Skip to main content

Advertisement

Log in

Emerging roles of radioresistance in prostate cancer metastasis and radiation therapy

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Radiation therapy (RT) continues to be one of the most popular treatment options for localized prostate cancer (CaP). Local CaP recurrence after RT is a pattern of treatment failure attributable to radioresistance of cancer cells. One major obstacle to RT is that there is a limit to the amount of radiation that can be safely delivered to the target organ. Recent results indicate that phosphoinositide 3-kinase (PI3K)/Akt/phosphatase and tensin homolog (PTEN)/mammalian target of rapamycin (mTOR) signaling pathway, autophagy, epithelial–mesenchymal transition (EMT) and cancer stem cells (CSCs) are involved in CaP metastasis and radioresistance. Emerging evidence also suggests that combining a radiosensitizer with RT increases the efficacy of CaP treatment. Understanding the mechanisms of radioresistance will help to overcome recurrence after RT in CaP patients and prevent metastasis. In this review, we discuss the novel findings of PI3K/Akt/PTEN/mTOR signaling pathway, autophagy, EMT and CSCs in the regulation of CaP metastasis and radioresistance, and focus on combination of radiosensitizers with RT in the treatment of CaP in preclinical studies to explore novel approaches for future clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AD:

Androgen deprivation

Ad-E2F1:

Adenoviral-mediated E2F1

ALDH:

Aldehyde dehydrogenase

AR:

Androgen receptor

AS:

Antisense

ASODN:

Antisense Bcl-2 oligodeoxynucleotide

ATM:

Ataxia telangiectasia mutated

ATO:

Arsenic trioxide

BCR:

Biochemical recurrence

BCRP:

Breast cancer resistance protein

BCSCs:

Breast cancer stem cells

bHLH:

Basic helix-loop-helix

β-lap:

β-lapachone

CaP:

Prostate cancer

CD44v:

CD44 variants

CK:

Cytoskeleton

COX-2:

Cyclooxygenase-2

CRPC:

Castration-resistant prostate cancer

CSCs:

Cancer stem cells

CTCs:

Circulating tumor cells

DCA:

Dichloroacetate

DHMEQ:

Dehydroxymethyl derivative of epoxyquinomicin

Didox:

DX; 3,4-dihydroxybenzohydroxamic acid

DSBs:

Double-strand breaks

EBRT:

External beam radiotherapy

EGFR:

Epidermal growth factor receptor

EMT:

Epithelial–mesenchymal transition

EpCAM:

Epithelial cell adhesion molecule

ER:

Endoplasmic reticulum

FACS:

Fluorescence-activated cell sorting

FGFR2IIIb:

Fibroblast growth factor receptor 2IIIb

FLT3:

Fms-like tyrosine kinase-3

GKS:

Gamma knife surgery

HCC:

Hepatocellular carcinoma

HDACIs:

Histone deacetylase inhibitors

HMAF:

Hydroxymethylacylfulvene

HMG-CoA:

Hydroxyl-3-methylglutaryl coenzyme A

HNSCC:

Head and neck squamous cell carcinoma

IGF1R:

Insulin-like growth factor-type 1 receptor

IGRT:

Image-guided radiation therapy

IMRT:

Intensity modulated radiation therapy

IR:

Ionizing radiation

MAb:

Monoclonal antibody

MACS:

Magnetic activated cell sorting

MAPK:

Mitogen-activated protein kinase

MET:

Mesenchymal to epithelial transition

miRNA:

MicroRNA

MP:

Monascuspiloin

MRP-1:

Multidrug resistance protein 1

mTOR:

Mammalian target of rapamycin

NF-kB:

Nuclear factor-κB

NOD/SCID:

Non-obese diabetic/severe combined immunodeficiency

NO-NSAIDs:

Nitric oxide donating nonsteroidal anti-inflammatory drugs

NQO1:

NAD(P)H:quinone oxidoreductase 1

NSAIDs:

Nonsteroidal anti-inflammatory drugs

P529:

Palomid 529

p-Akt:

Phospho-Akt

PAP:

Prostatic acid phosphatise

PCR:

Polymerase chain reaction

PDGF:

Platelet-derived growth factor

PDK:

Pyruvate dehydrogenase kinase

PI3K:

Phosphoinositide 3-kinase

PKB:

Protein kinase B

PSA:

Prostate-specific antigen

PtdIns(3,4)P2:

Phosphatidylinositol 3,4-bisphosphate

PtdIns(3,4,5)P3:

Phosphatidylinositol 3,4,5-trisphosphate

PtdIns(4)P:

Phosphatidylinositol 4-phosphate

PtdIns(4,5)P2:

Phosphatidylinositol 4,5-bisphosphate

PTEN:

Phosphatase and tensin homolog

RP:

Radical prostatectomy

RR:

Radioresistant

RT:

Radiation therapy

SAHA:

Suberoylanilide hydroxamic acid

s.c:

Subcutaneous

siRNA:

Small interfering RNA

SLD:

Sublethal radiation damage

SSE:

Sodium selenite

TGF-β:

Transforming growth factor-β

TKIs:

Tyrosine kinase inhibitors

TSC2:

Tuberous sclerosis complex 2

VPA:

Valproic acid

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Beltran, H., Beer, T. M., Carducci, M. A., de Bono, J., Gleave, M., Hussain, M., et al. (2011). New therapies for castration-resistant prostate cancer: efficacy and safety. European Urology, 60, 279–290.

    CAS  PubMed  Google Scholar 

  2. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61, 69–90.

    Google Scholar 

  3. Catton, C., Milosevic, M., Warde, P., Bayley, A., Crook, J., Bristow, R., et al. (2003). Recurrent prostate cancer following external beam radiotherapy: follow-up strategies and management. The Urologic Clinics of North America, 30, 751–763.

    PubMed  Google Scholar 

  4. Burgio, S. L., Fabbri, F., Seymour, I. J., Zoli, W., Amadori, D., & De Giorgi, U. (2012). Perspectives on mTOR inhibitors for castration-refractory prostate cancer. Current Cancer Drug Targets, 12, 940–949.

    CAS  PubMed  Google Scholar 

  5. Chiu, H. W., Chen, Y. A., Ho, S. Y., & Wang, Y. J. (2012). Arsenic trioxide enhances the radiation sensitivity of androgen-dependent and -independent human prostate cancer cells. PloS ONE, 7, e31579.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Schiewer, M. J., Den, R., Hoang, D. T., Augello, M. A., Lawrence, Y. R., Dicker, A. P., et al. (2012). mTOR is a selective effector of the radiation therapy response in androgen receptor-positive prostate cancer. Endocrine-Related Cancer, 19, 1–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Griffin, C., McNulty, J., & Pandey, S. (2011). Pancratistatin induces apoptosis and autophagy in metastatic prostate cancer cells. International Journal of Oncology, 38, 1549–1556.

    CAS  PubMed  Google Scholar 

  8. Armstrong, A. J., Marengo, M. S., Oltean, S., Kemeny, G., Bitting, R. L., Turnbull, J. D., et al. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research: MCR, 9, 997–1007.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Nauseef, J. T., & Henry, M. D. (2011). Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle? Nature reviews. Urology, 8, 428–439.

    PubMed  Google Scholar 

  10. Li, Y., Cozzi, P. J., & Russell, P. J. (2010). Promising tumor-associated antigens for future prostate cancer therapy. Medicinal Research Reviews, 30, 67–101.

    PubMed  Google Scholar 

  11. Li, H., & Tang, D. G. (2011). Prostate cancer stem cells and their potential roles in metastasis. Journal of Surgical Oncology, 103, 558–562.

    PubMed  Google Scholar 

  12. Xiao, W., Graham, P. H., Power, C. A., Hao, J., Kearsley, J. H., & Li, Y. (2012). CD44 is a biomarker associated with human prostate cancer radiation sensitivity. Clinical & Experimental Metastasis, 29, 1–9.

    Google Scholar 

  13. Dal Pra, A., Cury, F. L., & Souhami, L. (2010). Combining radiation therapy and androgen deprivation for localized prostate cancer—a critical review. Current Oncology, 17, 28–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Myklak, K., & Wilson, S. (2011). An update on the changing indications for androgen deprivation therapy for prostate cancer. Prostate Cancer, 2011, 419174.

    PubMed Central  PubMed  Google Scholar 

  15. Kupelian, P. A., Potters, L., Khuntia, D., Ciezki, J. P., Reddy, C. A., Reuther, A. M., et al. (2004). Radical prostatectomy, external beam radiotherapy <72 Gy, external beam radiotherapy > or =72 Gy, permanent seed implantation, or combined seeds/external beam radiotherapy for stage T1-T2 prostate cancer. International Journal of Radiation Oncology, Biology, Physics, 58, 25–33.

    PubMed  Google Scholar 

  16. Djavan, B., Moul, J. W., Zlotta, A., Remzi, M., & Ravery, V. (2003). PSA progression following radical prostatectomy and radiation therapy: new standards in the new millennium. European Urology, 43, 12–27.

    PubMed  Google Scholar 

  17. Khan, M. A., Han, M., Partin, A. W., Epstein, J. I., & Walsh, P. C. (2003). Long-term cancer control of radical prostatectomy in men younger than 50 years of age: update 2003. Urology, 62, 86–91. discussion 91-82.

    PubMed  Google Scholar 

  18. Pollack, A., Zagars, G. K., Starkschall, G., Antolak, J. A., Lee, J. J., Huang, E., et al. (2002). Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. International Journal of Radiation Oncology, Biology, Physics, 53, 1097–1105.

    PubMed  Google Scholar 

  19. Forman, J. D., Yudelev, M., Bolton, S., Tekyi-Mensah, S., & Maughan, R. (2002). Fast neutron irradiation for prostate cancer. Cancer Metastasis Reviews, 21, 131–135.

    CAS  PubMed  Google Scholar 

  20. Biagioli, M. C., & Hoffe, S. E. (2010). Emerging technologies in prostate cancer radiation therapy: improving the therapeutic window. Cancer Control: Journal of the Moffitt Cancer Center, 17, 223–232.

    Google Scholar 

  21. Gill, S., Thomas, J., Fox, C., Kron, T., Rolfo, A., Leahy, M., et al. (2011). Acute toxicity in prostate cancer patients treated with and without image-guided radiotherapy. Radiation Oncology (London, England), 6, 145.

