina, A. F., Motahedeh, S., Varon, D., & Garcia, A. (2012). Comparative analysis of platelet-derived microparticles reveals differences in their amount and proteome depending on the platelet stimulus. Journal of Proteomics, 76, 287–296.

    PubMed  CAS  Google Scholar 

  201. Dowal, L., Yang, W., Freeman, M. R., Steen, H., & Flaumenhaft, R. (2011). Proteomic analysis of palmitoylated platelet proteins. Blood, 118(13), e62–73.

    PubMed  CAS  PubMed Central  Google Scholar 

  202. Schulz, C., Leuschen, N. V., Frohlich, T., Lorenz, M., Pfeiler, S., Gleissner, C. A., et al. (2010). Identification of novel downstream targets of platelet glycoprotein VI activation by differential proteome analysis: implications for thrombus formation. Blood, 115(20), 4102–4110.

    PubMed  Google Scholar 

  203. Wright, B., Stanley, R. G., Kaiser, W. J., Mills, D. J., & Gibbins, J. M. (2011). Analysis of protein networks in resting and collagen receptor (GPVI)-stimulated platelet sub-proteomes. Proteomics, 11(23), 4588–4592.

    PubMed  CAS  Google Scholar 

  204. Hamberg, M., & Samuelsson, B. (1974). Prostaglandin endoperoxides. Novel transformations of arachidonic acid in human platelets. Proceedings of the National Academy of Sciences of the United States of America, 71(9), 3400–3404.

    PubMed  CAS  PubMed Central  Google Scholar 

  205. Clarke, R. J., Mayo, G., Price, P., & FitzGerald, G. A. (1991). Suppression of thromboxane A2 but not of systemic prostacyclin by controlled-release aspirin. The New England Journal of Medicine, 325(16), 1137–1141.

    PubMed  CAS  Google Scholar 

  206. Samuelsson, B., Goldyne, M., Granstrom, E., Hamberg, M., Hammarstrom, S., & Malmsten, C. (1978). Prostaglandins and thromboxanes. Annual Review of Biochemistry, 47, 997–1029.

    PubMed  CAS  Google Scholar 

  207. Steinert, B. W., Tang, D. G., Grossi, I. M., Umbarger, L. A., & Honn, K. V. (1993). Studies on the role of platelet eicosanoid metabolism and integrin alpha IIb beta 3 in tumor-cell-induced platelet aggregation. International Journal of Cancer, 54(1), 92–101.

    CAS  Google Scholar 

  208. Maskrey, B. H., Bermudez-Fajardo, A., Morgan, A. H., Stewart-Jones, E., Dioszeghy, V., Taylor, G. W., et al. (2007). Activated platelets and monocytes generate four hydroxyphosphatidylethanolamines via lipoxygenase. The Journal of Biological Chemistry, 282(28), 20151–20163.

    PubMed  CAS  Google Scholar 

  209. Morgan, L. T., Thomas, C. P., Kuhn, H., & O'Donnell, V. B. (2010). Thrombin-activated human platelets acutely generate oxidized docosahexaenoic-acid-containing phospholipids via 12-lipoxygenase. The Biochemical Journal, 431(1), 141–148.

    PubMed  CAS  Google Scholar 

  210. Chen, Y. Q., & Honn, K. V. (1993). Eicosanoid regulation of tumor cell-platelet and -endothelium interaction during arrest and extravasation. In: S. Nigam, K. Honn, L. Marnett, & T. Walden, Jr. (Eds.). Eicosanoids and other bioactive lipids in cancer, inflammation and radiation injury. Developments in oncology, vol. 71, pp. 613–617. Springer: New York.

  211. Honn, K. V., Tang, D. G., Grossi, I., Duniec, Z. M., Timar, J., Renaud, C., et al. (1994). Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial cell retraction. Cancer Research, 54(2), 565–574.

    PubMed  CAS  Google Scholar 

  212. Ruebsaamen, K., Liebisch, G., Boettcher, A., & Schmitz, G. (2010). Lipidomic analysis of platelet senescence. Transfusion, 50(8), 1665–1676.

    PubMed  CAS  Google Scholar 

  213. Clark, S. R., Thomas, C. P., Hammond, V. J., Aldrovandi, M., Wilkinson, G. W., Hart, K. W., et al. (2013). Characterization of platelet aminophospholipid externalization reveals fatty acids as molecular determinants that regulate coagulation. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 5875–5880.

    PubMed  CAS  PubMed Central  Google Scholar 

  214. Dolegowska, B., Lubkowska, A., & De Girolamo, L. (2012). Platelet lipidomic. Journal of Biological Regulators and Homeostatic Agents, 26(2 Suppl 1), 23S–33S.

    PubMed  CAS  Google Scholar 

  215. Hammad, S. M. (2011). Blood sphingolipids in homeostasis and pathobiology. Advances in Experimental Medicine and Biology, 721, 57–66.

    PubMed  CAS  Google Scholar 

  216. Tam, V. C. (2013). Lipidomic profiling of bioactive lipids by mass spectrometry during microbial infections. Seminars in Immunology, 25(3), 240–248.

    PubMed  CAS  Google Scholar 

  217. Albanese, A., Licata, M. E., Polizzi, B., & Campisi, G. (2013). Platelet-rich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration. Immunity & Ageing, 10(1), 23.

    Google Scholar 

  218. Galliera, E., Corsi, M. M., & Banfi, G. (2012). Platelet rich plasma therapy: inflammatory molecules involved in tissue healing. Journal of Biological Regulators and Homeostatic Agents, 26(2 Suppl 1), 35S–42S.

    PubMed  CAS  Google Scholar 

  219. Lubkowska, A., Dolegowska, B., & Banfi, G. (2012). Growth factor content in PRP and their applicability in medicine. Journal of Biological Regulators and Homeostatic Agents, 26(2 Suppl 1), 3S–22S.

    PubMed  CAS  Google Scholar 

  220. Stanco, D., Vigano, M., Croiset, S. J., & De Girolamo, L. (2012). Applications and limits of platelet-rich plasma in sports related injuries. Journal of Biological Regulators and Homeostatic Agents, 26(2 Suppl 1), 53S–61S.

    PubMed  CAS  Google Scholar 

  221. Cimmino, G., & Golino, P. (2013). Platelet biology and receptor pathways. Journal of Cardiovascular Translational Research, 6(3), 299–309.

