Cancer and Metastasis Reviews

, Volume 32, Issue 3–4, pp 501–509 | Cite as

Dormancy in solid tumors: implications for prostate cancer

  • Nazanin S. Ruppender
  • Colm Morrissey
  • Paul H. Lange
  • Robert L. Vessella


In cancer dormancy, residual tumor cells persist in a patient with no apparent clinical symptoms, only to potentially become clinically relevant at a later date. In prostate cancer (PCa), the primary tumor is often removed and many patients experience a prolonged period (>5 years) with no evidence of disease before recurrence. These characteristics make PCa an excellent candidate for the study of tumor cell dormancy. However, the mechanisms that constitute PCa dormancy have not been clearly defined. Additionally, the definition of tumor cell dormancy varies in the literature. Therefore, we have separated tumor cell dormancy in this review into three categories: (a) micrometastatic dormancy—a group of tumor cells that cannot increase in number due to a restrictive proliferation/apoptosis equilibrium. (b) Angiogenic dormancy—a group of tumor cells that cannot expand beyond the formation of a micrometastasis due to a lack of angiogenic potential. (c) Conditional dormancy—an individual cell or a very small number of cells that cannot proliferate without the appropriate cues from the microenvironment, but do not require angiogenesis to do so. This review aims to identify currently known markers, mechanisms, and models of tumor dormancy, in particular as they relate to PCa, and highlight current opportunities for advancement in our understanding of clinical cancer dormancy.


Dormancy Disseminated tumor cells Prostate cancer Metastasis 



Castration-resistant prostate cancer


Circulating tumor cell


Disseminated tumor cells


Prostate cancer


Prostate-specific antigen



This material is the result of work supported by the NIH RC1 CA144825 ARRA challenge award, NIH P01 CA085859, a sponsored research agreement with Jenssen Pharmaceuticals Inc. and the VA Puget Sound Health Care System, Seattle, WA, USA (RLV is a Research Career Scientist, PHL is a Staff Physician).


