Skip to main content

Advertisement

Log in

Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Aneuploidy and chromosomal instability frequently co-exist, and aneuploidy is recognized as a direct outcome of chromosomal instability. However, chromosomal instability is widely viewed as a consequence of mutations in genes involved in DNA replication, chromosome segregation, and cell cycle checkpoints. Telomere attrition and presence of extra centrosomes have also been recognized as causative for errors in genomic transmission. Here, we examine recent studies suggesting that aneuploidy itself can be responsible for the procreation of chromosomal instability. Evidence from both yeast and mammalian experimental models suggests that changes in chromosome copy number can cause changes in dosage of the products of many genes located on aneuploid chromosomes. These effects on gene expression can alter the balanced stoichiometry of various protein complexes, causing perturbations of their functions. Therefore, phenotypic consequences of aneuploidy will include chromosomal instability if the balanced stoichiometry of protein machineries responsible for accurate chromosome segregation is affected enough to perturb the function. The degree of chromosomal instability will depend on specific karyotypic changes, which may be due to dosage imbalances of specific genes or lack of scaling between chromosome segregation load and the capacity of the mitotic system. We propose that the relationship between aneuploidy and chromosomal instability can be envisioned as a “vicious cycle,” where aneuploidy potentiates chromosomal instability leading to further karyotype diversity in the affected population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chimpanzee Sequencing and Analysis Consortium. (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87.

    Article  Google Scholar 

  2. Dobzhansky, T. (Ed.). (1951). Genetics and the origin of species (3rd ed., pp. 73–118). New York: Columbia University Press.

    Google Scholar 

  3. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.

    Article  PubMed  CAS  Google Scholar 

  4. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  5. Anders, K., Kudrna, J., Keller, K., Kinghorn, B., Miller, E., et al. (2009). A strategy for constructing aneuploid yeast strains by transient nondisjunction of a target chromosome. BMC Genetics, 10, 36.

    Article  PubMed  Google Scholar 

  6. Torres, E. M., Sokolsky, T., Tucker, C. M., Chan, L. Y., Boselli, M., et al. (2007). Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science, 317, 916–924.

    Article  PubMed  CAS  Google Scholar 

  7. Ezov, T. K., Boger-Nadjar, E., Frenkel, Z., Katsperovski, I., Kemeny, S., et al. (2006). Molecular-genetic biodiversity in a natural population of the yeast Saccharomyces cerevisiae from “Evolution Canyon”: microsatellite polymorphism, ploidy and controversial sexual status. Genetics, 174, 1455–1468.

    Article  PubMed  CAS  Google Scholar 

  8. Hughes T. R., Roberts C. J., Dai H., Jones A. R., Meyer M. R., et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet, 25, 333–337.

    Google Scholar 

  9. Parry, E. M., & Cox, B. S. (1970). The tolerance of aneuploidy in yeast. Genetical Research, 16, 333–340.

    Article  PubMed  CAS  Google Scholar 

  10. Campbell, D., Doctor, J. S., Feuersanger, J. H., & Doolittle, M. M. (1981). Differential mitotic stability of yeast disomes derived from triploid meiosis. Genetics, 98, 239–255.

    PubMed  CAS  Google Scholar 

  11. Charles, J. S., Hamilton, M. L., & Petes, T. D. (2010). Meiotic chromosome segregation in triploid strains of Saccharomyces cerevisiae. Genetics, 186, 537–550.

    Article  Google Scholar 

  12. Pavelka, N., Rancati, G., Zhu, J., Bradford, W. D., Saraf, A., et al. (2010). Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature, 468, 321–325.

    Article  PubMed  CAS  Google Scholar 

  13. Sheltzer, J. M., Blank, H. M., Pfau, S. J., Tange, Y., George, B. M., et al. (2011). Aneuploidy drives genomic instability in yeast. Science, 333, 1026–1030.

    Article  PubMed  CAS  Google Scholar 

  14. Waghmare, S. K., & Bruschi, C. V. (2005). Differential chromosome control of ploidy in the yeast Saccharomyces cerevisiae. Yeast, 22, 625–639.