    PubMed  Google Scholar 

  222. Italiano, J. E., Jr. (2013). Unraveling mechanisms that control platelet production. Seminars in Thrombosis and Hemostasis, 39(1), 15–24.

    PubMed  CAS  Google Scholar 

  223. Kenney, D. M., & Linck, R. W. (1985). The cystoskeleton of unstimulated blood platelets: structure and composition of the isolated marginal microtubular band. Journal of Cell Science, 78, 1–22.

    PubMed  CAS  Google Scholar 

  224. Kowit, J. D., Linck, R. W., & Kenney, D. M. (1988). Isolated cytoskeletons of human blood platelets: dark-field imaging of coiled and uncoiled microtubules. Biology of the Cell, 64(3), 283–291.

    PubMed  CAS  Google Scholar 

  225. Patel-Hett, S., Richardson, J. L., Schulze, H., Drabek, K., Isaac, N. A., Hoffmeister, K., et al. (2008). Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules. Blood, 111(9), 4605–4616.

    PubMed  CAS  PubMed Central  Google Scholar 

  226. Radley, J. M., & Hartshorn, M. A. (1987). Megakaryocyte fragments and the microtubule coil. Blood Cells, 12(3), 603–614.

    PubMed  CAS  Google Scholar 

  227. Hartwig, J. H. (2006). The platelet: form and function. Seminars in Hematology, 43(1 Suppl 1), S94–100.

    PubMed  CAS  Google Scholar 

  228. Hartwig, J. H., Barkalow, K., Azim, A., & Italiano, J. (1999). The elegant platelet: signals controlling actin assembly. Thrombosis and Haemostasis, 82(2), 392–398.

    PubMed  CAS  Google Scholar 

  229. Boyles, J., Fox, J. E., Phillips, D. R., & Stenberg, P. E. (1985). Organization of the cytoskeleton in resting, discoid platelets: preservation of actin filaments by a modified fixation that prevents osmium damage. The Journal of Cell Biology, 101(4), 1463–1472.

    PubMed  CAS  Google Scholar 

  230. White, J. G. (1972). Interaction of membrane systems in blood platelets. The American Journal of Pathology, 66(2), 295–312.

    PubMed  CAS  PubMed Central  Google Scholar 

  231. Escolar, G., Leistikow, E., & White, J. G. (1989). The fate of the open canalicular system in surface and suspension-activated platelets. Blood, 74(6), 1983–1988.

    PubMed  CAS  Google Scholar 

  232. Barkalow, K. L., Italiano, J. E., Jr., Chou, D. E., Matsuoka, Y., Bennett, V., & Hartwig, J. H. (2003). Alpha-adducin dissociates from F-actin and spectrin during platelet activation. The Journal of Cell Biology, 161(3), 557–570.

    PubMed  CAS  PubMed Central  Google Scholar 

  233. Hartwig, J. H., & DeSisto, M. (1991). The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. The Journal of Cell Biology, 112(3), 407–425.

    PubMed  CAS  Google Scholar 

  234. Cranmer, S. L., Pikovski, I., Mangin, P., Thompson, P. E., Domagala, T., Frazzetto, M., et al. (2005). Identification of a unique filamin A binding region within the cytoplasmic domain of glycoprotein Ibalpha. The Biochemical Journal, 387(Pt 3), 849–858.

    PubMed  CAS  PubMed Central  Google Scholar 

  235. Dai, K., Bodnar, R., Berndt, M. C., & Du, X. (2005). A critical role for 14-3-3zeta protein in regulating the VWF binding function of platelet glycoprotein Ib-IX and its therapeutic implications. Blood, 106(6), 1975–1981.

    PubMed  CAS  PubMed Central  Google Scholar 

  236. Gitz, E., Koopman, C. D., Giannas, A., Koekman, C. A., van den Heuvel, D. J., Deckmyn, H., et al. (2013). Platelet interaction with von Willebrand factor is enhanced by shear-induced clustering of glycoprotein Ibalpha. Haematologica, 98(11), 1810–1818.

    PubMed  PubMed Central  Google Scholar 

  237. Li, S., Wang, Z., Liao, Y., Zhang, W., Shi, Q., Yan, R., et al. (2010). The glycoprotein Ibalpha-von Willebrand factor interaction induces platelet apoptosis. Journal of Thrombosis and Haemostasis, 8(2), 341–350.

    PubMed  CAS  Google Scholar 

  238. Mangin, P., David, T., Lavaud, V., Cranmer, S. L., Pikovski, I., Jackson, S. P., et al. (2004). Identification of a novel 14-3-3zeta binding site within the cytoplasmic tail of platelet glycoprotein Ibalpha. Blood, 104(2), 420–427.

    PubMed  CAS  Google Scholar 

  239. Mu, F. T., Andrews, R. K., Arthur, J. F., Munday, A. D., Cranmer, S. L., Jackson, S. P., et al. (2008). A functional 14-3-3zeta-independent association of PI3-kinase with glycoprotein Ib alpha, the major ligand-binding subunit of the platelet glycoprotein Ib-IX-V complex. Blood, 111(9), 4580–4587.

    PubMed  CAS  PubMed Central  Google Scholar 

  240. Zwaal, R. F., & Schroit, A. J. (1997). Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood, 89(4), 1121–1132.

    PubMed  CAS  Google Scholar 

  241. Furusawa, M., Tsuchiy, H., Nagayama, M., Tanaka, T., Nakaya, K. I., & Iinumac, M. (2003). Anti-platelet and membrane-rigidifying flavonoids in brownish scale of onions. Journal of Health Science, 49(6), 475–480.

    CAS  Google Scholar 

  242. Winocour, P. D., Bryszewska, M., Watala, C., Rand, M. L., Epand, R. M., Kinlough-Rathbone, R. L., et al. (1990). Reduced membrane fluidity in platelets from diabetic patients. Diabetes, 39(2), 241–244.

    PubMed  CAS  Google Scholar 

  243. Gerrits, A. J., Gitz, E., Koekman, C. A., Visseren, F. L., van Haeften, T. W., & Akkerman, J. W. (2012). Induction of insulin resistance by the adipokines resistin, leptin, plasminogen activator inhibitor-1 and retinol binding protein 4 in human megakaryocytes. Haematologica, 97(8), 1149–1157.

