Cancer and Metastasis Reviews

, Volume 32, Issue 3–4, pp 377–389 | Cite as

Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos

  • Tamara A. PotapovaEmail author
  • Jin Zhu
  • Rong Li


Aneuploidy and chromosomal instability frequently co-exist, and aneuploidy is recognized as a direct outcome of chromosomal instability. However, chromosomal instability is widely viewed as a consequence of mutations in genes involved in DNA replication, chromosome segregation, and cell cycle checkpoints. Telomere attrition and presence of extra centrosomes have also been recognized as causative for errors in genomic transmission. Here, we examine recent studies suggesting that aneuploidy itself can be responsible for the procreation of chromosomal instability. Evidence from both yeast and mammalian experimental models suggests that changes in chromosome copy number can cause changes in dosage of the products of many genes located on aneuploid chromosomes. These effects on gene expression can alter the balanced stoichiometry of various protein complexes, causing perturbations of their functions. Therefore, phenotypic consequences of aneuploidy will include chromosomal instability if the balanced stoichiometry of protein machineries responsible for accurate chromosome segregation is affected enough to perturb the function. The degree of chromosomal instability will depend on specific karyotypic changes, which may be due to dosage imbalances of specific genes or lack of scaling between chromosome segregation load and the capacity of the mitotic system. We propose that the relationship between aneuploidy and chromosomal instability can be envisioned as a “vicious cycle,” where aneuploidy potentiates chromosomal instability leading to further karyotype diversity in the affected population.


Aneuploidy Chromosomal instability Mitotic checkpoint Gene dosage 



We would like to thank Guangbo Chen and members of the Rong Li lab for their insightful discussions, Gary Gorbsky for comments on the manuscript, and Mary Toth for help with review preparation. This work was supported by the NIH grant RO1-GM059964 to Rong Li. Tamara Potapova was supported by a Postdoctoral Fellowship, PF-12-129-01-CCG from the American Cancer Society. Jin Zhu is a graduate student registered with the Open University.


  1. 1.
    Chimpanzee Sequencing and Analysis Consortium. (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87.CrossRefGoogle Scholar
  2. 2.
    Dobzhansky, T. (Ed.). (1951). Genetics and the origin of species (3rd ed., pp. 73–118). New York: Columbia University Press.Google Scholar
  3. 3.
    Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMedCrossRefGoogle Scholar
  4. 4.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Anders, K., Kudrna, J., Keller, K., Kinghorn, B., Miller, E., et al. (2009). A strategy for constructing aneuploid yeast strains by transient nondisjunction of a target chromosome. BMC Genetics, 10, 36.PubMedCrossRefGoogle Scholar
  6. 6.
    Torres, E. M., Sokolsky, T., Tucker, C. M., Chan, L. Y., Boselli, M., et al. (2007). Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science, 317, 916–924.PubMedCrossRefGoogle Scholar
  7. 7.
    Ezov, T. K., Boger-Nadjar, E., Frenkel, Z., Katsperovski, I., Kemeny, S., et al. (2006). Molecular-genetic biodiversity in a natural population of the yeast Saccharomyces cerevisiae from “Evolution Canyon”: microsatellite polymorphism, ploidy and controversial sexual status. Genetics, 174, 1455–1468.PubMedCrossRefGoogle Scholar
  8. 8.
    Hughes T. R., Roberts C. J., Dai H., Jones A. R., Meyer M. R., et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet, 25, 333–337.Google Scholar
  9. 9.
    Parry, E. M., & Cox, B. S. (1970). The tolerance of aneuploidy in yeast. Genetical Research, 16, 333–340.PubMedCrossRefGoogle Scholar
  10. 10.
    Campbell, D., Doctor, J. S., Feuersanger, J. H., & Doolittle, M. M. (1981). Differential mitotic stability of yeast disomes derived from triploid meiosis. Genetics, 98, 239–255.PubMedGoogle Scholar
  11. 11.