  1. 1.
    Amling, C., Blute, M. L., Bergstralh, E. J., Seay, T. M., Slezak, J., & Zincke, H. (2000). Long term hazard of progression after radical prostatectomy for clinically localized prostate cancer. Journal of Urology, 164, 101–105.PubMedCrossRefGoogle Scholar
  2. 2.
    Pound, C., Partin, A. W., Eisenberger, M. A., Chan, D. W., Pearson, J. D., & Walsh, P. C. (1999). Natural history of progression after PSA elevation following radical prostatectomy. Journal of the American Medical Association, 281, 1591–1597.PubMedCrossRefGoogle Scholar
  3. 3.
    Budaus, L., Isbarn, H., Eichelberg, C., Lughezzani, G., Sun, M., Perotte, P., Chun, F. K., Salomon, G., Steuber, T., Kollermann, J., Sauter, G., Ahyai, S. A., Zacharias, M., Fisch, M., Schlomm, T., Haese, A., Heinzer, H., Huland, H., Montorsi, F., Graefen, M., & Karakiewicz, P. I. (2010). Biochemical recurrence after radical prostatectomy: multiplicative interaction between surgical margin status and pahtological stage. Journal of Urology, 184(4), 1341–1346.PubMedCrossRefGoogle Scholar
  4. 4.
    Ahove, D., Hoffman, K. E., Hu, J. C., Choueiri, T. K., D'Amico, A. V., & Nguyen, P. L. (2010). Which patients with undetectable PSA levels 5 years after radical prostatectomy are still at risk of recurrence? Implications for a risk adapted follow-up strategy. Urology, 76(5), 1201–1205.PubMedCrossRefGoogle Scholar
  5. 5.
    Fidler, I. (1970). Metastasis: quantitative analysis of distribution and fate of tumor emolilabeled with 125 I-5-iodo-2′-deoxyuridine. Journal of the National Cancer Institute, 45(4), 773–782.PubMedGoogle Scholar
  6. 6.
    Langley, R., & Fidler, I. J. (2011). The seed and soil hypothesis revisited—the role of tumor–stroma interactions in metastasis to different organs. International Journal of Cancer, 128(11), 2527–2535.CrossRefGoogle Scholar
  7. 7.
    Attard, G., Swennenhuis, J. F., Olmos, D., Reid, A. H., Vickers, E., A'Hern, R., Levink, R., Coumans, F., Moreira, J., Riisnaes, R., Oommen, N. B., Hawche, G., Jameson, C., Thompson, E., Sipkema, R., Carden, C. P., Parker, C., Dearnaley, D., Kaye, S. B., Cooper, C. S., Molina, A., Cox, M. E., Terstappen, L. W., & deBono, J. S. (2009). Characterization of ERG, AR, and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Research, 69(7), 2912–2918.PubMedCrossRefGoogle Scholar
  8. 8.
    Bölke, E., Orth, K., Gerber, P. A., Lammering, G., Mota, R., Peiper, M., Matuschek, C., Budach, W., Rusnak, E., Shaikh, S., Dogan, B., Prisack, H. B., & Bojar, H. (2009). Gene expression of circulating tumour cells in breast cancer patients. European Journal of Medical Research, 14(10), 426–432.PubMedGoogle Scholar
  9. 9.
    Danila, D., Anand, A., Sung, C. C., Heller, G., Leversha, M. A., Cao, L., Lija, H., Molina, A., Sawyers, C. L., Fleisher, M., & Scher, H. I. (2011). TMPRSS2-ERG status in circulating tumor cells as a predictive biomarker of sensitivity in castration resistant prostate cancer. European Urology, 60(5), 897–904.PubMedCrossRefGoogle Scholar
  10. 10.
    Aktas, B., Tewes, M., Fehm, T., Hauch, S., Kimmig, R., & Kasimir Bauer, S. (2009). Stem cell and epithelial–mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Research, 11(4), R36.CrossRefGoogle Scholar
  11. 11.
    Danila, D., Fleisher, M., & Scher, H. I. (2011). Circulating tumor cells as biomarkers in prostate cancer. Clinical Cancer Research, 17(12), 3903–3912.PubMedCrossRefGoogle Scholar
  12. 12.
    Maheswaran, S., Sequist, L. V., Nagrath, S., Ulkus, L., Brannigan, B., Collura, C. V., Inserra, E., Diedrichs, S., Iafrate, A. J., Bell, D. W., Digumarthy, S., Muzikansky, A., Irimia, D., Settleman, J., Tompkins, R. G., Lynch, T. J., Toner, M., & Haber, D. A. (2008). Detection of mutations in EGFR in circulating lung cancer cells. NEJM, 359, 366–377.PubMedCrossRefGoogle Scholar