    PubMed  CAS  PubMed Central  Google Scholar 

  244. De Caterina, R., Marchetti, P., Bernini, W., Giannarelli, R., Giannessi, D., & Navalesi, R. (1989). The direct effects of metformin on platelet function in vitro. European Journal of Clinical Pharmacology, 37(2), 211–213.

    PubMed  Google Scholar 

  245. Gin, H., Freyburger, G., Boisseau, M., & Aubertin, J. (1989). Study of the effect of metformin on platelet aggregation in insulin-dependent diabetics. Diabetes Research and Clinical Practice, 6(1), 61–67.

    PubMed  CAS  Google Scholar 

  246. Kirpichnikov, D., McFarlane, S. I., & Sowers, J. R. (2002). Metformin: an update. Annals of Internal Medicine, 137(1), 25–33.

    PubMed  CAS  Google Scholar 

  247. Wiwanitkit, V. (2011). Metformin high dosage and bleeding episode: a clinical case study. Indian Journal of Endocrinology and Metabolism, 15(2), 132–133.

    PubMed  CAS  PubMed Central  Google Scholar 

  248. Protti, A., Lecchi, A., Fortunato, F., Artoni, A., Greppi, N., Vecchio, S., et al. (2012). Metformin overdose causes platelet mitochondrial dysfunction in humans. Critical Care, 16(5), R180.

    PubMed  PubMed Central  Google Scholar 

  249. Harper, M. T., & Poole, A. W. (2013). Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity. Cell Death and Disease, 4, e969.

    PubMed  CAS  PubMed Central  Google Scholar 

  250. Gilligan, D. M., Sarid, R., & Weese, J. (2002). Adducin in platelets: activation-induced phosphorylation by PKC and proteolysis by calpain. Blood, 99(7), 2418–2426.

    PubMed  CAS  Google Scholar 

  251. Tamaru, S., Fukuta, T., Kaibuchi, K., Matsuoka, Y., Shiku, H., & Nishikawa, M. (2005). Rho-kinase induces association of adducin with the cytoskeleton in platelet activation. Biochemical and Biophysical Research Communications, 332(2), 347–351.

    PubMed  CAS  Google Scholar 

  252. Lind, S. E., Yin, H. L., & Stossel, T. P. (1982). Human platelets contain gelsolin. A regulator of actin filament length. Journal of Clinical Investigation, 69(6), 1384–1387.

    PubMed  CAS  PubMed Central  Google Scholar 

  253. Wang, L. L., & Bryan, J. (1981). Isolation of calcium-dependent platelet proteins that interact with actin. Cell, 25(3), 637–649.

    PubMed  CAS  Google Scholar 

  254. Bennett, J. S., Zigmond, S., Vilaire, G., Cunningham, M. E., & Bednar, B. (1999). The platelet cytoskeleton regulates the affinity of the integrin alpha(IIb)beta(3) for fibrinogen. The Journal of Biological Chemistry, 274(36), 25301–25307.

    PubMed  CAS  Google Scholar 

  255. Davidson, M. M., & Haslam, R. J. (1994). Dephosphorylation of cofilin in stimulated platelets: roles for a GTP-binding protein and Ca2+. The Biochemical Journal, 301(Pt 1), 41–47.

    PubMed  CAS  PubMed Central  Google Scholar 

  256. Machesky, L. M., Reeves, E., Wientjes, F., Mattheyse, F. J., Grogan, A., Totty, N. F., et al. (1997). Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins. The Biochemical Journal, 328(Pt 1), 105–112.

    PubMed  CAS  PubMed Central  Google Scholar 

  257. Mahoney, N. M., Janmey, P. A., & Almo, S. C. (1997). Structure of the profilin-poly-l-proline complex involved in morphogenesis and cytoskeletal regulation. Nature Structural Biology, 4(11), 953–960.

    PubMed  CAS  Google Scholar 

  258. Barkalow, K., Witke, W., Kwiatkowski, D. J., & Hartwig, J. H. (1996). Coordinated regulation of platelet actin filament barbed ends by gelsolin and capping protein. The Journal of Cell Biology, 134(2), 389–399.

    PubMed  CAS  Google Scholar 

  259. Nachmias, V. T., Golla, R., Casella, J. F., & Barron-Casella, E. (1996). Cap Z, a calcium insensitive capping protein in resting and activated platelets. FEBS Letters, 378(3), 258–262.

    PubMed  CAS  Google Scholar 

  260. White, J. G. (1972). Exocytosis of secretory organelles from blood platelets incubated with cationic polypeptides. The American Journal of Pathology, 69(1), 41–54.

    PubMed  CAS  PubMed Central  Google Scholar 

  261. White, J. G., & Estensen, R. D. (1972). Degranulation of discoid platelets. The American Journal of Pathology, 68(2), 289–302.

    PubMed  CAS  PubMed Central  Google Scholar 

  262. Chen, D., Bernstein, A. M., Lemons, P. P., & Whiteheart, S. W. (2000). Molecular mechanisms of platelet exocytosis: role of SNAP-23 and syntaxin 2 in dense core granule release. Blood, 95(3), 921–929.

    PubMed  CAS  Google Scholar 

  263. Marks, M. S. (2012). SNARing platelet granule secretion. Blood, 120(12), 2355–2357.

    PubMed  CAS  Google Scholar 

  264. Peters, C. G., Michelson, A. D., & Flaumenhaft, R. (2012). Granule exocytosis is required for platelet spreading: differential sorting of alpha-granules expressing VAMP-7. Blood, 120(1), 199–206.

    PubMed  CAS  PubMed Central  Google Scholar 

  265. Fukuda, M., & Kanno, E. (2005). Analysis of the role of Rab27 effector Slp4-a/Granuphilin-a in dense-core vesicle exocytosis. Methods in Enzymology, 403, 445–457.

    PubMed  CAS  Google Scholar 

  266. Shirakawa, R., Higashi, T., Tabuchi, A., Yoshioka, A., Nishioka, H., Fukuda, M., et al. (2004). Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. The Journal of Biological Chemistry, 279(11), 10730–10737.

    PubMed  CAS  Google Scholar 

  267. Al Hawas, R., Ren, Q., Ye, S., Karim, Z. A., Filipovich, A. H., & Whiteheart, S. W. (2012). Munc18b/STXBP2 is required for platelet secretion. Blood, 120(12), 2493–2500.