    Charles, J. S., Hamilton, M. L., & Petes, T. D. (2010). Meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae. Genetics, 186, 537–550.CrossRefGoogle Scholar
  12. 12.
    Pavelka, N., Rancati, G., Zhu, J., Bradford, W. D., Saraf, A., et al. (2010). Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature, 468, 321–325.PubMedCrossRefGoogle Scholar
  13. 13.
    Sheltzer, J. M., Blank, H. M., Pfau, S. J., Tange, Y., George, B. M., et al. (2011). Aneuploidy drives genomic instability in yeast. Science, 333, 1026–1030.PubMedCrossRefGoogle Scholar
  14. 14.
    Waghmare, S. K., & Bruschi, C. V. (2005). Differential chromosome control of ploidy in the yeast Saccharomyces cerevisiae. Yeast, 22, 625–639.PubMedCrossRefGoogle Scholar
  15. 15.
    Zang, Y., Garrè, M., Gjuracic, K., & Bruschi, C. V. (2002). Chromosome V loss due to centromere knockout or MAD2-deletion is immediately followed by restitution of homozygous diploidy in Saccharomyces cerevisiae. Yeast, 19, 553–564.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhu, J., Pavelka, N., Bradford, W. D., Rancati, G., & Li, R. (2012). Karyotypic determinants of chromosome instability in aneuploid budding yeast. PLoS Genetics, 8, e1002719.PubMedCrossRefGoogle Scholar
  17. 17.
    Koncz, C., Chua, N.-H., Schell, J. (1992). Methods in arabidopsis research (pp. 496). Singapore: World Scientific Publishing.Google Scholar
  18. 18.
    Papp, I., Iglesias, V. A., Moscone, E. A., Michalowski, S., Spiker, S., et al. (1996). Structural instability of a transgene locus in tobacco is associated with aneuploidy. The Plant Journal, 10, 469–478.PubMedCrossRefGoogle Scholar
  19. 19.
    Hernandez, D., & Fisher, E. M. (1999). Mouse autosomal trisomy: two's company, three's a crowd. Trends in Genetics, 15, 241–247.PubMedCrossRefGoogle Scholar
  20. 20.
    Reish, O., Regev, M., Kanesky, A., Girafi, S., & Mashevich, M. (2011). Sporadic aneuploidy in PHA-stimulated lymphocytes of trisomies 21, 18, and 13. Cytogenetic and Genome Research, 133, 184–189.PubMedCrossRefGoogle Scholar
  21. 21.
    Reish, O., Brosh, N., Gobazov, R., Rosenblat, M., Libman, V., et al. (2006). Sporadic aneuploidy in PHA-stimulated lymphocytes of Turner's syndrome patients. Chromosome Research, 14, 527–534.PubMedCrossRefGoogle Scholar
  22. 22.
    Khan, I., Malinge, S., & Crispino, J. (2011). Myeloid leukemia in Down syndrome. Critical Reviews in Oncogenesis, 16, 25–36.PubMedCrossRefGoogle Scholar
  23. 23.
    Schoemaker, M. J., Swerdlow, A. J., Higgins, C. D., Wright, A. F., & Jacobs, P. A. (2008). Cancer incidence in women with Turner syndrome in Great Britain: a national cohort study. The Lancet Oncology, 9, 239–246.PubMedCrossRefGoogle Scholar
  24. 24.
    Swerdlow, A. J., Schoemaker, M. J., Higgins, C. D., Wright, A. F., & Jacobs, P. A. (2005). Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. Journal of the National Cancer Institute, 97, 1204–1210.PubMedCrossRefGoogle Scholar
  25. 25.
    Higgins, C. D., Swerdlow, A. J., Schoemaker, M. J., Wright, A. F., & Jacobs, P. A. (2007). Mortality and cancer incidence in males with Y polysomy in Britain: a cohort study. Human Genetics, 121, 691–696.PubMedCrossRefGoogle Scholar
  26. 26.