    Article  PubMed  CAS  Google Scholar 

  15. Zang, Y., Garrè, M., Gjuracic, K., & Bruschi, C. V. (2002). Chromosome V loss due to centromere knockout or MAD2-deletion is immediately followed by restitution of homozygous diploidy in Saccharomyces cerevisiae. Yeast, 19, 553–564.

    Article  PubMed  CAS  Google Scholar 

  16. Zhu, J., Pavelka, N., Bradford, W. D., Rancati, G., & Li, R. (2012). Karyotypic determinants of chromosome instability in aneuploid budding yeast. PLoS Genetics, 8, e1002719.

    Article  PubMed  CAS  Google Scholar 

  17. Koncz, C., Chua, N.-H., Schell, J. (1992). Methods in arabidopsis research (pp. 496). Singapore: World Scientific Publishing.

  18. Papp, I., Iglesias, V. A., Moscone, E. A., Michalowski, S., Spiker, S., et al. (1996). Structural instability of a transgene locus in tobacco is associated with aneuploidy. The Plant Journal, 10, 469–478.

    Article  PubMed  CAS  Google Scholar 

  19. Hernandez, D., & Fisher, E. M. (1999). Mouse autosomal trisomy: two's company, three's a crowd. Trends in Genetics, 15, 241–247.

    Article  PubMed  CAS  Google Scholar 

  20. Reish, O., Regev, M., Kanesky, A., Girafi, S., & Mashevich, M. (2011). Sporadic aneuploidy in PHA-stimulated lymphocytes of trisomies 21, 18, and 13. Cytogenetic and Genome Research, 133, 184–189.

    Article  PubMed  CAS  Google Scholar 

  21. Reish, O., Brosh, N., Gobazov, R., Rosenblat, M., Libman, V., et al. (2006). Sporadic aneuploidy in PHA-stimulated lymphocytes of Turner's syndrome patients. Chromosome Research, 14, 527–534.

    Article  PubMed  CAS  Google Scholar 

  22. Khan, I., Malinge, S., & Crispino, J. (2011). Myeloid leukemia in Down syndrome. Critical Reviews in Oncogenesis, 16, 25–36.

    Article  PubMed  Google Scholar 

  23. Schoemaker, M. J., Swerdlow, A. J., Higgins, C. D., Wright, A. F., & Jacobs, P. A. (2008). Cancer incidence in women with Turner syndrome in Great Britain: a national cohort study. The Lancet Oncology, 9, 239–246.

    Article  PubMed  Google Scholar 

  24. Swerdlow, A. J., Schoemaker, M. J., Higgins, C. D., Wright, A. F., & Jacobs, P. A. (2005). Cancer incidence and mortality in men with Klinefelter syndrome: a cohort study. Journal of the National Cancer Institute, 97, 1204–1210.

    Article  PubMed  Google Scholar 

  25. Higgins, C. D., Swerdlow, A. J., Schoemaker, M. J., Wright, A. F., & Jacobs, P. A. (2007). Mortality and cancer incidence in males with Y polysomy in Britain: a cohort study. Human Genetics, 121, 691–696.

    Article  PubMed  Google Scholar 

  26. Friedberg, E. C., Henning, K., Lambert, C., Saxon, P. J., Schultz, R. A., et al. (1990). Microcell-mediated chromosome transfer: a strategy for studying the genetics and molecular pathology of human hereditary diseases with abnormal responses to DNA damage. Basic Life Sciences, 52, 257–267.

    PubMed  CAS  Google Scholar 

  27. Nawata, H., Kashino, G., Tano, K., Daino, K., Shimada, Y., et al. (2011). Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes. PLoS One, 6, e25319.

    Article  PubMed  CAS  Google Scholar 

  28. Kost-Alimova, M., Fedorova, L., Yang, Y., Klein, G., & Imreh, S. (2004). Microcell-mediated chromosome transfer provides evidence that polysomy promotes structural instability in tumor cell chromosomes through asynchronous replication and breakage within late-replicating regions. Genes, Chromosomes & Cancer, 40, 316–324.