    Google Scholar 

  22. Amin, N., & Konski, A. A. (2012). Intensity-modulated radiation therapy for prostate cancer is cost effective and improves therapeutic ratio. Expert Review of Pharmacoeconomics & Outcomes Research, 12, 447–450.

    Google Scholar 

  23. Sung, W., Park, J. M., Choi, C. H., Ha, S. W., & Ye, S. J. (2012). The effect of photon energy on intensity-modulated radiation therapy (IMRT) plans for prostate cancer. Radiation Oncology Journal, 30, 27–35.

    PubMed Central  PubMed  Google Scholar 

  24. Eade, T. N., Guo, L., Forde, E., Vaux, K., Vass, J., Hunt, P., et al. (2012). Image-guided dose-escalated intensity-modulated radiation therapy for prostate cancer: treating to doses beyond 78 Gy. BJU International, 109, 1655–1660.

    PubMed  Google Scholar 

  25. Pisansky, T. M. (2006). External-beam radiotherapy for localized prostate cancer. The New England Journal of Medicine, 355, 1583–1591.

    CAS  PubMed  Google Scholar 

  26. Spratt, D. E., Pei, X., Yamada, J., Kollmeier, M. A., Cox, B., & Zelefsky, M. J. (2012). Long-term survival and toxicity in patients treated with high-dose intensity modulated radiation therapy for localized prostate cancer. International Journal of Radiation Oncology, Biology, Physics, 85(3), 686–692.

    PubMed  Google Scholar 

  27. Adkison, J. B., McHaffie, D. R., Bentzen, S. M., Patel, R. R., Khuntia, D., Petereit, D. G., et al. (2012). Phase I trial of pelvic nodal dose escalation with hypofractionated IMRT for high-risk prostate cancer. International Journal of Radiation Oncology, Biology, Physics, 82, 184–190.

    PubMed Central  PubMed  Google Scholar 

  28. Zelefsky, M. J., Kollmeier, M., Cox, B., Fidaleo, A., Sperling, D., Pei, X., et al. (2012). Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. International Journal of Radiation Oncology, Biology, Physics, 84, 125–129.

    PubMed  Google Scholar 

  29. Kuban, D. A., Levy, L. B., Cheung, M. R., Lee, A. K., Choi, S., Frank, S., et al. (2011). Long-term failure patterns and survival in a randomized dose-escalation trial for prostate cancer. Who dies of disease? International Journal of Radiation Oncology, Biology, Physics, 79, 1310–1317.

    PubMed  Google Scholar 

  30. Zapatero, A., Garcia-Vicente, F., Martin de Vidales, C., Cruz Conde, A., Ibanez, Y., Fernandez, I., et al. (2011). Long-term results after high-dose radiotherapy and adjuvant hormones in prostate cancer: how curable is high-risk disease? International Journal of Radiation Oncology, Biology, Physics, 81, 1279–1285.

    CAS  PubMed  Google Scholar 

  31. Eade, T. N., Hanlon, A. L., Horwitz, E. M., Buyyounouski, M. K., Hanks, G. E., & Pollack, A. (2007). What dose of external-beam radiation is high enough for prostate cancer? International Journal of Radiation Oncology, Biology, Physics, 68, 682–689.

    PubMed Central  PubMed  Google Scholar 

  32. Coen, J. J., Bae, K., Zietman, A. L., Patel, B., Shipley, W. U., Slater, J. D., et al. (2011). Acute and late toxicity after dose escalation to 82 GyE using conformal proton radiation for localized prostate cancer: initial report of American College of Radiology Phase II study 03-12. International Journal of Radiation Oncology, Biology, Physics, 81, 1005–1009.

    PubMed  Google Scholar 

  33. Yuan, T. L., & Cantley, L. C. (2008). PI3K pathway alterations in cancer: variations on a theme. Oncogene, 27, 5497–5510.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Jiang, B. H., Aoki, M., Zheng, J. Z., Li, J., & Vogt, P. K. (1999). Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proceedings of the National Academy of Sciences of the United States of America, 96, 2077–2081.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Lin, H. K., Hu, Y. C., Yang, L., Altuwaijri, S., Chen, Y. T., Kang, H. Y., et al. (2003). Suppression versus induction of androgen receptor functions by the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer LNCaP cells with different passage numbers. The Journal of Biological Chemistry, 278, 50902–50907.

    CAS  PubMed  Google Scholar 

  36. Nicholson, K. M., & Anderson, N. G. (2002). The protein kinase B/Akt signalling pathway in human malignancy. Cellular Signalling, 14, 381–395.

    CAS  PubMed  Google Scholar 

  37. Martelli, A. M., Evangelisti, C., Chappell, W., Abrams, S. L., Basecke, J., Stivala, F., et al. (2011). Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway. Leukemia: Official Journal of the Leukemia Society of America, Leukemia Research Fund, UK, 25, 1064–1079.

    CAS  Google Scholar 

  38. Vivanco, I., & Sawyers, C. L. (2002). The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nature Reviews Cancer, 2, 489–501.

    CAS  PubMed  Google Scholar 

  39. Cantley, L. C. (2002). The phosphoinositide 3-kinase pathway. Science, 296, 1655–1657.

    CAS  PubMed  Google Scholar 

  40. Pommery, N., & Henichart, J. P. (2005). Involvement of PI3K/Akt pathway in prostate cancer—potential strategies for developing targeted therapies. Mini Reviews in Medicinal Chemistry, 5, 1125–1132.

    CAS  PubMed  Google Scholar 

  41. Fang, J., Ding, M., Yang, L., Liu, L. Z., & Jiang, B. H. (2007). PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cellular Signalling, 19, 2487–2497.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Shukla, S., Maclennan, G. T., Hartman, D. J., Fu, P., Resnick, M. I., & Gupta, S. (2007). Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. International Journal of Cancer. Journal International Du Cancer, 121, 1424–1432.

    CAS  PubMed  Google Scholar 

  43. McCall, P., Gemmell, L. K., Mukherjee, R., Bartlett, J. M., & Edwards, J. (2008). Phosphorylation of the androgen receptor is associated with reduced survival in hormone-refractory prostate cancer patients. British Journal of Cancer, 98, 1094–1101.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Lee, J. T., Jr., Steelman, L. S., & McCubrey, J. A. (2004). Phosphatidylinositol 3′-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer Research, 64, 8397–8404.

    CAS  PubMed  Google Scholar 

  45. Murillo, H., Huang, H., Schmidt, L. J., Smith, D. I., & Tindall, D. J. (2001). Role of PI3K signaling in survival and progression of LNCaP prostate cancer cells to the androgen refractory state. Endocrinology, 142, 4795–4805.

    CAS  PubMed  Google Scholar 

  46. Dubrovska, A., Kim, S., Salamone, R. J., Walker, J. R., Maira, S. M., Garcia-Echeverria, C., et al. (2009). The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proceedings of the National Academy of Sciences of the United States of America, 106, 268–273.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. McKenna, W. G., Muschel, R. J., Gupta, A. K., Hahn, S. M., & Bernhard, E. J. (2003). The RAS signal transduction pathway and its role in radiation sensitivity. Oncogene, 22, 5866–5875.

    CAS  PubMed  Google Scholar 

  48. Cheng, J. C., Chou, C. H., Kuo, M. L., & Hsieh, C. Y. (2006). Radiation-enhanced hepatocellular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/NF-kappaB signal transduction pathway. Oncogene, 25, 7009–7018.

    CAS  PubMed  Google Scholar 

  49. Bussink, J., van der Kogel, A. J., & Kaanders, J. H. (2008). Activation of the PI3-K/AKT pathway and implications for radioresistance mechanisms in head and neck cancer. The Lancet Oncology, 9, 288–296.

    CAS  PubMed  Google Scholar 

  50. Gottschalk, A. R., Doan, A., Nakamura, J. L., Stokoe, D., & Haas-Kogan, D. A. (2005). Inhibition of phosphatidylinositol-3-kinase causes increased sensitivity to radiation through a PKB-dependent mechanism. International Journal of Radiation Oncology, Biology, Physics, 63, 1221–1227.

    CAS  PubMed  Google Scholar 

  51. Geng, L., Tan, J., Himmelfarb, E., Schueneman, A., Niermann, K., Brousal, J., et al. (2004). A specific antagonist of the p110delta catalytic component of phosphatidylinositol 3′-kinase, IC486068, enhances radiation-induced tumor vascular destruction. Cancer Research, 64, 4893–4899.

    CAS  PubMed  Google Scholar 

  52. Soond, D. R., Bjorgo, E., Moltu, K., Dale, V. Q., Patton, D. T., Torgersen, K. M., et al. (2010). PI3K p110delta regulates T-cell cytokine production during primary and secondary immune responses in mice and humans. Blood, 115, 2203–2213.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Wang, J., Yang, L., Yang, J., Kuropatwinski, K., Wang, W., Liu, X. Q., et al. (2008). Transforming growth factor beta induces apoptosis through repressing the phosphoinositide 3-kinase/AKT/survivin pathway in colon cancer cells. Cancer Research, 68, 3152–3160.

    CAS  PubMed  Google Scholar 

  54. Scheid, M. P., & Woodgett, J. R. (2003). Unravelling the activation mechanisms of protein kinase B/Akt. FEBS Letters, 546, 108–112.

    CAS  PubMed  Google Scholar 

  55. Lee, J. T., Lehmann, B. D., Terrian, D. M., Chappell, W. H., Stivala, F., Libra, M., et al. (2008). Targeting prostate cancer based on signal transduction and cell cycle pathways. Cell Cycle, 7, 1745–1762.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Mathew, R., Karantza-Wadsworth, V., & White, E. (2007). Role of autophagy in cancer. Nature Reviews Cancer, 7, 961–967.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Kondo, Y., Kanzawa, T., Sawaya, R., & Kondo, S. (2005). The role of autophagy in cancer development and response to therapy. Nature Reviews Cancer, 5, 726–734.

    CAS  PubMed  Google Scholar 

  58. Takeuchi, H., Kondo, Y., Fujiwara, K., Kanzawa, T., Aoki, H., Mills, G. B., et al. (2005). Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Research, 65, 3336–3346.