    Friedberg, E. C., Henning, K., Lambert, C., Saxon, P. J., Schultz, R. A., et al. (1990). Microcell-mediated chromosome transfer: a strategy for studying the genetics and molecular pathology of human hereditary diseases with abnormal responses to DNA damage. Basic Life Sciences, 52, 257–267.PubMedGoogle Scholar
  27. 27.
    Nawata, H., Kashino, G., Tano, K., Daino, K., Shimada, Y., et al. (2011). Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes. PLoS One, 6, e25319.PubMedCrossRefGoogle Scholar
  28. 28.
    Kost-Alimova, M., Fedorova, L., Yang, Y., Klein, G., & Imreh, S. (2004). Microcell-mediated chromosome transfer provides evidence that polysomy promotes structural instability in tumor cell chromosomes through asynchronous replication and breakage within late-replicating regions. Genes, Chromosomes & Cancer, 40, 316–324.CrossRefGoogle Scholar
  29. 29.
    Thompson, S. L., & Compton, D. A. (2010). Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. The Journal of Cell Biology, 188, 369–381.PubMedCrossRefGoogle Scholar
  30. 30.
    Upender, M. B., Habermann, J. K., McShane, L. M., Korn, E. L., Barrett, J. C., et al. (2004). Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells. Cancer Research, 64, 6941–6949.PubMedCrossRefGoogle Scholar
  31. 31.
    Stingele, S., Stoehr, G., Peplowska, K., Cox, J., Mann, M., et al. (2012). Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Molecular Systems Biology, 8, 608.PubMedCrossRefGoogle Scholar
  32. 32.
    Williams, B. R., Prabhu, V. R., Hunter, K. E., Glazier, C. M., Whittaker, C. A., et al. (2008). Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science, 322, 703–709.PubMedCrossRefGoogle Scholar
  33. 33.
    Hughes, T. R., Roberts, C. J., Dai, H., Jones, A. R., Meyer, M. R., et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nature Genetics, 25, 333–337.PubMedCrossRefGoogle Scholar
  34. 34.
    Rancati, G., Pavelka, N., Fleharty, B., Noll, A., Trimble, R., et al. (2008). Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell, 135, 879–893.PubMedCrossRefGoogle Scholar
  35. 35.
    Mao, R., Zielke, C. L., Zielke, H. R., & Pevsner, J. (2003). Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics, 81, 457–467.PubMedCrossRefGoogle Scholar
  36. 36.
    FitzPatrick, D. R., Ramsay, J., McGill, N. I., Shade, M., Carothers, A. D., et al. (2002). Transcriptome analysis of human autosomal trisomy. Human Molecular Genetics, 11, 3249–3256.PubMedCrossRefGoogle Scholar
  37. 37.
    Ait Yahya-Graison, E., Aubert, J., Dauphinot, L., Rivals, I., Prieur, M., et al. (2007). Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. American Journal of Human Genetics, 81, 475–491.PubMedCrossRefGoogle Scholar
  38. 38.
    Torres, E. M., Dephoure, N., Panneerselvam, A., Tucker, C. M., Whittaker, C. A., et al. (2010). Identification of aneuploidy-tolerating mutations. Cell, 143, 71–83.PubMedCrossRefGoogle Scholar
  39. 39.
    Barnhart, E. L., Dorer, R. K., Murray, A. W., & Schuyler, S. C. (2011). Reduced Mad2 expression keeps relaxed kinetochores from arresting budding yeast in mitosis. Molecular Biology of the Cell, 22, 2448–2457.PubMedCrossRefGoogle Scholar
  40. 40.
    Musacchio, A., & Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time. Nature Reviews Molecular Cell Biology, 8, 379–393.PubMedCrossRefGoogle Scholar
  41. 41.
    Iwanaga, Y., Chi, Y. H., Miyazato, A., Sheleg, S., Haller, K., et al. (2007). Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Research, 67, 160–166.PubMedCrossRefGoogle Scholar
  42. 42.