    Article  CAS  Google Scholar 

  29. Thompson, S. L., & Compton, D. A. (2010). Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. The Journal of Cell Biology, 188, 369–381.

    Article  PubMed  CAS  Google Scholar 

  30. Upender, M. B., Habermann, J. K., McShane, L. M., Korn, E. L., Barrett, J. C., et al. (2004). Chromosome transfer induced aneuploidy results in complex dysregulation of the cellular transcriptome in immortalized and cancer cells. Cancer Research, 64, 6941–6949.

    Article  PubMed  CAS  Google Scholar 

  31. Stingele, S., Stoehr, G., Peplowska, K., Cox, J., Mann, M., et al. (2012). Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Molecular Systems Biology, 8, 608.

    Article  PubMed  Google Scholar 

  32. Williams, B. R., Prabhu, V. R., Hunter, K. E., Glazier, C. M., Whittaker, C. A., et al. (2008). Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science, 322, 703–709.

    Article  PubMed  CAS  Google Scholar 

  33. Hughes, T. R., Roberts, C. J., Dai, H., Jones, A. R., Meyer, M. R., et al. (2000). Widespread aneuploidy revealed by DNA microarray expression profiling. Nature Genetics, 25, 333–337.

    Article  PubMed  CAS  Google Scholar 

  34. Rancati, G., Pavelka, N., Fleharty, B., Noll, A., Trimble, R., et al. (2008). Aneuploidy underlies rapid adaptive evolution of yeast cells deprived of a conserved cytokinesis motor. Cell, 135, 879–893.

    Article  PubMed  CAS  Google Scholar 

  35. Mao, R., Zielke, C. L., Zielke, H. R., & Pevsner, J. (2003). Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics, 81, 457–467.

    Article  PubMed  CAS  Google Scholar 

  36. FitzPatrick, D. R., Ramsay, J., McGill, N. I., Shade, M., Carothers, A. D., et al. (2002). Transcriptome analysis of human autosomal trisomy. Human Molecular Genetics, 11, 3249–3256.

    Article  PubMed  CAS  Google Scholar 

  37. Ait Yahya-Graison, E., Aubert, J., Dauphinot, L., Rivals, I., Prieur, M., et al. (2007). Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. American Journal of Human Genetics, 81, 475–491.

    Article  PubMed  CAS  Google Scholar 

  38. Torres, E. M., Dephoure, N., Panneerselvam, A., Tucker, C. M., Whittaker, C. A., et al. (2010). Identification of aneuploidy-tolerating mutations. Cell, 143, 71–83.

    Article  PubMed  CAS  Google Scholar 

  39. Barnhart, E. L., Dorer, R. K., Murray, A. W., & Schuyler, S. C. (2011). Reduced Mad2 expression keeps relaxed kinetochores from arresting budding yeast in mitosis. Molecular Biology of the Cell, 22, 2448–2457.

    Article  PubMed  CAS  Google Scholar 

  40. Musacchio, A., & Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time. Nature Reviews Molecular Cell Biology, 8, 379–393.

    Article  PubMed  CAS  Google Scholar 

  41. Iwanaga, Y., Chi, Y. H., Miyazato, A., Sheleg, S., Haller, K., et al. (2007). Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Research, 67, 160–166.

    Article  PubMed  CAS  Google Scholar 

  42. Sotillo, R., Schvartzman, J. M., Socci, N. D., & Benezra, R. (2010). Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal. Nature, 464, 436–440.

    Article  PubMed  CAS  Google Scholar 

  43. Weaver, B. A., Bonday, Z. Q., Putkey, F. R., Kops, G. J., Silk, A. D., et al. (2003). Centromere-associated protein-E is essential for the mammalian mitotic checkpoint to prevent aneuploidy due to single chromosome loss. The Journal of Cell Biology, 162, 551–563.

    Article  PubMed  CAS  Google Scholar 

  44. Baker, D. J., Jin, F., Jeganathan, K. B., & van Deursen, J. M. (2009). Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell, 16, 475–486.