    CAS  PubMed  Google Scholar 

  59. Nakashio, A., Fujita, N., Rokudai, S., Sato, S., & Tsuruo, T. (2000). Prevention of phosphatidylinositol 3′-kinase-Akt survival signaling pathway during topotecan-induced apoptosis. Cancer Research, 60, 5303–5309.

    CAS  PubMed  Google Scholar 

  60. Janmaat, M. L., Kruyt, F. A., Rodriguez, J. A., & Giaccone, G. (2003). Response to epidermal growth factor receptor inhibitors in non-small cell lung cancer cells: limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 9, 2316–2326.

    CAS  Google Scholar 

  61. Bjornsti, M. A., & Houghton, P. J. (2004). The TOR pathway: a target for cancer therapy. Nature Reviews Cancer, 4, 335–348.

    CAS  PubMed  Google Scholar 

  62. Xue, Q., Hopkins, B., Perruzzi, C., Udayakumar, D., Sherris, D., & Benjamin, L. E. (2008). Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability. Cancer Research, 68, 9551–9557.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Diaz, R., Nguewa, P. A., Diaz-Gonzalez, J. A., Hamel, E., Gonzalez-Moreno, O., Catena, R., et al. (2009). The novel Akt inhibitor Palomid 529 (P529) enhances the effect of radiotherapy in prostate cancer. British Journal of Cancer, 100, 932–940.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Steelman, L. S., Bertrand, F. E., & McCubrey, J. A. (2004). The complexity of PTEN: mutation, marker and potential target for therapeutic intervention. Expert Opinion on Therapeutic Targets, 8, 537–550.

    CAS  PubMed  Google Scholar 

  65. Sansal, I., & Sellers, W. R. (2004). The biology and clinical relevance of the PTEN tumor suppressor pathway. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 22, 2954–2963.

    CAS  Google Scholar 

  66. Birck, A., Ahrenkiel, V., Zeuthen, J., Hou-Jensen, K., & Guldberg, P. (2000). Mutation and allelic loss of the PTEN/MMAC1 gene in primary and metastatic melanoma biopsies. The Journal of Investigative Dermatology, 114, 277–280.

    CAS  PubMed  Google Scholar 

  67. Harima, Y., Sawada, S., Nagata, K., Sougawa, M., Ostapenko, V., & Ohnishi, T. (2001). Mutation of the PTEN gene in advanced cervical cancer correlated with tumor progression and poor outcome after radiotherapy. International Journal of Oncology, 18, 493–497.

    CAS  PubMed  Google Scholar 

  68. Byun, D. S., Cho, K., Ryu, B. K., Lee, M. G., Park, J. I., Chae, K. S., et al. (2003). Frequent monoallelic deletion of PTEN and its reciprocal associatioin with PIK3CA amplification in gastric carcinoma. International Journal of Cancer. Journal International Du Cancer, 104, 318–327.

    CAS  PubMed  Google Scholar 

  69. Pedrero, J. M., Carracedo, D. G., Pinto, C. M., Zapatero, A. H., Rodrigo, J. P., Nieto, C. S., et al. (2005). Frequent genetic and biochemical alterations of the PI 3-K/AKT/PTEN pathway in head and neck squamous cell carcinoma. International Journal of Cancer. Journal International Du Cancer, 114, 242–248.

    CAS  PubMed  Google Scholar 

  70. Sircar, K., Yoshimoto, M., Monzon, F. A., Koumakpayi, I. H., Katz, R. L., Khanna, A., et al. (2009). PTEN genomic deletion is associated with p-Akt and AR signalling in poorer outcome, hormone refractory prostate cancer. The Journal of Pathology, 218, 505–513.

    CAS  PubMed  Google Scholar 

  71. de Muga, S., Hernandez, S., Agell, L., Salido, M., Juanpere, N., Lorenzo, M., et al. (2010). Molecular alterations of EGFR and PTEN in prostate cancer: association with high-grade and advanced-stage carcinomas. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, 23, 703–712.

    Google Scholar 

  72. Reid, A. H., Attard, G., Ambroisine, L., Fisher, G., Kovacs, G., Brewer, D., et al. (2010). Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. British Journal of Cancer, 102, 678–684.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Wang, S., Gao, J., Lei, Q., Rozengurt, N., Pritchard, C., Jiao, J., et al. (2003). Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell, 4, 209–221.

    CAS  PubMed  Google Scholar 

  74. Gray, I. C., Stewart, L. M., Phillips, S. M., Hamilton, J. A., Gray, N. E., Watson, G. J., et al. (1998). Mutation and expression analysis of the putative prostate tumour-suppressor gene PTEN. British Journal of Cancer, 78, 1296–1300.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Faratian, D., Goltsov, A., Lebedeva, G., Sorokin, A., Moodie, S., Mullen, P., et al. (2009). Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab. Cancer Research, 69, 6713–6720.

    CAS  PubMed  Google Scholar 

  76. Sos, M. L., Koker, M., Weir, B. A., Heynck, S., Rabinovsky, R., Zander, T., et al. (2009). PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Research, 69, 3256–3261.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Loupakis, F., Pollina, L., Stasi, I., Ruzzo, A., Scartozzi, M., Santini, D., et al. (2009). PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 27, 2622–2629.

    CAS  Google Scholar 

  78. Negri, F. V., Bozzetti, C., Lagrasta, C. A., Crafa, P., Bonasoni, M. P., Camisa, R., et al. (2010). PTEN status in advanced colorectal cancer treated with cetuximab. British Journal of Cancer, 102, 162–164.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Mao, C., Liao, R. Y., & Chen, Q. (2010). Loss of PTEN expression predicts resistance to EGFR-targeted monoclonal antibodies in patients with metastatic colorectal cancer. British Journal of Cancer, 102, 940.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Li, H. F., Kim, J. S., & Waldman, T. (2009). Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells. Radiation Oncology, 4, 43.

    PubMed Central  PubMed  Google Scholar 

  81. Zafarana, G., Ishkanian, A. S., Malloff, C. A., Locke, J. A., Sykes, J., Thoms, J., et al. (2012). Copy number alterations of c-MYC and PTEN are prognostic factors for relapse after prostate cancer radiotherapy. Cancer, 118, 4053–4062.

    CAS  PubMed  Google Scholar 

  82. Teng, D. H., Hu, R., Lin, H., Davis, T., Iliev, D., Frye, C., et al. (1997). MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Research, 57, 5221–5225.

    CAS  PubMed  Google Scholar 

  83. Jendrossek, V., Henkel, M., Hennenlotter, J., Vogel, U., Ganswindt, U., Muller, I., et al. (2008). Analysis of complex protein kinase B signalling pathways in human prostate cancer samples. BJU International, 102, 371–382.

    PubMed  Google Scholar 

  84. Sun, Y., St Clair, D. K., Fang, F., Warren, G. W., Rangnekar, V. M., Crooks, P. A., et al. (2007). The radiosensitization effect of parthenolide in prostate cancer cells is mediated by nuclear factor-kappaB inhibition and enhanced by the presence of PTEN. Molecular Cancer Therapeutics, 6, 2477–2486.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Rosser, C. J., Tanaka, M., Pisters, L. L., Tanaka, N., Levy, L. B., Hoover, D. C., et al. (2004). Adenoviral-mediated PTEN transgene expression sensitizes Bcl-2-expressing prostate cancer cells to radiation. Cancer Gene Therapy, 11, 273–279.

    CAS  PubMed  Google Scholar 

  86. Anai, S., Goodison, S., Shiverick, K., Iczkowski, K., Tanaka, M., & Rosser, C. J. (2006). Combination of PTEN gene therapy and radiation inhibits the growth of human prostate cancer xenografts. Human Gene Therapy, 17, 975–984.

    CAS  PubMed  Google Scholar 

  87. Tomioka, A., Tanaka, M., De Velasco, M. A., Anai, S., Takada, S., Kushibiki, T., et al. (2008). Delivery of PTEN via a novel gene microcapsule sensitizes prostate cancer cells to irradiation. Molecular Cancer Therapeutics, 7, 1864–1870.

    CAS  PubMed  Google Scholar 

  88. Guertin, D. A., & Sabatini, D. M. (2007). Defining the role of mTOR in cancer. Cancer Cell, 12, 9–22.

    CAS  PubMed  Google Scholar 

  89. Hay, N., & Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes & Development, 18, 1926–1945.

    CAS  Google Scholar 

  90. Shen, C., Lancaster, C. S., Shi, B., Guo, H., Thimmaiah, P., & Bjornsti, M. A. (2007). TOR signaling is a determinant of cell survival in response to DNA damage. Molecular and Cellular Biology, 27, 7007–7017.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Martelli, A. M., Evangelisti, C., Chiarini, F., Grimaldi, C., Cappellini, A., Ognibene, A., et al. (2010). The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis. Biochimica Et Biophysica Acta, 1803, 991–1002.

    CAS  PubMed  Google Scholar 

  92. Tokunaga, E., Kimura, Y., Mashino, K., Oki, E., Kataoka, A., Ohno, S., et al. (2006). Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer, 13, 137–144.

    PubMed  Google Scholar 

  93. Kremer, C. L., Klein, R. R., Mendelson, J., Browne, W., Samadzedeh, L. K., Vanpatten, K., et al. (2006). Expression of mTOR signaling pathway markers in prostate cancer progression. The Prostate, 66, 1203–1212.

    CAS  PubMed  Google Scholar 

  94. Brognard, J., Clark, A. S., Ni, Y., & Dennis, P. A. (2001). Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Research, 61, 3986–3997.

    CAS  PubMed  Google Scholar 

  95. Tanno, S., Yanagawa, N., Habiro, A., Koizumi, K., Nakano, Y., Osanai, M., et al. (2004). Serine/threonine kinase AKT is frequently activated in human bile duct cancer and is associated with increased radioresistance. Cancer Research, 64, 3486–3490.

    CAS  PubMed  Google Scholar 

  96. Chakravarti, A., Zhai, G., Suzuki, Y., Sarkesh, S., Black, P. M., Muzikansky, A., et al. (2004). The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 22, 1926–1933.

    CAS  Google Scholar 

  97. Gupta, A. K., McKenna, W. G., Weber, C. N., Feldman, M. D., Goldsmith, J. D., Mick, R., et al. (2002). Local recurrence in head and neck cancer: relationship to radiation resistance and signal transduction. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 8, 885–892.