    Sotillo, R., Schvartzman, J. M., Socci, N. D., & Benezra, R. (2010). Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature, 464, 436–440.PubMedCrossRefGoogle Scholar
  43. 43.
    Weaver, B. A., Bonday, Z. Q., Putkey, F. R., Kops, G. J., Silk, A. D., et al. (2003). Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. The Journal of Cell Biology, 162, 551–563.PubMedCrossRefGoogle Scholar
  44. 44.
    Baker, D. J., Jin, F., Jeganathan, K. B., & van Deursen, J. M. (2009). Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell, 16, 475–486.PubMedCrossRefGoogle Scholar
  45. 45.
    Hartman, T. K., Wengenack, T. M., Poduslo, J. F., & van Deursen, J. M. (2007). Mutant mice with small amounts of BubR1 display accelerated age-related gliosis. Neurobiology of Aging, 28, 921–927.PubMedCrossRefGoogle Scholar
  46. 46.
    Baker, D. J., Jeganathan, K. B., Malureanu, L., Perez-Terzic, C., Terzic, A., et al. (2006). Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice. The Journal of Cell Biology, 172, 529–540.PubMedCrossRefGoogle Scholar
  47. 47.
    Storchova, Z., & Kuffer, C. (2008). The consequences of tetraploidy and aneuploidy. Journal of Cell Science, 121, 3859–3866.PubMedCrossRefGoogle Scholar
  48. 48.
    Ryan, S. D., Britigan, E. M., Zasadil, L. M., Witte, K., Audhya, A., et al. (2012). Up-regulation of the mitotic checkpoint component Mad1 causes chromosomal instability and resistance to microtubule poisons. Proceedings of the National Academy of Sciences of the United States of America, 109, E2205–E2214.PubMedCrossRefGoogle Scholar
  49. 49.
    Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., et al. (2007). Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 11, 9–23.PubMedCrossRefGoogle Scholar
  50. 50.
    Ricke, R. M., Jeganathan, K. B., & van Deursen, J. M. (2011). Bub1 overexpression induces aneuploidy and tumor formation through Aurora B kinase hyperactivation. The Journal of Cell Biology, 193, 1049–1064.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang, N., Ge, G., Meyer, R., Sethi, S., Basu, D., et al. (2008). Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 105, 13033–13038.PubMedCrossRefGoogle Scholar
  52. 52.
    Yu, R., Lu, W., Chen, J., McCabe, C. J., & Melmed, S. (2003). Overexpressed pituitary tumor-transforming gene causes aneuploidy in live human cells. Endocrinology, 144, 4991–4998.PubMedCrossRefGoogle Scholar
  53. 53.
    Schvartzman, J. M., Duijf, P. H., Sotillo, R., Coker, C., & Benezra, R. (2011). Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell, 19, 701–714.PubMedCrossRefGoogle Scholar
  54. 54.
    Kabeche, L., & Compton, D. A. (2012). Checkpoint-independent stabilization of kinetochore-microtubule attachments by Mad2 in human cells. Current Biology, 22, 638–644.PubMedCrossRefGoogle Scholar
  55. 55.
    Ricke, R. M., & van Deursen, J. M. (2011). Aurora B hyperactivation by Bub1 overexpression promotes chromosome missegregation. Cell Cycle, 10, 3645–3651.PubMedCrossRefGoogle Scholar
  56. 56.
    Bakhoum, S. F., Thompson, S. L., Manning, A. L., & Compton, D. A. (2009). Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nature Cell Biology, 11, 27–35.PubMedCrossRefGoogle Scholar
  57. 57.
    Kline-Smith, S. L., Khodjakov, A., Hergert, P., & Walczak, C. E. (2004). Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Molecular Biology of the Cell, 15, 1146–1159.PubMedCrossRefGoogle Scholar
  58. 58.
    Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J., & Medema, R. H. (2011). Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science, 333, 1895–1898.PubMedCrossRefGoogle Scholar
  59. 59.