    Article  PubMed  CAS  Google Scholar 

  45. Hartman, T. K., Wengenack, T. M., Poduslo, J. F., & van Deursen, J. M. (2007). Mutant mice with small amounts of BubR1 display accelerated age-related gliosis. Neurobiology of Aging, 28, 921–927.

    Article  PubMed  CAS  Google Scholar 

  46. Baker, D. J., Jeganathan, K. B., Malureanu, L., Perez-Terzic, C., Terzic, A., et al. (2006). Early aging-associated phenotypes in Bub3/Rae1 haploinsufficient mice. The Journal of Cell Biology, 172, 529–540.

    Article  PubMed  CAS  Google Scholar 

  47. Storchova, Z., & Kuffer, C. (2008). The consequences of tetraploidy and aneuploidy. Journal of Cell Science, 121, 3859–3866.

    Article  PubMed  CAS  Google Scholar 

  48. Ryan, S. D., Britigan, E. M., Zasadil, L. M., Witte, K., Audhya, A., et al. (2012). Up-regulation of the mitotic checkpoint component Mad1 causes chromosomal instability and resistance to microtubule poisons. Proceedings of the National Academy of Sciences of the United States of America, 109, E2205–E2214.

    Article  PubMed  CAS  Google Scholar 

  49. Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., et al. (2007). Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 11, 9–23.

    Article  PubMed  CAS  Google Scholar 

  50. Ricke, R. M., Jeganathan, K. B., & van Deursen, J. M. (2011). Bub1 overexpression induces aneuploidy and tumor formation through Aurora B kinase hyperactivation. The Journal of Cell Biology, 193, 1049–1064.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang, N., Ge, G., Meyer, R., Sethi, S., Basu, D., et al. (2008). Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 105, 13033–13038.

    Article  PubMed  CAS  Google Scholar 

  52. Yu, R., Lu, W., Chen, J., McCabe, C. J., & Melmed, S. (2003). Overexpressed pituitary tumor-transforming gene causes aneuploidy in live human cells. Endocrinology, 144, 4991–4998.

    Article  PubMed  CAS  Google Scholar 

  53. Schvartzman, J. M., Duijf, P. H., Sotillo, R., Coker, C., & Benezra, R. (2011). Mad2 is a critical mediator of the chromosome instability observed upon Rb and p53 pathway inhibition. Cancer Cell, 19, 701–714.

    Article  PubMed  CAS  Google Scholar 

  54. Kabeche, L., & Compton, D. A. (2012). Checkpoint-independent stabilization of kinetochore-microtubule attachments by Mad2 in human cells. Current Biology, 22, 638–644.

    Article  PubMed  CAS  Google Scholar 

  55. Ricke, R. M., & van Deursen, J. M. (2011). Aurora B hyperactivation by Bub1 overexpression promotes chromosome missegregation. Cell Cycle, 10, 3645–3651.

    Article  PubMed  CAS  Google Scholar 

  56. Bakhoum, S. F., Thompson, S. L., Manning, A. L., & Compton, D. A. (2009). Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nature Cell Biology, 11, 27–35.

    Article  PubMed  CAS  Google Scholar 

  57. Kline-Smith, S. L., Khodjakov, A., Hergert, P., & Walczak, C. E. (2004). Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Molecular Biology of the Cell, 15, 1146–1159.

    Article  PubMed  CAS  Google Scholar 

  58. Janssen, A., van der Burg, M., Szuhai, K., Kops, G. J., & Medema, R. H. (2011). Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science, 333, 1895–1898.

    Article  PubMed  CAS  Google Scholar 

  59. Crasta, K., Ganem, N. J., Dagher, R., Lantermann, A. B., Ivanova, E. V., et al. (2012). DNA breaks and chromosome pulverization from errors in mitosis. Nature, 482, 53–58.

    Article  PubMed  CAS  Google Scholar 

  60. Stevens, J. B., Liu, G., Bremer, S. W., Ye, K. J., Xu, W., et al. (2007). Mitotic cell death by chromosome fragmentation. Cancer Research, 67, 7686–7694.

    Article  PubMed  CAS  Google Scholar 

  61. Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144, 27–40.