    Google Scholar 

  98. Gupta, A. K., Soto, D. E., Feldman, M. D., Goldsmith, J. D., Mick, R., Hahn, S. M., et al. (2004). Signaling pathways in NSCLC as a predictor of outcome and response to therapy. Lung, 182, 151–162.

    PubMed  Google Scholar 

  99. Gozuacik, D., & Kimchi, A. (2004). Autophagy as a cell death and tumor suppressor mechanism. Oncogene, 23, 2891–2906.

    CAS  PubMed  Google Scholar 

  100. Moretti, L., Attia, A., Kim, K. W., & Lu, B. (2007). Crosstalk between Bak/Bax and mTOR signaling regulates radiation-induced autophagy. Autophagy, 3, 142–144.

    CAS  PubMed  Google Scholar 

  101. Cao, C., Subhawong, T., Albert, J. M., Kim, K. W., Geng, L., Sekhar, K. R., et al. (2006). Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Research, 66, 10040–10047.

    CAS  PubMed  Google Scholar 

  102. Hait, W. N., Jin, S., & Yang, J. M. (2006). A matter of life or death (or both): understanding autophagy in cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 12, 1961–1965.

    CAS  Google Scholar 

  103. Ito, H., Daido, S., Kanzawa, T., Kondo, S., & Kondo, Y. (2005). Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. International Journal of Oncology, 26, 1401–1410.

    CAS  PubMed  Google Scholar 

  104. Kuwahara, Y., Oikawa, T., Ochiai, Y., Roudkenar, M. H., Fukumoto, M., Shimura, T., et al. (2011). Enhancement of autophagy is a potential modality for tumors refractory to radiotherapy. Cell Death & Disease, 2, e177.

    CAS  Google Scholar 

  105. White, E. (2012). Deconvoluting the context-dependent role for autophagy in cancer. Nature Reviews Cancer, 12, 401–410.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Zhou, S., Zhao, L., Kuang, M., Zhang, B., Liang, Z., Yi, T., et al. (2012). Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde? Cancer Letters, 323, 115–127.

    CAS  PubMed  Google Scholar 

  107. Kroemer, G., & Levine, B. (2008). Autophagic cell death: the story of a misnomer. Nature Reviews Molecular Cell Biology, 9, 1004–1010.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Kimmelman, A. C. (2011). The dynamic nature of autophagy in cancer. Genes & Development, 25, 1999–2010.

    CAS  Google Scholar 

  109. Jin, S., & White, E. (2007). Role of autophagy in cancer: management of metabolic stress. Autophagy, 3, 28–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Chen, N., & Karantza, V. (2011). Autophagy as a therapeutic target in cancer. Cancer Biology & Therapy, 11, 157–168.

    Google Scholar 

  111. Levine, B. (2006). Unraveling the role of autophagy in cancer. Autophagy, 2, 65–66.

    PubMed  Google Scholar 

  112. Chen, N., & Karantza-Wadsworth, V. (2009). Role and regulation of autophagy in cancer. Biochimica Et Biophysica Acta, 1793, 1516–1523.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Rosenfeldt, M. T., & Ryan, K. M. (2011). The multiple roles of autophagy in cancer. Carcinogenesis, 32, 955–963.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Apel, A., Herr, I., Schwarz, H., Rodemann, H. P., & Mayer, A. (2008). Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Research, 68, 1485–1494.

    CAS  PubMed  Google Scholar 

  115. Rami, A. (2009). Review: autophagy in neurodegeneration: firefighter and/or incendiarist? Neuropathology and Applied Neurobiology, 35, 449–461.

    CAS  PubMed  Google Scholar 

  116. Maiuri, M. C., Criollo, A., & Kroemer, G. (2010). Crosstalk between apoptosis and autophagy within the Beclin 1 interactome. The EMBO Journal, 29, 515–516.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Fimia, G. M., & Piacentini, M. (2010). Regulation of autophagy in mammals and its interplay with apoptosis. Cellular and Molecular Life Sciences: CMLS, 67, 1581–1588.

    CAS  PubMed  Google Scholar 

  118. Yang, Z. J., Chee, C. E., Huang, S., & Sinicrope, F. (2011). Autophagy modulation for cancer therapy. Cancer Biology & Therapy, 11, 169–176.

    CAS  Google Scholar 

  119. Arico, S., Petiot, A., Bauvy, C., Dubbelhuis, P. F., Meijer, A. J., Codogno, P., et al. (2001). The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. The Journal of Biological Chemistry, 276, 35243–35246.

    CAS  PubMed  Google Scholar 

  120. Ueno, T., Sato, W., Horie, Y., Komatsu, M., Tanida, I., Yoshida, M., et al. (2008). Loss of Pten, a tumor suppressor, causes the strong inhibition of autophagy without affecting LC3 lipidation. Autophagy, 4, 692–700.

    CAS  PubMed  Google Scholar 

  121. Laane, E., Tamm, K. P., Buentke, E., Ito, K., Kharaziha, P., Oscarsson, J., et al. (2009). Cell death induced by dexamethasone in lymphoid leukemia is mediated through initiation of autophagy. Cell Death and Differentiation, 16, 1018–1029.

    CAS  PubMed  Google Scholar 

  122. Paglin, S., Lee, N. Y., Nakar, C., Fitzgerald, M., Plotkin, J., Deuel, B., et al. (2005). Rapamycin-sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells. Cancer Research, 65, 11061–11070.

    CAS  PubMed  Google Scholar 

  123. Iwamaru, A., Kondo, Y., Iwado, E., Aoki, H., Fujiwara, K., Yokoyama, T., et al. (2007). Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene, 26, 1840–1851.

    CAS  PubMed  Google Scholar 

  124. Kuo, H. P., Lee, D. F., Chen, C. T., Liu, M., Chou, C. K., Lee, H. J., et al. (2010). ARD1 stabilization of TSC2 suppresses tumorigenesis through the mTOR signaling pathway. Science Signaling, 3, ra9.

    PubMed Central  PubMed  Google Scholar 

  125. Ganley, I. G., Lam du, H., Wang, J., Ding, X., Chen, S., & Jiang, X. (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. The Journal of Biological Chemistry, 284, 12297–12305.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., et al. (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Molecular Biology of the Cell, 20, 1992–2003.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Palumbo, S., & Comincini, S. (2013). Autophagy and ionizing radiation in tumors: the “survive or not survive” dilemma. Journal of Cellular Physiology, 228, 1–8.

    CAS  PubMed  Google Scholar 

  128. Kim, K. W., Moretti, L., Mitchell, L. R., Jung, D. K., & Lu, B. (2010). Endoplasmic reticulum stress mediates radiation-induced autophagy by perk-eIF2alpha in caspase-3/7-deficient cells. Oncogene, 29, 3241–3251.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Lomonaco, S. L., Finniss, S., Xiang, C., Decarvalho, A., Umansky, F., Kalkanis, S. N., et al. (2009). The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. International Journal of Cancer. Journal International Du Cancer, 125, 717–722.

    CAS  PubMed  Google Scholar 

  130. Gewirtz, D. A., Hilliker, M. L., & Wilson, E. N. (2009). Promotion of autophagy as a mechanism for radiation sensitization of breast tumor cells. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 92, 323–328.

    CAS  Google Scholar 

  131. Chaachouay, H., Ohneseit, P., Toulany, M., Kehlbach, R., Multhoff, G., & Rodemann, H. P. (2011). Autophagy contributes to resistance of tumor cells to ionizing radiation. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 99, 287–292.

    CAS  Google Scholar 

  132. Gwak, H. S., Kim, T. H., Jo, G. H., Kim, Y. J., Kwak, H. J., Kim, J. H., et al. (2012). Silencing of microRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines. PloS ONE, 7, e47449.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Parikh, A., Childress, C., Deitrick, K., Lin, Q., Rukstalis, D., & Yang, W. (2010). Statin-induced autophagy by inhibition of geranylgeranyl biosynthesis in prostate cancer PC3 cells. The Prostate, 70, 971–981.

    CAS  PubMed  Google Scholar 

  134. Toepfer, N., Childress, C., Parikh, A., Rukstalis, D., & Yang, W. (2011). Atorvastatin induces autophagy in prostate cancer PC3 cells through activation of LC3 transcription. Cancer Biology & Therapy, 12, 691–699.

    CAS  Google Scholar 

  135. He, Z., Mangala, L. S., Theriot, C. A., Rohde, L. H., Wu, H., & Zhang, Y. (2012). Cell killing and radiosensitizing effects of atorvastatin in PC3 prostate cancer cells. Journal of Radiation Research, 53, 225–233.

    PubMed  Google Scholar 

  136. Wu, W. K., Coffelt, S. B., Cho, C. H., Wang, X. J., Lee, C. W., Chan, F. K., et al. (2012). The autophagic paradox in cancer therapy. Oncogene, 31, 939–953.

    CAS  PubMed  Google Scholar 

  137. Zeisberg, M., & Neilson, E. G. (2009). Biomarkers for epithelial-mesenchymal transitions. The Journal of Clinical Investigation, 119, 1429–1437.

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Santisteban, M., Reiman, J. M., Asiedu, M. K., Behrens, M. D., Nassar, A., Kalli, K. R., et al. (2009). Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Research, 69, 2887–2895.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Brabletz, T., Jung, A., Spaderna, S., Hlubek, F., & Kirchner, T. (2005). Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nature Reviews Cancer, 5, 744–749.

    CAS  PubMed  Google Scholar 

  141. Schmalhofer, O., Brabletz, S., & Brabletz, T. (2009). E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Reviews, 28, 151–166.

    CAS  PubMed  Google Scholar 

  142. Kwok, W. K., Ling, M. T., Lee, T. W., Lau, T. C., Zhou, C., Zhang, X., et al. (2005). Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Research, 65, 5153–5162.

    CAS  PubMed  Google Scholar 

  143. Alexander, N. R., Tran, N. L., Rekapally, H., Summers, C. E., Glackin, C., & Heimark, R. L. (2006). N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cancer Research, 66, 3365–3369.