    Crasta, K., Ganem, N. J., Dagher, R., Lantermann, A. B., Ivanova, E. V., et al. (2012). DNA breaks and chromosome pulverization from errors in mitosis. Nature, 482, 53–58.PubMedCrossRefGoogle Scholar
  60. 60.
    Stevens, J. B., Liu, G., Bremer, S. W., Ye, K. J., Xu, W., et al. (2007). Mitotic cell death by chromosome fragmentation. Cancer Research, 67, 7686–7694.PubMedCrossRefGoogle Scholar
  61. 61.
    Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144, 27–40.PubMedCrossRefGoogle Scholar
  62. 62.
    Heng, H. H., Stevens, J. B., Bremer, S. W., Liu, G., Abdallah, B. Y., et al. (2011). Evolutionary mechanisms and diversity in cancer. Advances in Cancer Research, 112, 217–253.PubMedCrossRefGoogle Scholar
  63. 63.
    Normand, G., & King, R. W. (2010). Understanding cytokinesis failure. Advances in Experimental Medicine and Biology, 676, 27–55.PubMedCrossRefGoogle Scholar
  64. 64.
    Shi, Q., & King, R. W. (2005). Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature, 437, 1038–1042.PubMedCrossRefGoogle Scholar
  65. 65.
    Routhier, E. L., Burn, T. C., Abbaszade, I., Summers, M., Albright, C. F., et al. (2001). Human BIN3 complements the F-actin localization defects caused by loss of Hob3p, the fission yeast homolog of Rvs161p. Journal of Biological Chemistry, 276, 21670–21677.PubMedCrossRefGoogle Scholar
  66. 66.
    Kouranti, I., Sachse, M., Arouche, N., Goud, B., & Echard, A. (2006). Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Current Biology, 16, 1719–1725.PubMedCrossRefGoogle Scholar
  67. 67.
    Madaule, P., Eda, M., Watanabe, N., Fujisawa, K., Matsuoka, T., et al. (1998). Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature, 394, 491–494.PubMedCrossRefGoogle Scholar
  68. 68.
    Yuce, O., Piekny, A., & Glotzer, M. (2005). An ECT2-centralspindlin complex regulates the localization and function of RhoA. The Journal of Cell Biology, 170, 571–582.PubMedCrossRefGoogle Scholar
  69. 69.
    Therman, E., Trunca, C., Kuhn, E. M., & Sarto, G. E. (1986). Dicentric chromosomes and the inactivation of the centromere. Human Genetics, 72, 191–195.PubMedCrossRefGoogle Scholar
  70. 70.
    Acilan, C., Potter, D. M., & Saunders, W. S. (2007). DNA repair pathways involved in anaphase bridge formation. Genes, Chromosomes & Cancer, 46, 522–531.CrossRefGoogle Scholar
  71. 71.
    Steigemann, P., Wurzenberger, C., Schmitz, M. H., Held, M., Guizetti, J., et al. (2009). Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell, 136, 473–484.PubMedCrossRefGoogle Scholar
  72. 72.
    Nigg, E. A. (2006). Origins and consequences of centrosome aberrations in human cancers. International Journal of Cancer, 119, 2717–2723.CrossRefGoogle Scholar
  73. 73.
    Ganem, N. J., Godinho, S. A., & Pellman, D. (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature, 460, 278–282.PubMedCrossRefGoogle Scholar
  74. 74.
    Godinho, S. A., Kwon, M., & Pellman, D. (2009). Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer and Metastasis Reviews, 28, 85–98.PubMedCrossRefGoogle Scholar
  75. 75.
    Gisselsson, D., Jin, Y., Lindgren, D., Persson, J., Gisselsson, L., et al. (2010). Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 20489–20493.PubMedCrossRefGoogle Scholar
  76. 76.
    Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22, 2189–2203.CrossRefGoogle Scholar
  77. 77.