    Article  PubMed  CAS  Google Scholar 

  62. Heng, H. H., Stevens, J. B., Bremer, S. W., Liu, G., Abdallah, B. Y., et al. (2011). Evolutionary mechanisms and diversity in cancer. Advances in Cancer Research, 112, 217–253.

    Article  PubMed  CAS  Google Scholar 

  63. Normand, G., & King, R. W. (2010). Understanding cytokinesis failure. Advances in Experimental Medicine and Biology, 676, 27–55.

    Article  PubMed  CAS  Google Scholar 

  64. Shi, Q., & King, R. W. (2005). Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature, 437, 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  65. Routhier, E. L., Burn, T. C., Abbaszade, I., Summers, M., Albright, C. F., et al. (2001). Human BIN3 complements the F-actin localization defects caused by loss of Hob3p, the fission yeast homolog of Rvs161p. Journal of Biological Chemistry, 276, 21670–21677.

    Article  PubMed  CAS  Google Scholar 

  66. Kouranti, I., Sachse, M., Arouche, N., Goud, B., & Echard, A. (2006). Rab35 regulates an endocytic recycling pathway essential for the terminal steps of cytokinesis. Current Biology, 16, 1719–1725.

    Article  PubMed  CAS  Google Scholar 

  67. Madaule, P., Eda, M., Watanabe, N., Fujisawa, K., Matsuoka, T., et al. (1998). Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature, 394, 491–494.

    Article  PubMed  CAS  Google Scholar 

  68. Yuce, O., Piekny, A., & Glotzer, M. (2005). An ECT2-centralspindlin complex regulates the localization and function of RhoA. The Journal of Cell Biology, 170, 571–582.

    Article  PubMed  Google Scholar 

  69. Therman, E., Trunca, C., Kuhn, E. M., & Sarto, G. E. (1986). Dicentric chromosomes and the inactivation of the centromere. Human Genetics, 72, 191–195.

    Article  PubMed  CAS  Google Scholar 

  70. Acilan, C., Potter, D. M., & Saunders, W. S. (2007). DNA repair pathways involved in anaphase bridge formation. Genes, Chromosomes & Cancer, 46, 522–531.

    Article  CAS  Google Scholar 

  71. Steigemann, P., Wurzenberger, C., Schmitz, M. H., Held, M., Guizetti, J., et al. (2009). Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell, 136, 473–484.

    Article  PubMed  Google Scholar 

  72. Nigg, E. A. (2006). Origins and consequences of centrosome aberrations in human cancers. International Journal of Cancer, 119, 2717–2723.

    Article  CAS  Google Scholar 

  73. Ganem, N. J., Godinho, S. A., & Pellman, D. (2009). A mechanism linking extra centrosomes to chromosomal instability. Nature, 460, 278–282.

    Article  PubMed  CAS  Google Scholar 

  74. Godinho, S. A., Kwon, M., & Pellman, D. (2009). Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer and Metastasis Reviews, 28, 85–98.

    Article  PubMed  CAS  Google Scholar 

  75. Gisselsson, D., Jin, Y., Lindgren, D., Persson, J., Gisselsson, L., et al. (2010). Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 20489–20493.

    Article  PubMed  CAS  Google Scholar 

  76. Kwon, M., Godinho, S. A., Chandhok, N. S., Ganem, N. J., Azioune, A., et al. (2008). Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes & Development, 22, 2189–2203.

    Article  CAS  Google Scholar 

  77. Fujiwara, T., Bandi, M., Nitta, M., Ivanova, E. V., Bronson, R. T., et al. (2005). Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature, 437, 1043–1047.

    Article  PubMed  CAS  Google Scholar 

  78. Ganem, N. J., Storchova, Z., & Pellman, D. (2007). Tetraploidy, aneuploidy and cancer. Current Opinion in Genetics and Development, 17, 157–162.

    Article  PubMed  CAS  Google Scholar 

  79. Carter, S. L., Cibulskis, K., Helman, E., McKenna, A., Shen, H., et al. (2012). Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnology, 30, 413–421.