    CAS  PubMed  Google Scholar 

  144. Mulholland, D. J., Kobayashi, N., Ruscetti, M., Zhi, A., Tran, L. M., Huang, J., et al. (2012). Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Research, 72, 1878–1889.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Byles, V., Zhu, L., Lovaas, J. D., Chmilewski, L. K., Wang, J., Faller, D. V., et al. (2012). SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene, 31, 4619–4629.

    CAS  PubMed  Google Scholar 

  146. Hugo, H., Ackland, M. L., Blick, T., Lawrence, M. G., Clements, J. A., Williams, E. D., et al. (2007). Epithelial—mesenchymal and mesenchymal—epithelial transitions in carcinoma progression. Journal of Cellular Physiology, 213, 374–383.

    CAS  PubMed  Google Scholar 

  147. Mimeault, M., & Batra, S. K. (2011). Frequent gene products and molecular pathways altered in prostate cancer- and metastasis-initiating cells and their progenies and novel promising multitargeted therapies. Molecular Medicine, 17, 949–964.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Drake, J. M., Barnes, J. M., Madsen, J. M., Domann, F. E., Stipp, C. S., & Henry, M. D. (2010). ZEB1 coordinately regulates laminin-332 and {beta}4 integrin expression altering the invasive phenotype of prostate cancer cells. The Journal of Biological Chemistry, 285, 33940–33948.

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Xu, J., Wang, R., Xie, Z. H., Odero-Marah, V., Pathak, S., Multani, A., et al. (2006). Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. The Prostate, 66, 1664–1673.

    CAS  PubMed  Google Scholar 

  150. Acevedo, V. D., Gangula, R. D., Freeman, K. W., Li, R., Zhang, Y., Wang, F., et al. (2007). Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell, 12, 559–571.

    CAS  PubMed  Google Scholar 

  151. Zhang, Q., Helfand, B. T., Jang, T. L., Zhu, L. J., Chen, L., Yang, X. J., et al. (2009). Nuclear factor-kappaB-mediated transforming growth factor-beta-induced expression of vimentin is an independent predictor of biochemical recurrence after radical prostatectomy. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 15, 3557–3567.

    CAS  Google Scholar 

  152. Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C. A., et al. (2010). ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 17, 319–332.

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Lue, H. W., Yang, X., Wang, R., Qian, W., Xu, R. Z., Lyles, R., et al. (2011). LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PloS ONE, 6, e27720.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Xie, D., Gore, C., Liu, J., Pong, R. C., Mason, R., Hao, G., et al. (2010). Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 107, 2485–2490.

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Graham, T. R., Zhau, H. E., Odero-Marah, V. A., Osunkoya, A. O., Kimbro, K. S., Tighiouart, M., et al. (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Research, 68, 2479–2488.

    CAS  PubMed  Google Scholar 

  156. Contreras, H. R., Ledezma, R. A., Vergara, J., Cifuentes, F., Barra, C., Cabello, P., et al. (2010). The expression of syndecan-1 and -2 is associated with Gleason score and epithelial-mesenchymal transition markers, E-cadherin and beta-catenin, in prostate cancer. Urologic Oncology, 28, 534–540.

    CAS  PubMed  Google Scholar 

  157. Sun, Y., Wang, B. E., Leong, K. G., Yue, P., Li, L., Jhunjhunwala, S., et al. (2012). Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Research, 72, 527–536.

    CAS  PubMed  Google Scholar 

  158. Behnsawy, H. M., Miyake, H., Harada, K. I., & Fujisawa, M. (2012). Expression patterns of epithelial-mesenchymal transition markers in localized prostate cancer: significance in clinicopathological outcomes following radical prostatectomy. BJU International, 111, 30–37.

    PubMed  Google Scholar 

  159. Sethi, S., Macoska, J., Chen, W., & Sarkar, F. H. (2010). Molecular signature of epithelial-mesenchymal transition (EMT) in human prostate cancer bone metastasis. American Journal of Translational Research, 3, 90–99.

    PubMed Central  PubMed  Google Scholar 

  160. Zhu, M. L., & Kyprianou, N. (2010). Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 24, 769–777.

    CAS  Google Scholar 

  161. Tanaka, H., Kono, E., Tran, C. P., Miyazaki, H., Yamashiro, J., Shimomura, T., et al. (2010). Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nature Medicine, 16, 1414–1420.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Barcellos-Hoff, M. H., Park, C., & Wright, E. G. (2005). Radiation and the microenvironment—tumorigenesis and therapy. Nature Reviews Cancer, 5, 867–875.

    CAS  PubMed  Google Scholar 

  163. Madani, I., De Neve, W., & Mareel, M. (2008). Does ionizing radiation stimulate cancer invasion and metastasis? Bulletin Du Cancer, 95, 292–300.

    CAS  PubMed  Google Scholar 

  164. Escriva, M., Peiro, S., Herranz, N., Villagrasa, P., Dave, N., Montserrat-Sentis, B., et al. (2008). Repression of PTEN phosphatase by Snail1 transcriptional factor during gamma radiation-induced apoptosis. Molecular and Cellular Biology, 28, 1528–1540.

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Kurrey, N. K., Jalgaonkar, S. P., Joglekar, A. V., Ghanate, A. D., Chaskar, P. D., Doiphode, R. Y., et al. (2009). Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells, 27, 2059–2068.

    CAS  PubMed  Google Scholar 

  166. Creighton, C. J., Chang, J. C., & Rosen, J. M. (2010). Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15, 253–260.

    PubMed  Google Scholar 

  167. Andarawewa, K. L., Erickson, A. C., Chou, W. S., Costes, S. V., Gascard, P., Mott, J. D., et al. (2007). Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition. Cancer Research, 67, 8662–8670.

    CAS  PubMed  Google Scholar 

  168. Tsukamoto, H., Shibata, K., Kajiyama, H., Terauchi, M., Nawa, A., & Kikkawa, F. (2007). Irradiation-induced epithelial-mesenchymal transition (EMT) related to invasive potential in endometrial carcinoma cells. Gynecologic Oncology, 107, 500–504.

    PubMed  Google Scholar 

  169. Zhang, X., Li, X., Zhang, N., Yang, Q., & Moran, M. S. (2011). Low doses ionizing radiation enhances the invasiveness of breast cancer cells by inducing epithelial-mesenchymal transition. Biochemical and Biophysical Research Communications, 412, 188–192.

    CAS  PubMed  Google Scholar 

  170. Jung, J. W., Hwang, S. Y., Hwang, J. S., Oh, E. S., Park, S., & Han, I. O. (2007). Ionising radiation induces changes associated with epithelial-mesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. European Journal of Cancer, 43, 1214–1224.

    CAS  PubMed  Google Scholar 

  171. Li, T., Zeng, Z. C., Wang, L., Qiu, S. J., Zhou, J. W., Zhi, X. T., et al. (2011). Radiation enhances long-term metastasis potential of residual hepatocellular carcinoma in nude mice through TMPRSS4-induced epithelial-mesenchymal transition. Cancer Gene Therapy, 18, 617–626.

    CAS  PubMed  Google Scholar 

  172. Zhou, B. B., Zhang, H., Damelin, M., Geles, K. G., Grindley, J. C., & Dirks, P. B. (2009). Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nature Reviews Drug Discovery, 8, 806–823.

    CAS  PubMed  Google Scholar 

  173. Dick, J. E. (2008). Stem cell concepts renew cancer research. Blood, 112, 4793–4807.

    CAS  PubMed  Google Scholar 

  174. Nagle, R. B., Ahmann, F. R., McDaniel, K. M., Paquin, M. L., Clark, V. A., & Celniker, A. (1987). Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer research, 47, 281–286.

    CAS  PubMed  Google Scholar 

  175. Gu, G., Yuan, J., Wills, M., & Kasper, S. (2007). Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Research, 67, 4807–4815.

    CAS  PubMed  Google Scholar 

  176. Tu, S. M., & Lin, S. H. (2012). Prostate cancer stem cells. Clinical Genitourinary Cancer, 10, 69–76.

    PubMed  Google Scholar 

  177. Li, H., Chen, X., Calhoun-Davis, T., Claypool, K., & Tang, D. G. (2008). PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Research, 68, 1820–1825.

    CAS  PubMed  Google Scholar 

  178. Li, H., Jiang, M., Honorio, S., Patrawala, L., Jeter, C. R., Calhoun-Davis, T., et al. (2009). Methodologies in assaying prostate cancer stem cells. Methods in Molecular Biology, 568, 85–138.

    CAS  PubMed  Google Scholar 

  179. Lang, S. H., Frame, F. M., & Collins, A. T. (2009). Prostate cancer stem cells. The Journal of Pathology, 217, 299–306.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65, 10946–10951.

    CAS  PubMed  Google Scholar 

  181. Patrawala, L., Calhoun, T., Schneider-Broussard, R., Li, H., Bhatia, B., Tang, S., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25, 1696–1708.

    CAS  PubMed  Google Scholar 

  182. Patrawala, L., Calhoun-Davis, T., Schneider-Broussard, R., & Tang, D. G. (2007). Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44 + alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Research, 67, 6796–6805.

    CAS  PubMed  Google Scholar 

  183. Rowehl, R. A., Crawford, H., Dufour, A., Ju, J., & Botchkina, G. I. (2008). Genomic analysis of prostate cancer stem cells isolated from a highly metastatic cell line. Cancer Genomics & Proteomics, 5, 301–310.

    CAS  Google Scholar 

  184. Klarmann, G. J., Hurt, E. M., Mathews, L. A., Zhang, X., Duhagon, M. A., Mistree, T., et al. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clinical & Experimental Metastasis, 26, 433–446.

    CAS  Google Scholar 

  185. Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., Thomas, S. B., & Farrar, W. L. (2008). CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. British Journal of Cancer, 98, 756–765.

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Bisson, I., & Prowse, D. M. (2009). WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Research, 19, 683–697.

    CAS  PubMed  Google Scholar 

  187. Qin, J., Liu, X., Laffin, B., Chen, X., Choy, G., Jeter, C. R., et al. (2012). The PSA(−/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell, 10, 556–569.

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Richardson, G. D., Robson, C. N., Lang, S. H., Neal, D. E., Maitland, N. J., & Collins, A. T. (2004). CD133, a novel marker for human prostatic epithelial stem cells. Journal of Cell Science, 117, 3539–3545.