    Fujiwara, T., Bandi, M., Nitta, M., Ivanova, E. V., Bronson, R. T., et al. (2005). Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature, 437, 1043–1047.PubMedCrossRefGoogle Scholar
  78. 78.
    Ganem, N. J., Storchova, Z., & Pellman, D. (2007). Tetraploidy, aneuploidy and cancer. Current Opinion in Genetics and Development, 17, 157–162.PubMedCrossRefGoogle Scholar
  79. 79.
    Carter, S. L., Cibulskis, K., Helman, E., McKenna, A., Shen, H., et al. (2012). Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnology, 30, 413–421.PubMedCrossRefGoogle Scholar
  80. 80.
    Duncan, A. W., Taylor, M. H., Hickey, R. D., Hanlon Newell, A. E., Lenzi, M. L., et al. (2010). The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature, 467, 707–710.PubMedCrossRefGoogle Scholar
  81. 81.
    Duncan, A. W., Hanlon Newell, A. E., Smith, L., Wilson, E. M., Olson, S. B., et al. (2012). Frequent aneuploidy among normal human hepatocytes. Gastroenterology, 142, 25–28.PubMedCrossRefGoogle Scholar
  82. 82.
    Duncan, A. W., Hanlon Newell, A. E., Bi, W., Finegold, M. J., Olson, S. B., et al. (2012). Aneuploidy as a mechanism for stress-induced liver adaptation. The Journal of Clinical Investigation, 122, 3307–3315.PubMedCrossRefGoogle Scholar
  83. 83.
    Chen, G., Bradford, W. D., Seidel, C. W., & Li, R. (2012). Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature, 482, 246–250.PubMedGoogle Scholar
  84. 84.
    Albertson, D. G., Collins, C., McCormick, F., & Gray, J. W. (2003). Chromosome aberrations in solid tumors. Nature Genetics, 34, 369–376.PubMedCrossRefGoogle Scholar
  85. 85.
    Duesberg, P., Rausch, C., Rasnick, D., & Hehlmann, R. (1998). Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 95, 13692–13697.PubMedCrossRefGoogle Scholar
  86. 86.
    Gordon, D. J., Resio, B., & Pellman, D. (2012). Causes and consequences of aneuploidy in cancer. Nature Reviews Genetics, 13, 189–203.PubMedGoogle Scholar
  87. 87.
    Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25–36.PubMedCrossRefGoogle Scholar
  88. 88.
    Aylon, Y., & Oren, M. (2011). p53: guardian of ploidy. Molecular Oncology, 5, 315–323.PubMedCrossRefGoogle Scholar
  89. 89.
    Olivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor Perspectives in Biology, 2, a001008.PubMedCrossRefGoogle Scholar
  90. 90.
    Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R., & Lane, D. P. (2009). Awakening guardian angels: drugging the p53 pathway. Nature Reviews. Cancer, 9, 862–873.PubMedCrossRefGoogle Scholar
  91. 91.
    Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408, 307–310.PubMedCrossRefGoogle Scholar
  92. 92.
    Horn, H. F., & Vousden, K. H. (2007). Coping with stress: multiple ways to activate p53. Oncogene, 26, 1306–1316.PubMedCrossRefGoogle Scholar
  93. 93.
    Vousden, K. H., & Lane, D. P. (2007). p53 in health and disease. Nature Reviews Molecular Cell Biology, 8, 275–283.PubMedCrossRefGoogle Scholar
  94. 94.
    Tang, Y. C., Williams, B. R., Siegel, J. J., & Amon, A. (2011). Identification of aneuploidy-selective antiproliferation compounds. Cell, 144, 499–512.PubMedCrossRefGoogle Scholar
  95. 95.
    Rehen, S. K., Yung, Y. C., McCreight, M. P., Kaushal, D., Yang, A. H., et al. (2005). Constitutional aneuploidy in the normal human brain. Journal of Neuroscience, 25, 2176–2180.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Stowers Institute for Medical ResearchKansas CityUSA

Personalised recommendations