    PubMed  CAS  PubMed Central  Google Scholar 

  268. Ye, S., Karim, Z. A., Al Hawas, R., Pessin, J. E., Filipovich, A. H., & Whiteheart, S. W. (2012). Syntaxin-11, but not syntaxin-2 or syntaxin-4, is required for platelet secretion. Blood, 120(12), 2484–2492.

    PubMed  CAS  PubMed Central  Google Scholar 

  269. Santos-Martinez, M. J., Medina, C., Jurasz, P., & Radomski, M. W. (2008). Role of metalloproteinases in platelet function. Thrombosis Research, 121(4), 535–542.

    PubMed  CAS  Google Scholar 

  270. Gleissner, C. A., von Hundelshausen, P., & Ley, K. (2008). Platelet chemokines in vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(11), 1920–1927.

    PubMed  CAS  PubMed Central  Google Scholar 

  271. Brandt, E., Petersen, F., Ludwig, A., Ehlert, J. E., Bock, L., & Flad, H. D. (2000). The beta-thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. Journal of Leukocyte Biology, 67(4), 471–478.

    PubMed  CAS  Google Scholar 

  272. Mellembakken, J. R., Solum, N. O., Ueland, T., Videm, V., & Aukrust, P. (2001). Increased concentrations of soluble CD40 ligand, RANTES and GRO-alpha in preeclampsia—possible role of platelet activation. Thrombosis and Haemostasis, 86(5), 1272–1276.

    PubMed  CAS  Google Scholar 

  273. Fukami, M. H., & Salganicoff, L. (1977). Human platelet storage organelles. A review. Thrombosis and Haemostasis, 38(4), 963–970.

    PubMed  CAS  Google Scholar 

  274. Emiliani, C., Martino, S., Orlacchio, A., Vezza, R., Nenci, G. G., & Gresele, P. (1995). Platelet glycohydrolase activities: characterization and release. Cell Biochemistry and Function, 13(1), 31–39.

    PubMed  CAS  Google Scholar 

  275. Gordon, J. L. (1975). Blood platelet lysosomes and their contribution to the pathophysiological role of platelets. Frontiers of Biology, 43(4), 3–31.

    PubMed  CAS  Google Scholar 

  276. Metzelaar, M. J., & Clevers, H. C. (1992). Lysosomal membrane glycoproteins in platelets. Thrombosis and Haemostasis, 68(4), 378–382.

    PubMed  CAS  Google Scholar 

  277. Waite, M., & Griffin, H. D. (1976). The phospholipases A of lysosomes. Frontiers of Biology, 45, 257–305.

    PubMed  CAS  Google Scholar 

  278. Dangel, O., Mergia, E., Karlisch, K., Groneberg, D., Koesling, D., & Friebe, A. (2010). Nitric oxide-sensitive guanylyl cyclase is the only nitric oxide receptor mediating platelet inhibition. Journal of Thrombosis and Haemostasis, 8(6), 1343–1352.

    PubMed  CAS  Google Scholar 

  279. Sabetkar, M., Naseem, K. M., Tullett, J. M., Friebe, A., Koesling, D., & Bruckdorfer, K. R. (2001). Synergism between nitric oxide and hydrogen peroxide in the inhibition of platelet function: the roles of soluble guanylyl cyclase and vasodilator-stimulated phosphoprotein. Nitric Oxide, 5(3), 233–242.

    PubMed  CAS  Google Scholar 

  280. Wilson, L. S., Elbatarny, H. S., Crawley, S. W., Bennett, B. M., & Maurice, D. H. (2008). Compartmentation and compartment-specific regulation of PDE5 by protein kinase G allows selective cGMP-mediated regulation of platelet functions. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13650–13655.

    PubMed  CAS  PubMed Central  Google Scholar 

  281. Audet, M., & Bouvier, M. (2012). Restructuring G-protein-coupled receptor activation. Cell, 151(1), 14–23.

    PubMed  CAS  Google Scholar 

  282. Katritch, V., Cherezov, V., & Stevens, R. C. (2013). Structure-function of the G protein-coupled receptor superfamily. Annual Review of Pharmacology and Toxicology, 53, 531–556.

    PubMed  CAS  PubMed Central  Google Scholar 

  283. Venkatakrishnan, A. J., Deupi, X., Lebon, G., Tate, C. G., Schertler, G. F., & Babu, M. M. (2013). Molecular signatures of G-protein-coupled receptors. Nature, 494(7436), 185–194.

    PubMed  CAS  Google Scholar 

  284. Stalker, T. J., Newman, D. K., Ma, P., Wannemacher, K. M., & Brass, L. F. (2012). Platelet signaling. Handbook of Experimental Pharmacology, 210, 59–85.

    PubMed  CAS  Google Scholar 

  285. Zucker, M. B., & Nachmias, V. T. (1985). Platelet activation. Arteriosclerosis, 5(1), 2–18.

    PubMed  CAS  Google Scholar 

  286. Moers, A., Nieswandt, B., Massberg, S., Wettschureck, N., Gruner, S., Konrad, I., et al. (2003). G13 is an essential mediator of platelet activation in hemostasis and thrombosis. Nature Medicine, 9(11), 1418–1422.

    PubMed  CAS  Google Scholar 

  287. Noe, L., Peeters, K., Izzi, B., Van Geet, C., & Freson, K. (2010). Regulators of platelet cAMP levels: clinical and therapeutic implications. Current Medicinal Chemistry, 17(26), 2897–2905.

    PubMed  CAS  Google Scholar 

  288. Smolenski, A. (2012). Novel roles of cAMP/cGMP-dependent signaling in platelets. Journal of Thrombosis and Haemostasis, 10(2), 167–176.

    PubMed  CAS  Google Scholar 

  289. Rolfe, B. E., Worth, N. F., World, C. J., Campbell, J. H., & Campbell, G. R. (2005). Rho and vascular disease. Atherosclerosis, 183(1), 1–16.

    PubMed  CAS  Google Scholar 

  290. Aslan, J. E., & McCarty, O. J. (2013). Rho GTPases in platelet function. Journal of Thrombosis and Haemostasis, 11(1), 35–46.

    PubMed  CAS  PubMed Central  Google Scholar 

  291. Collins, C., & Tzima, E. (2013). RhoA goes global. Small GTPases, 4(2), 123–126.

    PubMed  PubMed Central  Google Scholar 

  292. Goggs, R., & Poole, A. W. (2012). Platelet signaling—a primer. Journal of Veterinary Emergency and Critical Care (San Antonio, Tex.), 22(1), 5–29.