    CAS  PubMed  Google Scholar 

  189. Vander Griend, D. J., Karthaus, W. L., Dalrymple, S., Meeker, A., DeMarzo, A. M., & Isaacs, J. T. (2008). The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Research, 68, 9703–9711.

    CAS  PubMed Central  PubMed  Google Scholar 

  190. van den Hoogen, C., van der Horst, G., Cheung, H., Buijs, J. T., Lippitt, J. M., Guzman-Ramirez, N., et al. (2010). High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Research, 70, 5163–5173.

    PubMed  Google Scholar 

  191. Doherty, R. E., Haywood-Small, S. L., Sisley, K., & Cross, N. A. (2011). Aldehyde dehydrogenase activity selects for the holoclone phenotype in prostate cancer cells. Biochemical and Biophysical Research Communications, 414, 801–807.

    CAS  PubMed  Google Scholar 

  192. Rajasekhar, V. K., Studer, L., Gerald, W., Socci, N. D., & Scher, H. I. (2011). Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-kappaB signalling. Nature Communications, 2, 162.

    PubMed Central  PubMed  Google Scholar 

  193. Bae, K. M., Su, Z., Frye, C., McClellan, S., Allan, R. W., Andrejewski, J. T., et al. (2010). Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. The Journal of Urology, 183, 2045–2053.

    CAS  PubMed  Google Scholar 

  194. Liu, T., Xu, F., Du, X., Lai, D., Liu, T., Zhao, Y., et al. (2010). Establishment and characterization of multi-drug resistant, prostate carcinoma-initiating stem-like cells from human prostate cancer cell lines 22RV1. Molecular and Cellular Biochemistry, 340, 265–273.

    CAS  PubMed  Google Scholar 

  195. Liu, F., Wang, J. J., You, Z. Y., Zhang, Y. D., & Zhao, Y. (2010). Radiosensitivity of prostate cancer cells is enhanced by EGFR inhibitor C225. Urologic Oncology, 28, 59–66.

    CAS  PubMed  Google Scholar 

  196. Collins, A. T., & Maitland, N. J. (2006). Prostate cancer stem cells. European Journal of Cancer, 42, 1213–1218.

    CAS  PubMed  Google Scholar 

  197. Maitland, N. J., & Collins, A. T. (2008). Prostate cancer stem cells: a new target for therapy. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 26, 2862–2870.

    Google Scholar 

  198. Pfeiffer, M. J., & Schalken, J. A. (2010). Stem cell characteristics in prostate cancer cell lines. European Urology, 57, 246–254.

    CAS  PubMed  Google Scholar 

  199. Yoshida, A., Hsu, L. C., & Dave, V. (1992). Retinal oxidation activity and biological role of human cytosolic aldehyde dehydrogenase. Enzyme, 46, 239–244.

    CAS  PubMed  Google Scholar 

  200. Eastham, A. M., Spencer, H., Soncin, F., Ritson, S., Merry, C. L., Stern, P. L., et al. (2007). Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Research, 67, 11254–11262.

    CAS  PubMed  Google Scholar 

  201. Umbas, R., Schalken, J. A., Aalders, T. W., Carter, B. S., Karthaus, H. F., Schaafsma, H. E., et al. (1992). Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Research, 52, 5104–5109.

    CAS  PubMed  Google Scholar 

  202. Ikonen, T., Matikainen, M., Mononen, N., Hyytinen, E. R., Helin, H. J., Tommola, S., et al. (2001). Association of E-cadherin germ-line alterations with prostate cancer. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 7, 3465–3471.

    CAS  Google Scholar 

  203. Bae, K. M., Parker, N. N., Dai, Y., Vieweg, J., & Siemann, D. W. (2011). E-cadherin plasticity in prostate cancer stem cell invasion. American Journal of Cancer Research, 1, 71–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Kong, D., Banerjee, S., Ahmad, A., Li, Y., Wang, Z., Sethi, S., et al. (2010). Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PloS ONE, 5, e12445.

    PubMed Central  PubMed  Google Scholar 

  205. Baumann, M., Krause, M., & Hill, R. (2008). Exploring the role of cancer stem cells in radioresistance. Nature Reviews Cancer, 8, 545–554.

    CAS  PubMed  Google Scholar 

  206. Eyler, C. E., & Rich, J. N. (2008). Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 26, 2839–2845.

    CAS  Google Scholar 

  207. Phillips, T. M., McBride, W. H., & Pajonk, F. (2006). The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. Journal of the National Cancer Institute, 98, 1777–1785.

    PubMed  Google Scholar 

  208. Woodward, W. A., Chen, M. S., Behbod, F., Alfaro, M. P., Buchholz, T. A., & Rosen, J. M. (2007). WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 618–623.

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Zhang, M., Behbod, F., Atkinson, R. L., Landis, M. D., Kittrell, F., Edwards, D., et al. (2008). Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Research, 68, 4674–4682.

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Lagadec, C., Vlashi, E., Della Donna, L., Dekmezian, C., & Pajonk, F. (2012). Radiation-induced reprogramming of breast cancer cells. Stem Cells, 30, 833–844.

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Zielske, S. P., Spalding, A. C., & Lawrence, T. S. (2010). Loss of tumor-initiating cell activity in cyclophosphamide-treated breast xenografts. Translational Oncology, 3, 149–152.

    PubMed Central  PubMed  Google Scholar 

  212. Al-Assar, O., Muschel, R. J., Mantoni, T. S., McKenna, W. G., & Brunner, T. B. (2009). Radiation response of cancer stem-like cells from established human cell lines after sorting for surface markers. International Journal of Radiation Oncology, Biology, Physics, 75, 1216–1225.

    CAS  PubMed  Google Scholar 

  213. Dittfeld, C., Dietrich, A., Peickert, S., Hering, S., Baumann, M., Grade, M., et al. (2009). CD133 expression is not selective for tumor-initiating or radioresistant cell populations in the CRC cell lines HCT-116. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 92, 353–361.

    CAS  Google Scholar 

  214. Fiveash, J. B., & Spencer, S. A. (2003). Role of radiation therapy and radiosurgery in glioblastoma multiforme. Cancer Journal, 9, 222–229.

    Google Scholar 

  215. Beier, D., Hau, P., Proescholdt, M., Lohmeier, A., Wischhusen, J., Oefner, P. J., et al. (2007). CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Research, 67, 4010–4015.

    CAS  PubMed  Google Scholar 

  216. Gunther, H. S., Schmidt, N. O., Phillips, H. S., Kemming, D., Kharbanda, S., Soriano, R., et al. (2008). Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene, 27, 2897–2909.

    CAS  PubMed  Google Scholar 

  217. Liu, Q., Nguyen, D. H., Dong, Q., Shitaku, P., Chung, K., Liu, O. Y., et al. (2009). Molecular properties of CD133+ glioblastoma stem cells derived from treatment-refractory recurrent brain tumors. Journal of Neuro-Oncology, 94, 1–19.

    PubMed Central  PubMed  Google Scholar 

  218. Annabi, B., Lachambre, M. P., Plouffe, K., Sartelet, H., & Beliveau, R. (2009). Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling. Molecular Carcinogenesis, 48, 910–919.

    CAS  PubMed  Google Scholar 

  219. Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444, 756–760.

    CAS  PubMed  Google Scholar 

  220. Hambardzumyan, D., Becher, O. J., Rosenblum, M. K., Pandolfi, P. P., Manova-Todorova, K., & Holland, E. C. (2008). PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes & Development, 22, 436–448.

    CAS  Google Scholar 

  221. Chiou, S. H., Kao, C. L., Chen, Y. W., Chien, C. S., Hung, S. C., Lo, J. F., et al. (2008). Identification of CD133-positive radioresistant cells in atypical teratoid/rhabdoid tumor. PloS ONE, 3, e2090.

    PubMed Central  PubMed  Google Scholar 

  222. Tamura, K., Aoyagi, M., Wakimoto, H., Ando, N., Nariai, T., Yamamoto, M., et al. (2010). Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation. Journal of Neurosurgery, 113, 310–318.

    PubMed  Google Scholar 

  223. Piao, L. S., Hur, W., Kim, T. K., Hong, S. W., Kim, S. W., Choi, J. E., et al. (2012). CD133+ liver cancer stem cells modulate radioresistance in human hepatocellular carcinoma. Cancer Letters, 315, 129–137.

    CAS  PubMed  Google Scholar 

  224. Wei, C., Guomin, W., Yujun, L., & Ruizhe, Q. (2007). Cancer stem-like cells in human prostate carcinoma cells DU145: the seeds of the cell line? Cancer Biology & Therapy, 6, 763–768.

    CAS  Google Scholar 

  225. Tang, D. G., Patrawala, L., Calhoun, T., Bhatia, B., Choy, G., Schneider-Broussard, R., et al. (2007). Prostate cancer stem/progenitor cells: identification, characterization, and implications. Molecular Carcinogenesis, 46, 1–14.

    CAS  PubMed  Google Scholar 

  226. Gurtner, K., Hessel, F., Eicheler, W., Dorfler, A., Zips, D., Heider, K. H., et al. (2012). Combined treatment of the immunoconjugate bivatuzumab mertansine and fractionated irradiation improves local tumour control in vivo. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 102, 444–449.

    CAS  Google Scholar 

  227. Zelefsky, M. J., Yamada, Y., Fuks, Z., Zhang, Z., Hunt, M., Cahlon, O., et al. (2008). Long-term results of conformal radiotherapy for prostate cancer: impact of dose escalation on biochemical tumor control and distant metastases-free survival outcomes. International Journal of Radiation Oncology, Biology, Physics, 71, 1028–1033.

    PubMed  Google Scholar 

  228. Probert, J. C., & Parker, B. R. (1975). The effects of radiation therapy on bone growth. Radiology, 114, 155–162.

    CAS  PubMed  Google Scholar 

  229. Zietman, A. L., DeSilvio, M. L., Slater, J. D., Rossi, C. J., Jr., Miller, D. W., Adams, J. A., et al. (2005). Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA: The Journal of the American Medical Association, 294, 1233–1239.

    CAS  Google Scholar 

  230. Zietman, A. L., Shipley, W. U., & Willett, C. G. (1993). Residual disease after radical surgery or radiation therapy for prostate cancer. Clinical significance and therapeutic implications. Cancer, 71, 959–969.