    Article  PubMed  CAS  Google Scholar 

  80. Duncan, A. W., Taylor, M. H., Hickey, R. D., Hanlon Newell, A. E., Lenzi, M. L., et al. (2010). The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature, 467, 707–710.

    Article  PubMed  CAS  Google Scholar 

  81. Duncan, A. W., Hanlon Newell, A. E., Smith, L., Wilson, E. M., Olson, S. B., et al. (2012). Frequent aneuploidy among normal human hepatocytes. Gastroenterology, 142, 25–28.

    Article  PubMed  Google Scholar 

  82. Duncan, A. W., Hanlon Newell, A. E., Bi, W., Finegold, M. J., Olson, S. B., et al. (2012). Aneuploidy as a mechanism for stress-induced liver adaptation. The Journal of Clinical Investigation, 122, 3307–3315.

    Article  PubMed  CAS  Google Scholar 

  83. Chen, G., Bradford, W. D., Seidel, C. W., & Li, R. (2012). Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature, 482, 246–250.

    PubMed  CAS  Google Scholar 

  84. Albertson, D. G., Collins, C., McCormick, F., & Gray, J. W. (2003). Chromosome aberrations in solid tumors. Nature Genetics, 34, 369–376.

    Article  PubMed  CAS  Google Scholar 

  85. Duesberg, P., Rausch, C., Rasnick, D., & Hehlmann, R. (1998). Genetic instability of cancer cells is proportional to their degree of aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 95, 13692–13697.

    Article  PubMed  CAS  Google Scholar 

  86. Gordon, D. J., Resio, B., & Pellman, D. (2012). Causes and consequences of aneuploidy in cancer. Nature Reviews Genetics, 13, 189–203.

    PubMed  CAS  Google Scholar 

  87. Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P., & Cleveland, D. W. (2007). Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell, 11, 25–36.

    Article  PubMed  CAS  Google Scholar 

  88. Aylon, Y., & Oren, M. (2011). p53: guardian of ploidy. Molecular Oncology, 5, 315–323.

    Article  PubMed  CAS  Google Scholar 

  89. Olivier, M., Hollstein, M., & Hainaut, P. (2010). TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harbor Perspectives in Biology, 2, a001008.

    Article  PubMed  Google Scholar 

  90. Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R., & Lane, D. P. (2009). Awakening guardian angels: drugging the p53 pathway. Nature Reviews. Cancer, 9, 862–873.

    Article  PubMed  CAS  Google Scholar 

  91. Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408, 307–310.

    Article  PubMed  CAS  Google Scholar 

  92. Horn, H. F., & Vousden, K. H. (2007). Coping with stress: multiple ways to activate p53. Oncogene, 26, 1306–1316.

    Article  PubMed  CAS  Google Scholar 

  93. Vousden, K. H., & Lane, D. P. (2007). p53 in health and disease. Nature Reviews Molecular Cell Biology, 8, 275–283.

    Article  PubMed  CAS  Google Scholar 

  94. Tang, Y. C., Williams, B. R., Siegel, J. J., & Amon, A. (2011). Identification of aneuploidy-selective antiproliferation compounds. Cell, 144, 499–512.

    Article  PubMed  CAS  Google Scholar 

  95. Rehen, S. K., Yung, Y. C., McCreight, M. P., Kaushal, D., Yang, A. H., et al. (2005). Constitutional aneuploidy in the normal human brain. Journal of Neuroscience, 25, 2176–2180.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Guangbo Chen and members of the Rong Li lab for their insightful discussions, Gary Gorbsky for comments on the manuscript, and Mary Toth for help with review preparation. This work was supported by the NIH grant RO1-GM059964 to Rong Li. Tamara Potapova was supported by a Postdoctoral Fellowship, PF-12-129-01-CCG from the American Cancer Society. Jin Zhu is a graduate student registered with the Open University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara A. Potapova.

Additional information

Authors Tamara A. Potapova and Jin Zhu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potapova, T.A., Zhu, J. & Li, R. Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev 32, 377–389 (2013). https://doi.org/10.1007/s10555-013-9436-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9436-6

Keywords

Navigation