    Google Scholar 

  293. Kauskot, A., & Hoylaerts, M. F. (2012). Platelet receptors. Handbook of Experimental Pharmacology, 210, 23–57.

    PubMed  CAS  Google Scholar 

  294. Pai, V. P., Marshall, A. M., Hernandez, L. L., Buckley, A. R., & Horseman, N. D. (2009). Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival. Breast Cancer Research, 11(6), R81.

    PubMed  PubMed Central  Google Scholar 

  295. Kundumani-Sridharan, V., Dyukova, E., Hansen, D. E., 3rd, & Rao, G. N. (2013). 12/15-Lipoxygenase mediates high-fat diet-induced endothelial tight junction disruption and monocyte transmigration: a new role for 15(S)-hydroxyeicosatetraenoic acid in endothelial cell dysfunction. The Journal of Biological Chemistry, 288(22), 15830–15842.

    PubMed  CAS  Google Scholar 

  296. Garcia, M. C., & Kim, H. Y. (1997). Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Research, 768(1–2), 43–48.

    PubMed  CAS  Google Scholar 

  297. Kurrasch-Orbaugh, D. M., Parrish, J. C., Watts, V. J., & Nichols, D. E. (2003). A complex signaling cascade links the serotonin2A receptor to phospholipase A2 activation: the involvement of MAP kinases. Journal of Neurochemistry, 86(4), 980–991.

    PubMed  CAS  Google Scholar 

  298. Pakala, R. (2004). Serotonin and thromboxane A2 stimulate platelet-derived microparticle-induced smooth muscle cell proliferation. Cardiovascular Radiation Medicine, 5(1), 20–26.

    PubMed  Google Scholar 

  299. Dutta-Roy, A. K., & Sinha, A. K. (1987). Purification and properties of prostaglandin E1/prostacyclin receptor of human blood platelets. The Journal of Biological Chemistry, 262(26), 12685–12691.

    PubMed  CAS  Google Scholar 

  300. Weksler, B. B., Marcus, A. J., & Jaffe, E. A. (1977). Synthesis of prostaglandin I2 (prostacyclin) by cultured human and bovine endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 74(9), 3922–3926.

    PubMed  CAS  PubMed Central  Google Scholar 

  301. Bunting, S., Gryglewski, R., Moncada, S., & Vane, J. R. (1976). Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation. Prostaglandins, 12(6), 897–913.

    PubMed  CAS  Google Scholar 

  302. Moncada, S., Gryglewski, R., Bunting, S., & Vane, J. R. (1976). An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature, 263(5579), 663–665.

    PubMed  CAS  Google Scholar 

  303. Boyanova, D., Nilla, S., Birschmann, I., Dandekar, T., & Dittrich, M. (2012). PlateletWeb: a systems biologic analysis of signaling networks in human platelets. Blood, 119(3), e22–34.

    PubMed  CAS  Google Scholar 

  304. Dittrich, M., Birschmann, I., Mietner, S., Sickmann, A., Walter, U., & Dandekar, T. (2008). Platelet protein interactions: map, signaling components, and phosphorylation groundstate. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(7), 1326–1331.

    PubMed  CAS  Google Scholar 

  305. Lyons, R. M., Stanford, N., & Majerus, P. W. (1975). Thrombin-induced protein phosphorylation in human platelets. The Journal of Clinical Investigation, 56(4), 924–936.

    PubMed  CAS  PubMed Central  Google Scholar 

  306. Yamanaka, M., Kume, S., Kariya, T., & Tanabe, A. (1979). cAMP-dependent protein kinase in human platelets and effect of prostaglandin E1 on its endogenous substrates (author’s transl). Nihon Ketsueki Gakkai Zasshi, 42(3), 541–542.

    PubMed  CAS  Google Scholar 

  307. de Rooij, J., Zwartkruis, F. J., Verheijen, M. H., Cool, R. H., Nijman, S. M., Wittinghofer, A., et al. (1998). Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature, 396(6710), 474–477.

    PubMed  Google Scholar 

  308. Sand, C., Grandoch, M., Borgermann, C., Oude Weernink, P. A., Mahlke, Y., Schwindenhammer, B., et al. (2010). 8-pCPT-conjugated cyclic AMP analogs exert thromboxane receptor antagonistic properties. Thrombosis and Haemostasis, 103(3), 662–678.

    PubMed  CAS  Google Scholar 

  309. Siess, W., Winegar, D. A., & Lapetina, E. G. (1990). Rap1-B is phosphorylated by protein kinase A in intact human platelets. Biochemical and Biophysical Research Communications, 170(2), 944–950.

    PubMed  CAS  Google Scholar 

  310. Mellion, B. T., Ignarro, L. J., Ohlstein, E. H., Pontecorvo, E. G., Hyman, A. L., & Kadowitz, P. J. (1981). Evidence for the inhibitory role of guanosine 3′,5′-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood, 57(5), 946–955.

    PubMed  CAS  Google Scholar 

  311. Marquis, N. R., Vigdahl, R. L., & Tavormina, P. A. (1969). Platelet aggregation. I. Regulation by cyclic AMP and prostaglandin E1. Biochemical and Biophysical Research Communications, 36(6), 965–972.

    PubMed  CAS  Google Scholar 

  312. Salzman, E. W., & Neri, L. L. (1969). Cyclic 3′,5′-adenosine monophosphate in human blood platelets. Nature, 224(5219), 609–610.

    PubMed  CAS  Google Scholar 

  313. Salzman, E. W. (1967). ADP-platelet aggregation. Thrombosis et Diathesis Haemorrhagica. Supplementum, 26, 197–199.

    PubMed  CAS  Google Scholar 

  314. Brodie, G. N., Baenziger, N. L., Chase, L. R., & Majerus, P. W. (1972). The effects of thrombin on adenyl cyclase activity and a membrane protein from human platelets. The Journal of Clinical Investigation, 51(1), 81–88.

    PubMed  CAS  PubMed Central  Google Scholar 

  315. Hamberg, M., Svensson, J., Wakabayashi, T., & Samuelsson, B. (1974). Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation. Proceedings of the National Academy of Sciences of the United States of America, 71(2), 345–349.

    PubMed  CAS  PubMed Central  Google Scholar 

  316. Hamberg, M., Svensson, J., & Samuelsson, B. (1975). Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proceedings of the National Academy of Sciences of the United States of America, 72(8), 2994–2998.