    CAS  PubMed  Google Scholar 

  231. Inayat, M. S., Chendil, D., Mohiuddin, M., Elford, H. L., Gallicchio, V. S., & Ahmed, M. M. (2002). Didox (a novel ribonucleotide reductase inhibitor) overcomes Bcl-2 mediated radiation resistance in prostate cancer cell line PC-3. Cancer Biology & Therapy, 1, 539–545.

    Google Scholar 

  232. Pajonk, F., van Ophoven, A., Weissenberger, C., & McBride, W. H. (2005). The proteasome inhibitor MG-132 sensitizes PC-3 prostate cancer cells to ionizing radiation by a DNA-PK-independent mechanism. BMC Cancer, 5, 76.

    PubMed Central  PubMed  Google Scholar 

  233. Husbeck, B., Peehl, D. M., & Knox, S. J. (2005). Redox modulation of human prostate carcinoma cells by selenite increases radiation-induced cell killing. Free Radical Biology & Medicine, 38, 50–57.

    CAS  Google Scholar 

  234. An, J., Chervin, A. S., Nie, A., Ducoff, H. S., & Huang, Z. (2007). Overcoming the radioresistance of prostate cancer cells with a novel Bcl-2 inhibitor. Oncogene, 26, 652–661.

    CAS  PubMed  Google Scholar 

  235. Supiot, S., Hill, R. P., & Bristow, R. G. (2008). Nutlin-3 radiosensitizes hypoxic prostate cancer cells independent of p53. Molecular Cancer Therapeutics, 7, 993–999.

    CAS  PubMed  Google Scholar 

  236. Handrick, R., Ganswindt, U., Faltin, H., Goecke, B., Daniel, P. T., Budach, W., et al. (2009). Combined action of celecoxib and ionizing radiation in prostate cancer cells is independent of pro-apoptotic Bax. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 90, 413–421.

    CAS  Google Scholar 

  237. Tian, J., Ning, S., & Knox, S. J. (2010). Sodium selenite radiosensitizes hormone-refractory prostate cancer xenograft tumors but not intestinal crypt cells in vivo. International Journal of Radiation Oncology, Biology, Physics, 78, 230–236.

    CAS  PubMed  Google Scholar 

  238. Barreto-Andrade, J. C., Efimova, E. V., Mauceri, H. J., Beckett, M. A., Sutton, H. G., Darga, T. E., et al. (2011). Response of human prostate cancer cells and tumors to combining PARP inhibition with ionizing radiation. Molecular Cancer Therapeutics, 10, 1185–1193.

    CAS  PubMed Central  PubMed  Google Scholar 

  239. Gao, Y., Ishiyama, H., Sun, M., Brinkman, K. L., Wang, X., Zhu, J., et al. (2011). The alkylphospholipid, perifosine, radiosensitizes prostate cancer cells both in vitro and in vivo. Radiation Oncology (London, England), 6, 39.

    CAS  Google Scholar 

  240. Bridges, K. A., Hirai, H., Buser, C. A., Brooks, C., Liu, H., Buchholz, T. A., et al. (2011). MK-1775, a novel Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 17, 5638–5648.

    CAS  Google Scholar 

  241. Rochester, M. A., Riedemann, J., Hellawell, G. O., Brewster, S. F., & Macaulay, V. M. (2005). Silencing of the IGF1R gene enhances sensitivity to DNA-damaging agents in both PTEN wild-type and mutant human prostate cancer. Cancer Gene Therapy, 12, 90–100.

    CAS  PubMed  Google Scholar 

  242. Huamani, J., Willey, C., Thotala, D., Niermann, K. J., Reyzer, M., Leavitt, L., et al. (2008). Differential efficacy of combined therapy with radiation and AEE788 in high and low EGFR-expressing androgen-independent prostate tumor models. International Journal of Radiation Oncology, Biology, Physics, 71, 237–246.

    CAS  PubMed Central  PubMed  Google Scholar 

  243. Wagener, M., Zhang, X., Villarreal, H. G., Levy, L., Allen, P., Shentu, S., et al. (2008). Effect of combining anti-epidermal growth factor receptor antibody C225 and radiation on DU145 prostate cancer. Oncology Reports, 19, 1071–1077.

    CAS  PubMed  Google Scholar 

  244. Matsubara, A., Teishima, J., Mirkhat, S., Yasumoto, H., Mochizuki, H., Seki, M., et al. (2008). Restoration of FGF receptor type 2 enhances radiosensitivity of hormone-refractory human prostate carcinoma PC-3 cells. Anticancer Research, 28, 2141–2146.

    PubMed  Google Scholar 

  245. Timke, C., Zieher, H., Roth, A., Hauser, K., Lipson, K. E., Weber, K. J., et al. (2008). Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improves radiation tumor therapy. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 14, 2210–2219.

    CAS  Google Scholar 

  246. Xu, Y., Fang, F., Sun, Y., St Clair, D. K., & St Clair, W. H. (2010). RelB-dependent differential radiosensitization effect of STI571 on prostate cancer cells. Molecular Cancer Therapeutics, 9, 803–812.

    CAS  PubMed Central  PubMed  Google Scholar 

  247. Isebaert, S. F., Swinnen, J. V., McBride, W. H., & Haustermans, K. M. (2011). Insulin-like growth factor-type 1 receptor inhibitor NVP-AEW541 enhances radiosensitivity of PTEN wild-type but not PTEN-deficient human prostate cancer cells. International Journal Of Radiation Oncology, Biology, Physics, 81, 239–247.

    CAS  PubMed  Google Scholar 

  248. Brooks, C., Sheu, T., Bridges, K., Mason, K., Kuban, D., Mathew, P., et al. (2012). Preclinical evaluation of sunitinib, a multi-tyrosine kinase inhibitor, as a radiosensitizer for human prostate cancer. Radiation Oncology, 7, 154.

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Colletier, P. J., Ashoori, F., Cowen, D., Meyn, R. E., Tofilon, P., Meistrich, M. E., et al. (2000). Adenoviral-mediated p53 transgene expression sensitizes both wild-type and null p53 prostate cancer cells in vitro to radiation. International Journal of Radiation Oncology, Biology, Physics, 48, 1507–1512.

    CAS  PubMed  Google Scholar 

  250. Sasaki, R., Shirakawa, T., Zhang, Z. J., Tamekane, A., Matsumoto, A., Sugimura, K., et al. (2001). Additional gene therapy with Ad5CMV-p53 enhanced the efficacy of radiotherapy in human prostate cancer cells. International Journal of Radiation Oncology, Biology, Physics, 51, 1336–1345.

    CAS  PubMed  Google Scholar 

  251. Kaliberov, S. A., Kaliberova, L. N., & Buchsbaum, D. J. (2005). Combined ionizing radiation and sKDR gene delivery for treatment of prostate carcinomas. Gene Therapy, 12, 407–417.

    CAS  PubMed  Google Scholar 

  252. Mu, Z., Hachem, P., Agrawal, S., & Pollack, A. (2004). Antisense MDM2 sensitizes prostate cancer cells to androgen deprivation, radiation, and the combination. International Journal of Radiation Oncology, Biology, Physics, 58, 336–343.

    CAS  PubMed  Google Scholar 

  253. Truman, J. P., Gueven, N., Lavin, M., Leibel, S., Kolesnick, R., Fuks, Z., et al. (2005). Down-regulation of ATM protein sensitizes human prostate cancer cells to radiation-induced apoptosis. The Journal of Biological Chemistry, 280, 23262–23272.

    CAS  PubMed Central  PubMed  Google Scholar 

  254. Teimourian, S., Jalal, R., Sohrabpour, M., & Goliaei, B. (2006). Down-regulation of Hsp27 radiosensitizes human prostate cancer cells. International Journal of Urology: Official Journal of the Japanese Urological Association, 13, 1221–1225.

    CAS  Google Scholar 

  255. Anai, S., Goodison, S., Shiverick, K., Hirao, Y., Brown, B. D., & Rosser, C. J. (2007). Knock-down of Bcl-2 by antisense oligodeoxynucleotides induces radiosensitization and inhibition of angiogenesis in human PC-3 prostate tumor xenografts. Molecular Cancer Therapeutics, 6, 101–111.

    CAS  PubMed  Google Scholar 

  256. Stoyanova, R., Hachem, P., Hensley, H., Khor, L. Y., Mu, Z., Hammond, M. E., et al. (2007). Antisense-MDM2 sensitizes LNCaP prostate cancer cells to androgen deprivation, radiation, and the combination in vivo. International Journal of Radiation Oncology, Biology, Physics, 68, 1151–1160.

    CAS  PubMed Central  PubMed  Google Scholar 

  257. Udayakumar, T. S., Hachem, P., Ahmed, M. M., Agrawal, S., & Pollack, A. (2008). Antisense MDM2 enhances E2F1-induced apoptosis and the combination sensitizes androgen-sensitive [corrected] and androgen-insensitive [corrected] prostate cancer cells to radiation. Molecular Cancer Research: MCR, 6, 1742–1754.

    CAS  PubMed Central  PubMed  Google Scholar 

  258. Udayakumar, T. S., Stoyanova, R., Hachem, P., Ahmed, M. M., & Pollack, A. (2011). Adenovirus E2F1 overexpression sensitizes LNCaP and PC3 prostate tumor cells to radiation in vivo. International Journal of Radiation Oncology, Biology, Physics, 79, 549–558.

    CAS  PubMed  Google Scholar 

  259. Chinnaiyan, P., Vallabhaneni, G., Armstrong, E., Huang, S. M., & Harari, P. M. (2005). Modulation of radiation response by histone deacetylase inhibition. International Journal of Radiation Oncology, Biology, Physics, 62, 223–229.

    CAS  PubMed  Google Scholar 

  260. Konsoula, Z., Cao, H., Velena, A., & Jung, M. (2011). Adamantanyl-histone deacetylase inhibitor H6CAHA exhibits favorable pharmacokinetics and augments prostate cancer radiation sensitivity. International Journal of Radiation Oncology, Biology, Physics, 79, 1541–1548.

    CAS  PubMed  Google Scholar 

  261. Chen, X., Wong, J. Y., Wong, P., & Radany, E. H. (2011). Low-dose valproic acid enhances radiosensitivity of prostate cancer through acetylated p53-dependent modulation of mitochondrial membrane potential and apoptosis. Molecular Cancer Research: MCR, 9, 448–461.