  13. 13.
    Leversha, M., Han, J., Asgari, Z., Danila, D. C., Lin, O., Gonzalez-Espinoza, R., Anand, A., Lija, H., Heller, G., Fleisher, M., & Scher, H. I. (2009). Fuorescence in situ hybridization analysis of circulating tumor cells in metastatic prostate cancer. Clinical Cancer Research, 15, 2091.PubMedCrossRefGoogle Scholar
  14. 14.
    Swennenjuis, J., Tibbe, A. G., Levink, R., Sipkema, R. C., & Terstappen, L. W. (2009). Characterization of circulating tumor cells by fluorescence in situ hybridization. Cytometry, 75A(6), 520–527.CrossRefGoogle Scholar
  15. 15.
    Cohen, S., Punt, C. K., Iannotti, N., Saidman, B. H., Sabbath, K. D., Gabrail, N. Y., Picus, J., Morse, M., Mitchell, E., Miller, M. C., Doyle, G. V., Tissing, H., Terstappen, L. W., & Meropol, N. J. (2008). Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. Journal of Clinical Oncology, 26(19), 3213–3221.PubMedCrossRefGoogle Scholar
  16. 16.
    de Bono, J., Scher, H. I., Montgomery, R. B., Parker, C., Miller, M. C., Tissing, H., Doyle, G. V., Terstappen, L. W., Pienta, K. J., & Raghavan, D. (2008). Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinical Cancer Research, 14, 6302.PubMedCrossRefGoogle Scholar
  17. 17.
    Cristofanilli, M., et al. (2004). Criculating tumor cells, disease progression and surivival in metastatic breast cancer. NEJM, 351, 781–791.PubMedCrossRefGoogle Scholar
  18. 18.
    Olmos, D., Baird, R. D., Yap, T. A., Massard, C., Pope, L., Sandhu, S. K., Attard, G., Dukes, J., Papadatos-Pastos, D., Grainger, P., Kaye, S. B., & de Bono, J. S. (2011). Baseline circulating tumor cell counts significantly enhance a prognostic score for patients participating in phase I oncology trials. Clinical Cancer Research, 17(15), 5188–5196.PubMedCrossRefGoogle Scholar
  19. 19.
    Goodman, O., Symanowski, J. T., Loudyi, A., Fink, L. M., Ward, D. C., & Vogelzang, N. J. (2011). Circulating tumor cells as a predictive biomarker in patients with hormone-sensitive prostate cancer. Clinical Genitourinary Cancer, 9(1), 31–38.PubMedCrossRefGoogle Scholar
  20. 20.
    Danila, D., Heller, G., Cignac, G. A., Gonzalez-Espinoza, R., Anand, A., Tanaka, E., Lija, H., Schwartz, L., Larson, S., Fleisher, M., & Scher, H. I. (2007). Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clinical Cancer Research, 13(23), 7053–7058.PubMedCrossRefGoogle Scholar
  21. 21.
    Allan, A., & Keeney, M. (2010). Circulating tumor cell analysis: technical and statistical considerations for application to the clinic. J Oncol. doi: 10.1155/2010/426218.PubMedGoogle Scholar
  22. 22.
    Lowes, L., Lock, M., Rodrigues, G., D'Souza, D., Bauman, G., Ahmad, B., Venkatesan, V., Allan, A. L., & Sexton, T. (2012). Circulating tumour cells in prostate cancer patients receiving salvage radiotherapy. Clinical and Translational Oncology, 14(2), 150–156.PubMedCrossRefGoogle Scholar
  23. 23.
    Allard, W., Matera, J., Miller, M. C., Repollet, M., Connely, M. C., Rao, C., Tibbe, A. G., Uhr, J. W., & Terstappen, L. W. (2004). Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patiens with nonmalignant diseases. Clinical Cancer Research, 10(20), 6897–6904.PubMedCrossRefGoogle Scholar
  24. 24.
    Morgan, T., Lange, P. H., Porter, M. P., Lin, D. W., Ellis, W. J., Gallaher, I. S., & Vessella, R. L. (2009). Disseminated tumor cells in prostate cancer patients after radical prostatectomy without evidence of disease predicts biochemical recurrence. Clinical Cancer Research, 15, 677–683.PubMedCrossRefGoogle Scholar
  25. 25.