    PubMed  CAS  PubMed Central  Google Scholar 

  317. Young, A., Chapman, O., Connor, C., Poole, C., Rose, P., & Kakkar, A. K. (2012). Thrombosis and cancer. Nature Reviews. Clinical Oncology, 9(8), 437–449.

    PubMed  CAS  Google Scholar 

  318. Langer, F., & Bokemeyer, C. (2012). Crosstalk between cancer and haemostasis. Implications for cancer biology and cancer-associated thrombosis with focus on tissue factor. Hamostaseologie, 32(2), 95–104.

    PubMed  CAS  Google Scholar 

  319. van den Berg, Y. W., Osanto, S., Reitsma, P. H., & Versteeg, H. H. (2012). The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood, 119(4), 924–932.

    PubMed  Google Scholar 

  320. Stefanini, L., Boulaftali, Y., Ouellette, T. D., Holinstat, M., Desire, L., Leblond, B., et al. (2012). Rap1-Rac1 circuits potentiate platelet activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(2), 434–441.

    PubMed  CAS  PubMed Central  Google Scholar 

  321. Tao, L., Zhang, Y., Xi, X., & Kieffer, N. (2010). Recent advances in the understanding of the molecular mechanisms regulating platelet integrin alphaIIbbeta3 activation. Protein & Cell, 1(7), 627–637.

    CAS  Google Scholar 

  322. Watanabe, N. (2010). RIAM: bridge between Rap1 and integrin. Rinshō Ketsueki, 51(6), 377–383.

    PubMed  Google Scholar 

  323. Wynne, J. P., Wu, J., Su, W., Mor, A., Patsoukis, N., Boussiotis, V. A., et al. (2012). Rap1-interacting adapter molecule (RIAM) associates with the plasma membrane via a proximity detector. The Journal of Cell Biology, 199(2), 317–330.

    PubMed  CAS  PubMed Central  Google Scholar 

  324. Stefanini, L., & Bergmeier, W. (2010). CalDAG-GEFI and platelet activation. Platelets, 21(4), 239–243.

    PubMed  CAS  Google Scholar 

  325. Subramanian, H., Zahedi, R. P., Sickmann, A., Walter, U., & Gambaryan, S. (2013). Phosphorylation of CalDAG-GEFI by protein kinase A prevents Rap1b activation. Journal of Thrombosis and Haemostasis, 11(8), 1574–1582.

    PubMed  CAS  Google Scholar 

  326. Ridley, A. J. (2011). Life at the leading edge. Cell, 145(7), 1012–1022.

    PubMed  CAS  Google Scholar 

  327. Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70(3), 389–399.

    PubMed  CAS  Google Scholar 

  328. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell, 70(3), 401–410.

    PubMed  CAS  Google Scholar 

  329. Klages, B., Brandt, U., Simon, M. I., Schultz, G., & Offermanns, S. (1999). Activation of G12/G13 results in shape change and Rho/Rho-kinase-mediated myosin light chain phosphorylation in mouse platelets. The Journal of Cell Biology, 144(4), 745–754.

    PubMed  CAS  PubMed Central  Google Scholar 

  330. Pleines, I., Hagedorn, I., Gupta, S., May, F., Chakarova, L., van Hengel, J., et al. (2012). Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis. Blood, 119(4), 1054–1063.

    PubMed  CAS  Google Scholar 

  331. Schoenwaelder, S. M., Hughan, S. C., Boniface, K., Fernando, S., Holdsworth, M., Thompson, P. E., et al. (2002). RhoA sustains integrin alpha IIbbeta 3 adhesion contacts under high shear. The Journal of Biological Chemistry, 277(17), 14738–14746.

    PubMed  CAS  Google Scholar 

  332. Fujita, A., Saito, Y., Ishizaki, T., Maekawa, M., Fujisawa, K., Ushikubi, F., et al. (1997). Integrin-dependent translocation of p160ROCK to cytoskeletal complex in thrombin-stimulated human platelets. The Biochemical Journal, 328(Pt 3), 769–775.

    PubMed  CAS  PubMed Central  Google Scholar 

  333. Huang, J. S., Dong, L., Kozasa, T., & Le Breton, G. C. (2007). Signaling through G(alpha)13 switch region I is essential for protease-activated receptor 1-mediated human platelet shape change, aggregation, and secretion. The Journal of Biological Chemistry, 282(14), 10210–10222.

    PubMed  CAS  Google Scholar 

  334. Calaminus, S. D., Auger, J. M., McCarty, O. J., Wakelam, M. J., Machesky, L. M., & Watson, S. P. (2007). MyosinIIa contractility is required for maintenance of platelet structure during spreading on collagen and contributes to thrombus stability. Journal of Thrombosis and Haemostasis, 5(10), 2136–2145.

    PubMed  CAS  Google Scholar 

  335. Getz, T. M., Dangelmaier, C. A., Jin, J., Daniel, J. L., & Kunapuli, S. P. (2010). Differential phosphorylation of myosin light chain (Thr)18 and (Ser)19 and functional implications in platelets. Journal of Thrombosis and Haemostasis, 8(10), 2283–2293.

    PubMed  CAS  PubMed Central  Google Scholar 

  336. Ueda, K., Ohta, Y., & Hosoya, H. (2003). The carboxy-terminal pleckstrin homology domain of ROCK interacts with filamin-A. Biochemical and Biophysical Research Communications, 301(4), 886–890.

    PubMed  CAS  Google Scholar 

  337. Itoh, K., Hara, T., & Shibata, N. (1992). Diphosphorylation of platelet myosin by myosin light chain kinase. Biochimica et Biophysica Acta, 1133(3), 286–292.

    PubMed  CAS  Google Scholar 

  338. Signorello, M. G., Giacobbe, E., Passalacqua, M., & Leoncini, G. (2013). The 2-arachidonoylglycerol effect on myosin light chain phosphorylation in human platelets. Biochimie, 95(8), 1620–1628.

    PubMed  CAS  Google Scholar 

  339. Wraith, K. S., Magwenzi, S., Aburima, A., Wen, Y., Leake, D., & Naseem, K. M. (2013). Oxidized low-density lipoproteins induce rapid platelet activation and shape change through tyrosine kinase and Rho kinase-signaling pathways. Blood, 122(4), 580–589.