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Xu, L., Yang, D., Wang, S., Tang, W., Liu, M., Davis, M., et al. (2005). (-)-Gossypol enhances response to radiation therapy and results in tumor regression of human prostate cancer. Molecular Cancer Therapeutics, 4, 197–205.

    CAS  PubMed  Google Scholar 

  263. Romero, J., Zapata, I., Cordoba, S., Jimeno, J. M., Lopez-Martin, J. A., Tercero, J. C., et al. (2008). In vitro radiosensitisation by trabectedin in human cancer cell lines. European Journal of Cancer, 44, 1726–1733.

    CAS  PubMed  Google Scholar 

  264. Kozakai, N., Kikuchi, E., Hasegawa, M., Suzuki, E., Ide, H., Miyajima, A., et al. (2012). Enhancement of radiosensitivity by a unique novel NF-kappaB inhibitor, DHMEQ, in prostate cancer. British Journal of Cancer, 107, 652–657.

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Chiu, H. W., Fang, W. H., Chen, Y. L., Wu, M. D., Yuan, G. F., Ho, S. Y., et al. (2012). Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PloS ONE, 7, e40462.

    CAS  PubMed Central  PubMed  Google Scholar 

  266. Woynarowska, B. A., Roberts, K., Woynarowski, J. M., MacDonald, J. R., & Herman, T. S. (2000). Targeting apoptosis by hydroxymethylacylfulvene in combination with gamma radiation in prostate tumor cells. Radiation Research, 154, 429–438.

    CAS  PubMed  Google Scholar 

  267. Hillman, G. G., Forman, J. D., Kucuk, O., Yudelev, M., Maughan, R. L., Rubio, J., et al. (2001). Genistein potentiates the radiation effect on prostate carcinoma cells. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 7, 382–390.

    CAS  Google Scholar 

  268. Hillman, G. G., Wang, Y., Kucuk, O., Che, M., Doerge, D. R., Yudelev, M., et al. (2004). Genistein potentiates inhibition of tumor growth by radiation in a prostate cancer orthotopic model. Molecular Cancer Therapeutics, 3, 1271–1279.

    CAS  PubMed  Google Scholar 

  269. Algur, E., Macklis, R. M., & Hafeli, U. O. (2005). Synergistic cytotoxic effects of zoledronic acid and radiation in human prostate cancer and myeloma cell lines. International Journal of Radiation Oncology, Biology, Physics, 61, 535–542.

    CAS  PubMed  Google Scholar 

  270. Raffoul, J. J., Wang, Y., Kucuk, O., Forman, J. D., Sarkar, F. H., & Hillman, G. G. (2006). Genistein inhibits radiation-induced activation of NF-kappaB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer, 6, 107.

    PubMed Central  PubMed  Google Scholar 

  271. Warren, G., Grimes, K., Xu, Y., Kudrimoti, M., & St Clair, W. (2006). Selectively enhanced radiation sensitivity in prostate cancer cells associated with proteasome inhibition. Oncology Reports, 15, 1287–1291.

    CAS  PubMed  Google Scholar 

  272. Suzuki, M., Amano, M., Choi, J., Park, H. J., Williams, B. W., Ono, K., et al. (2006). Synergistic effects of radiation and beta-lapachone in DU-145 human prostate cancer cells in vitro. Radiation Research, 165, 525–531.

    CAS  PubMed  Google Scholar 

  273. Raffoul, J. J., Banerjee, S., Che, M., Knoll, Z. E., Doerge, D. R., Abrams, J., et al. (2007). Soy isoflavones enhance radiotherapy in a metastatic prostate cancer model. International Journal of Cancer. Journal International Du Cancer, 120, 2491–2498.

    CAS  PubMed  Google Scholar 

  274. Stewart, G. D., Nanda, J., Katz, E., Bowman, K. J., Christie, J. G., Brown, D. J., et al. (2011). DNA strand breaks and hypoxia response inhibition mediate the radiosensitisation effect of nitric oxide donors on prostate cancer under varying oxygen conditions. Biochemical Pharmacology, 81, 203–210.

    CAS  PubMed  Google Scholar 

  275. Hussain, T., Gupta, S., & Mukhtar, H. (2003). Cyclooxygenase-2 and prostate carcinogenesis. Cancer Letters, 191, 125–135.

    CAS  PubMed  Google Scholar 

  276. Steinauer, K. K., Gibbs, I., Ning, S., French, J. N., Armstrong, J., & Knox, S. J. (2000). Radiation induces upregulation of cyclooxygenase-2 (COX-2) protein in PC-3 cells. International Journal of Radiation Oncology, Biology, Physics, 48, 325–328.

    CAS  PubMed  Google Scholar 

  277. Ganswindt, U., Budach, W., Jendrossek, V., Becker, G., Bamberg, M., & Belka, C. (2006). Combination of celecoxib with percutaneous radiotherapy in patients with localised prostate cancer—a phase I study. Radiation Oncology (London, England), 1, 9.

    CAS  Google Scholar 

  278. Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science, 303, 844–848.

    CAS  PubMed  Google Scholar 

  279. Cao, W., Yacoub, S., Shiverick, K. T., Namiki, K., Sakai, Y., Porvasnik, S., et al. (2008). Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation. The Prostate, 68, 1223–1231.

    CAS  PubMed  Google Scholar 

  280. Li, B., Shi, X. B., Nori, D., Chao, C. K., Chen, A. M., Valicenti, R., et al. (2011). Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells. The Prostate, 71, 567–574.

    CAS  PubMed  Google Scholar 

  281. Traxler, P., Allegrini, P. R., Brandt, R., Brueggen, J., Cozens, R., Fabbro, D., et al. (2004). AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Research, 64, 4931–4941.

    CAS  PubMed  Google Scholar 

  282. Motzer, R. J., Hoosen, S., Bello, C. L., & Christensen, J. G. (2006). Sunitinib malate for the treatment of solid tumours: a review of current clinical data. Expert Opinion on Investigational Drugs, 15, 553–561.

    CAS  PubMed  Google Scholar 

  283. Kastan, M. B., Canman, C. E., & Leonard, C. J. (1995). P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Reviews, 14, 3–15.

    CAS  PubMed  Google Scholar 

  284. Prince, H. M., Bishton, M. J., & Johnstone, R. W. (2009). Panobinostat (LBH589): a potent pan-deacetylase inhibitor with promising activity against hematologic and solid tumors. Future Oncology, 5, 601–612.

    CAS  PubMed  Google Scholar 

  285. Kitada, S., Leone, M., Sareth, S., Zhai, D., Reed, J. C., & Pellecchia, M. (2003). Discovery, characterization, and structure-activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. Journal of Medicinal Chemistry, 46, 4259–4264.

    CAS  PubMed  Google Scholar 

  286. Zhang, M., Liu, H., Guo, R., Ling, Y., Wu, X., Li, B., et al. (2003). Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells. Biochemical Pharmacology, 66, 93–103.

    CAS  PubMed  Google Scholar 

  287. Zhang, S., Ong, C. N., & Shen, H. M. (2004). Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Letters, 208, 143–153.

    CAS  PubMed  Google Scholar 

  288. Kim, J. H., Liu, L., Lee, S. O., Kim, Y. T., You, K. R., & Kim, D. G. (2005). Susceptibility of cholangiocarcinoma cells to parthenolide-induced apoptosis. Cancer Research, 65, 6312–6320.

    CAS  PubMed  Google Scholar 

  289. Matsumoto, N., Ariga, A., To-e, S., Nakamura, H., Agata, N., Hirano, S., et al. (2000). Synthesis of NF-kappaB activation inhibitors derived from epoxyquinomicin C. Bioorganic & Medicinal Chemistry Letters, 10, 865–869.

    CAS  Google Scholar 

  290. Knight, D. C., & Eden, J. A. (1996). A review of the clinical effects of phytoestrogens. Obstetrics and Gynecology, 87, 897–904.

    CAS  PubMed  Google Scholar 

  291. Wang, Y., Raffoul, J. J., Che, M., Doerge, D. R., Joiner, M. C., Kucuk, O., et al. (2006). Prostate cancer treatment is enhanced by genistein in vitro and in vivo in a syngeneic orthotopic tumor model. Radiation Research, 166, 73–80.

    CAS  PubMed  Google Scholar 

  292. Raffoul, J. J., Banerjee, S., Singh-Gupta, V., Knoll, Z. E., Fite, A., Zhang, H., et al. (2007). Down-regulation of apurinic/apyrimidinic endonuclease 1/redox factor-1 expression by soy isoflavones enhances prostate cancer radiotherapy in vitro and in vivo. Cancer Research, 67, 2141–2149.

    CAS  PubMed  Google Scholar 

  293. Bibault, J. E., Fumagalli, I., Ferte, C., Chargari, C., Soria, J. C., & Deutsch, E. (2013). Personalized radiation therapy and biomarker-driven treatment strategies: a systematic review. Cancer Metastasis Reviews, 32, 479–92.

    CAS  PubMed  Google Scholar 

  294. Vlashi, E., Kim, K., Lagadec, C., Donna, L. D., McDonald, J. T., Eghbali, M., et al. (2009). In vivo imaging, tracking, and targeting of cancer stem cells. Journal of the National Cancer Institute, 101, 350–359.

    CAS  PubMed Central  PubMed  Google Scholar 

  295. Diehn, M., & Clarke, M. F. (2006). Cancer stem cells and radiotherapy: new insights into tumor radioresistance. Journal of the National Cancer Institute, 98, 1755–1757.

    PubMed  Google Scholar 

Download references

Acknowledgments

Our prostate cancer radiation research project was supported in part by a NH&MRC Career Development Fellowship; Cancer Research Trust Fund at Cancer Care Centre, St George Hospital; and Prostate and Breast Cancer Foundation. The authors thank the technical support from Mr Ken Hopper, Mr Ese Enari, Mr Alex Wallace, and Mr Peter Treacy from the Cancer Care Centre, Sydney, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, L., Graham, P.H., Hao, J. et al. Emerging roles of radioresistance in prostate cancer metastasis and radiation therapy. Cancer Metastasis Rev 33, 469–496 (2014). https://doi.org/10.1007/s10555-014-9493-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9493-5

Keywords

Navigation