    Shiozawa, Y., Pedersen, E. A., Havens, A. M., Jung, Y., Mishra, A., Joseph, J., Kim, J. K., Patel, L. R., Ying, C., Ziegler, A. M., Pienta, M. J., Song, J., Wang, J., Lodberg, R. D., Kresbach, P. H., Pienta, K. J., & Taichman, R. S. (2011). Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. The Journal of Clinical Investigation, 121(4), 1298–1312.PubMedCrossRefGoogle Scholar
  26. 26.
    Soderberg, S., Karlsson, G., & Karlsson, S. (2009). Complex and context dependent regulation of hematopoiesis by TGF-beta superfamily signaling. Annals of the New York Academy of Sciences, 1178, 55069.Google Scholar
  27. 27.
    Kiskowski, M., Jackson, R. S., Banerjee, J., Li, X., Kang, M., Iturregui, J. M., Franco, O. E., Hayward, S. W., & Bhowmick, N. A. (2011). Role for stromal heterogeneity in prostate tumorigenesis. Cancer Research, 71(10), 3459–3470.PubMedCrossRefGoogle Scholar
  28. 28.
    Holcomb, I., Grove, D. I., Kinnunen, M., Friedman, C. L., Gallaher, I. S., Morgan, T. M., Sather, C. L., Delrow, J. J., Nelson, P. S., Lange, P. H., Ellis, W. J., True, L. D., Young, J. M., Hsu, L., Trask, B. J., & Vessella, R. L. (2008). Genomic alterations indicate tumor origin and varied metastatic potential of disseminated cells from prostate cancer patients. Cancer Research, 68(14), 5599–5608.PubMedCrossRefGoogle Scholar
  29. 29.
    Lowe, S., Cepero, E., & Evan, G. (2004). Intrinsic tumor suppression. Nature, 432, 307–315.PubMedCrossRefGoogle Scholar
  30. 30.
    Pelengaris, S., Khan, M., & Evan, G. I. (2002). Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Muc and triggers carcinogenic progression. Cell, 109, 321–334.PubMedCrossRefGoogle Scholar
  31. 31.
    Wu, C., van Riggelen, J., Yetil, A., Fan, A. C., Bachireddy, P., & Felsher, D. W. (2007). Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. PNAS, 103(32), 13028–13033.CrossRefGoogle Scholar
  32. 32.
    Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., & Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88, 593–602.PubMedCrossRefGoogle Scholar
  33. 33.
    Campisi, J. (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell, 120, 513–522.PubMedCrossRefGoogle Scholar
  34. 34.
    Dimri, G., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., & Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and aging skin in vivo. PNAS, 92, 9363–9367.PubMedCrossRefGoogle Scholar
  35. 35.
    Udagawa, T. (2008). Tumor dormancy of primary and secondary cancers. APMIS, 116(7–8), 615–628.PubMedCrossRefGoogle Scholar
  36. 36.
    Marsden, C., Wright, M. J., Carrier, L., Moroz, K., Pochampally, R., & Rowan, B. G. (2012). A novel in vivo model for the study of human breast cancer metastasis using primary pbreast tumor initiating cells from patient biopsies. BMC Cancer, 12(10).Google Scholar
  37. 37.
    Joensuu, K., Leidenius, M. H., Andersson, L. C., & Heikkila, P. S. (2009). High expression of maspin is associated with early tumor relapse in breast cancer. Human Pathology, 40(8), 1143–1151.PubMedCrossRefGoogle Scholar
  38. 38.
    Hippert, M., O'Toole, P. S., & Thorburn, A. (2006). Autophagy in cancer: good, bad or both? Cancer Research, 66, 9349.PubMedCrossRefGoogle Scholar
  39. 39.
    Chaterjee, M., & van Golen, K. L. (2011). Breast cancer stem cells survive periods of farnesyl-transferase inhibitor-induced dormancy by undergoing autophagy. Bone Marrow Res. doi: 10.1155/2011/362938.PubMedGoogle Scholar
  40. 40.
    Lu, Z., Luo, R. Z., Lu, Y., Zhang, X., Yu, Q., Khare, S., Kondo, S., Kondo, Y., Yu, Y., Mills, G. B., Liao, W. S., & Bast, R. C. (2008). The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. The Journal of Clinical Investigation, 118(12), 3917–3929.PubMedGoogle Scholar
  41. 41.
    Young, A., Narita, M., Ferreira, M., Kirschner, K., Sadaie, M., Darot, J. F., Tavare, S., Arakawa, S., Shimizu, S., Watt, F. M., & Narita, M. (2009). Autophagy mediates the mitotic senescence transition. Genes & Development, 23(7), 798–803.CrossRefGoogle Scholar