    PubMed  CAS  PubMed Central  Google Scholar 

  340. Leisner, T. M., Liu, M., Jaffer, Z. M., Chernoff, J., & Parise, L. V. (2005). Essential role of CIB1 in regulating PAK1 activation and cell migration. The Journal of Cell Biology, 170(3), 465–476.

    PubMed  CAS  PubMed Central  Google Scholar 

  341. Pandey, D., Goyal, P., Bamburg, J. R., & Siess, W. (2006). Regulation of LIM-kinase 1 and cofilin in thrombin-stimulated platelets. Blood, 107(2), 575–583.

    PubMed  CAS  PubMed Central  Google Scholar 

  342. Pandey, D., Goyal, P., & Siess, W. (2007). Lysophosphatidic acid stimulation of platelets rapidly induces Ca2+-dependent dephosphorylation of cofilin that is independent of dense granule secretion and aggregation. Blood Cells, Molecules & Diseases, 38(3), 269–279.

    CAS  Google Scholar 

  343. Akbar, H., Shang, X., Perveen, R., Berryman, M., Funk, K., Johnson, J. F., et al. (2011). Gene targeting implicates Cdc42 GTPase in GPVI and non-GPVI mediated platelet filopodia formation, secretion and aggregation. PLoS One, 6(7), e22117.

    PubMed  CAS  PubMed Central  Google Scholar 

  344. Carpenter, C. L., Tolias, K. F., Couvillon, A. C., & Hartwig, J. H. (1997). Signal transduction pathways involving the small G proteins rac and Cdc42 and phosphoinositide kinases. Advances in Enzyme Regulation, 37, 377–390.

    PubMed  CAS  Google Scholar 

  345. Egile, C., Loisel, T. P., Laurent, V., Li, R., Pantaloni, D., Sansonetti, P. J., et al. (1999). Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. The Journal of Cell Biology, 146(6), 1319–1332.

    PubMed  CAS  PubMed Central  Google Scholar 

  346. Miki, H., Suetsugu, S., & Takenawa, T. (1998). WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. The EMBO Journal, 17(23), 6932–6941.

    PubMed  CAS  PubMed Central  Google Scholar 

  347. McCarty, O. J., Larson, M. K., Auger, J. M., Kalia, N., Atkinson, B. T., Pearce, A. C., et al. (2005). Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow. The Journal of Biological Chemistry, 280(47), 39474–39484.

    PubMed  CAS  PubMed Central  Google Scholar 

  348. Oda, A., Miki, H., Wada, I., Yamaguchi, H., Yamazaki, D., Suetsugu, S., et al. (2005). WAVE/scars in platelets. Blood, 105(8), 3141–3148.

    PubMed  CAS  Google Scholar 

  349. Coburn, L. A., Damaraju, V. S., Dozic, S., Eskin, S. G., Cruz, M. A., & McIntire, L. V. (2011). GPIbalpha-vWF rolling under shear stress shows differences between type 2B and 2M von Willebrand disease. Biophysical Journal, 100(2), 304–312.

    PubMed  CAS  PubMed Central  Google Scholar 

  350. Colace, T. V., & Diamond, S. L. (2013). Direct observation of von Willebrand factor elongation and fiber formation on collagen during acute whole blood exposure to pathological flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(1), 105–113.

    PubMed  CAS  PubMed Central  Google Scholar 

  351. Fredrickson, B. J., Dong, J. F., McIntire, L. V., & Lopez, J. A. (1998). Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Ib-IX-V complex. Blood, 92(10), 3684–3693.

    PubMed  CAS  Google Scholar 

  352. Jackson, S. P., Mistry, N., & Yuan, Y. (2000). Platelets and the injured vessel wall—“rolling into action”: focus on glycoprotein Ib/V/IX and the platelet cytoskeleton. Trends in Cardiovascular Medicine, 10(5), 192–197.

    PubMed  CAS  Google Scholar 

  353. Yago, T., Lou, J., Wu, T., Yang, J., Miner, J. J., Coburn, L., et al. (2008). Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. The Journal of Clinical Investigation, 118(9), 3195–3207.

    PubMed  CAS  PubMed Central  Google Scholar 

  354. Li, R., & Emsley, J. (2013). The organizing principle of the platelet glycoprotein Ib-IX-V complex. Journal of Thrombosis and Haemostasis, 11(4), 605–614.

    PubMed  CAS  PubMed Central  Google Scholar 

  355. Clemetson, K. J. (2007). A short history of platelet glycoprotein Ib complex. Thrombosis and Haemostasis, 98(1), 63–68.

    PubMed  CAS  Google Scholar 

  356. Bernard, J., & Soulier, J. (1948). Sur une nouvelle variété de dystrophie thrombocytaire-hémorragipare congénitale. Semin Hôp Paris, 24, 3217–3223.

    CAS  Google Scholar 

  357. Ozaki, Y., Suzuki-Inoue, K., & Inoue, O. (2013). Platelet receptors activated via mulitmerization: glycoprotein VI, GPIb-IX-V, and CLEC-2. Journal of Thrombosis and Haemostasis, 11(Suppl 1), 330–339.

    PubMed  Google Scholar 

  358. Canobbio, I., Balduini, C., & Torti, M. (2004). Signalling through the platelet glycoprotein Ib-V-IX complex. Cellular Signalling, 16(12), 1329–1344.

    PubMed  CAS  Google Scholar 

  359. Gardiner, E. E., Arthur, J. F., Berndt, M. C., & Andrews, R. K. (2005). Role of calmodulin in platelet receptor function. Current Medicinal Chemistry. Cardiovascular and Hematological Agents, 3(4), 283–287.

    PubMed  CAS  Google Scholar 

  360. Bernardo, A., Ball, C., Nolasco, L., Choi, H., Moake, J. L., & Dong, J. F. (2005). Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. Journal of Thrombosis and Haemostasis, 3(3), 562–570.

    PubMed  CAS  Google Scholar 

  361. De Ceunynck, K., De Meyer, S. F., & Vanhoorelbeke, K. (2013). Unwinding the von Willebrand factor strings puzzle. Blood, 121(2), 270–277.

    PubMed  Google Scholar 

  362. Desch, A., Strozyk, E. A., Bauer, A. T., Huck, V., Niemeyer, V., Wieland, T., et al. (2012). Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/integrin alphavbeta5-induced secretion of VEGF-A. The American Journal of Pathology, 181(2), 693–705.

    PubMed  CAS  Google Scholar 

  363. Coller, B. S., & Shattil, S. J. (2008). The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood, 112(8), 3011–3025.

    PubMed  CAS  PubMed Central  Google Scholar 

  364. Kim, C., & Kim, M. C. (2013). Differences in alpha-beta transmembrane domain interactions among integrins enable diverging integrin signaling. Biochemical and Biophysical Research Communications, 436(3), 406–412.

    PubMed  CAS  Google Scholar 

  365. Kim, C., Lau, T. L., Ulmer, T. S., & Ginsberg, M. H. (2009). Interactions of platelet integrin alphaIIb and beta3 transmembrane domains in mammalian cell membranes and their role in integrin activation. Blood, 113(19), 4747–4753.

    PubMed  CAS  PubMed Central  Google Scholar 

  366. Shattil, S. J. (2009). The beta3 integrin cytoplasmic tail: protein scaffold and control freak. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 210–213.

    PubMed  CAS  Google Scholar 

  367. Nurden, A. T., & Caen, J. P. (1974). An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. British Journal of Haematology, 28(2), 253–260.

    PubMed  CAS  Google Scholar 

  368. Phillips, D. R., Jenkins, C. S., Luscher, E. F., & Larrieu, M. (1975). Molecular differences of exposed surface proteins on thrombasthenic platelet plasma membranes. Nature, 257(5527), 599–600.

    PubMed  CAS  Google Scholar 

  369. Glanzmann, E. (1918). Hereditare hammorhagische thrombastehnie. Beitr Pathologie Bluplatchen J Kinderkt, 88, 113–141.

    Google Scholar 

  370. Clemetson, K. J. (1995). Platelet activation: signal transduction via membrane receptors. Thrombosis and Haemostasis, 74(1), 111–116.

    PubMed  CAS  Google Scholar 

  371. Moroi, M., Jung, S. M., Okuma, M., & Shinmyozu, K. (1989). A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. The Journal of Clinical Investigation, 84(5), 1440–1445.

    PubMed  CAS  PubMed Central  Google Scholar 

  372. Asselin, J., Knight, C. G., Farndale, R. W., Barnes, M. J., & Watson, S. P. (1999). Monomeric (glycine-proline-hydroxyproline)10 repeat sequence is a partial agonist of the platelet collagen receptor glycoprotein VI. The Biochemical Journal, 339(Pt 2), 413–418.

    PubMed  CAS  PubMed Central  Google Scholar 

  373. Kehrel, B., Wierwille, S., Clemetson, K. J., Anders, O., Steiner, M., Knight, C. G., et al. (1998). Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood, 91(2), 491–499.

    PubMed  CAS  Google Scholar 

  374. Zahid, M., Mangin, P., Loyau, S., Hechler, B., Billiald, P., Gachet, C., et al. (2012). The future of glycoprotein VI as an antithrombotic target. Journal of Thrombosis and Haemostasis, 10(12), 2418–2427.

    PubMed  CAS  Google Scholar 

  375. Bergmeier, W., & Stefanini, L. (2013). Platelet ITAM signaling. Current Opinion in Hematology, 20(5), 445–450.

    PubMed  CAS  Google Scholar 

  376. Ezumi, Y., Shindoh, K., Tsuji, M., & Takayama, H. (1998). Physical and functional association of the Src family kinases Fyn and Lyn with the collagen receptor glycoprotein VI-Fc receptor gamma chain complex on human platelets. The Journal of Experimental Medicine, 188(2), 267–276.

    PubMed  CAS  PubMed Central  Google Scholar 

  377. Watson, S. P., Asazuma, N., Atkinson, B., Berlanga, O., Best, D., Bobe, R., et al. (2001). The role of ITAM- and ITIM-coupled receptors in platelet activation by collagen. Thrombosis and Haemostasis, 86(1), 276–288.

    PubMed  CAS  Google Scholar 

  378. Navarro-Nunez, L., Langan, S. A., Nash, G. B., & Watson, S. P. (2013). The physiological and pathophysiological roles of platelet CLEC-2. Thrombosis and Haemostasis, 109(6), 991–998.

    PubMed  CAS  PubMed Central  Google Scholar 

  379. Suzuki-Inoue, K., Fuller, G. L., Garcia, A., Eble, J. A., Pohlmann, S., Inoue, O., et al. (2006). A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood, 107(2), 542–549.

    PubMed  CAS  Google Scholar 

  380. Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M. K., Mishima, K., Yatomi, Y., et al. (2007). Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. The Journal of Biological Chemistry, 282(36), 25993–26001.

    PubMed  CAS  Google Scholar 

  381. Lowe, K. L., Navarro-Nunez, L., & Watson, S. P. (2012). Platelet CLEC-2 and podoplanin in cancer metastasis. Thrombosis Research, 129(Suppl 1), S30–37.

    PubMed  CAS  Google Scholar 

  382. Ordonez, N. G. (2013). Value of podoplanin as an immunohistochemical marker in tumor diagnosis: a review and update. Applied Immunohistochemistry & Molecular Morphology.

  383. Pula, B., Witkiewicz, W., Dziegiel, P., & Podhorska-Okolow, M. (2013). Significance of podoplanin expression in cancer-associated fibroblasts: a comprehensive review. International Journal of Oncology, 42(6), 1849–1857.

    PubMed  CAS  Google Scholar 

  384. Takagi, S., Sato, S., Oh-hara, T., Takami, M., Koike, S., Mishima, Y., et al. (2013). Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2. PLoS One, 8(8), e73609.

    PubMed  CAS  PubMed Central  Google Scholar 

  385. Watson, A. A., Brown, J., Harlos, K., Eble, J. A., Walter, T. S., & O'Callaghan, C. A. (2007). The crystal structure and mutational binding analysis of the extracellular domain of the platelet-activating receptor CLEC-2. The Journal of Biological Chemistry, 282(5), 3165–3172.

    PubMed  CAS  Google Scholar 

  386. Watson, A. A., & O'Callaghan, C. A. (2005). Crystallization and X-ray diffraction analysis of human CLEC-2. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 61(Pt 12), 1094–1096.

    PubMed  CAS  PubMed Central  Google Scholar 

  387. Suzuki-Inoue, K., Inoue, O., & Ozaki, Y. (2011). Novel platelet activation receptor CLEC-2: from discovery to prospects. Journal of Thrombosis and Haemostasis, 9(Suppl 1), 44–55.

    PubMed  CAS