  42. 42.
    Balz, L., Bartkowiak, K., Andreas, A., Pantel, K., Niggemann, B., Zanker, K. S., Brandt, B. H., & Dittmar, Y. (2012). The interplay of Her2/Her3/PI3K and EGFR/Her2/PLC-g1 signalling in breast cancer cell migration and dissemination. J Pathology, 227(2), 234–244.CrossRefGoogle Scholar
  43. 43.
    Koebel, C., Vermi, W., Swann, J. B., Zerafa, N., Rodig, S. J., Old, L. J., Smyth, M. J., & Schreiber, R. D. (2007). Adaptive immunity maintains occult cancer in an equilibrium state. Nature, 450, 903–907.PubMedCrossRefGoogle Scholar
  44. 44.
    Quesnel, B. (2008). Tumor dormancy and immunoescape. APMIS, 116(7–8), 685–694.PubMedCrossRefGoogle Scholar
  45. 45.
    Uhr, J. A. M. R. (2001). Dormancy in a model of murine B cell lymphoma. Cancer Biol, 11, 277–283.CrossRefGoogle Scholar
  46. 46.
    Naumov, G., Bender, E., Zurakowski, D., Kang, S. Y., Sampson, D., Flynn, E., Watnick, R. S., Straume, O., Akslen, L. A., Folkman, J., & Almog, N. (2006). A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. Journal of the National Cancer Institute, 98(5), 316–325.PubMedCrossRefGoogle Scholar
  47. 47.
    Almog, N., Ma, L., Raychowdhury, R., Schwater, C., Erber, R., Short, S., Hlatky, L., Vajkoczy, P., Huber, P. E., Folkman, J., & Abdollahi, A. (2009). Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Research, 69(3), 836–844.PubMedCrossRefGoogle Scholar
  48. 48.
    Park, Y., Kitahara, T., Takagi, R., & Kato, R. (2011). Does surgery for breast cancer induce angiogenesis and thus promote metastasis? Oncology, 81(3–4), 199–205.PubMedCrossRefGoogle Scholar
  49. 49.
    Panigrahy, D., Edin, M. L., Lee, C. R., Huang, S., Bielenberg, D. R., Butterfield, C. E., Barnes, C. M., Mammoto, A., Mammoto, T., Luria, A., Benny, O., Chaponis, D. M., Dudley, A. C., Greene, E. R., Vergilio, J. A., Pietramaggiori, G., Scherer-Pietramaggiori, S. S., Short, S. M., Seth, M., Lih, F. B., Tomer, K. B., Ynag, J., Schendener, R. A., Hammock, B. D., Falck, J. R., Manthati, V. L., Ingber, D. E., Kaipainen, A., D'Amore, P. A., Kieran, M. W., & Zeldin, D. C. (2012). Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. The Journal of Clinical Investigation, 122(1), 178–191.PubMedCrossRefGoogle Scholar
  50. 50.
    Indraccolo, S., Minuzzo, S., Masiero, M., Pusceddu, I., Persano, L., Moserle, L., Reboldi, A., Favaro, E., Mecarozzi, M., Di Mario, G., Screpanti, I., Ponzoni, M., Doglioni, C., & Amadori, A. (2009). Cross-talk between tumor and endothelial cells involving the Notch3-DII4 interaction marks escape from tumor dormancy. Cancer Research, 69, 1314.PubMedCrossRefGoogle Scholar
  51. 51.
    Yefenof, E., Picker, L. J., Scheuermann, R. H., Tucker, T. F., Vitetta, E. S., & Uhr, J. W. (1993). Cancer dormancy: isolation and characterization of dormant lymphoma cells. Proc Nat Acad Sci, 90, 1829–1833.PubMedCrossRefGoogle Scholar
  52. 52.
    Joensuu, K., Hagstrom, J., Leidenius, M., Haglund, C., Andersson, L. C., Sariola, H., & Heikkila, P. (2011). Bmi-1, c-myc, and Snail expression in primary breast cancers and their metastases—elevated Bmi-1 expression in late breast cancer relapses. Virchows Archiv, 459(1), 31–39.PubMedCrossRefGoogle Scholar
  53. 53.
    Bambang, I., Lu, D., Li, H., Chiu, L. L., Lau, Q. C., Koay, E., & Zhang, D. (2009). Cytokeratin 19 regulates endoplasmic reticulum stress and ihibits ERp29 expression via p38 MAPK/XBP-1 signaling in breast cancer cells. Experimental Cell Research, 315(11), 1964–1974.PubMedCrossRefGoogle Scholar
  54. 54.
    Allgayer, H., & Aguirre-Ghiso, J. A. (2008). The urokinase receptor (u-PAR)—a link between tumor cell dormancy and minimal residual disease in bone marrow? APMIS, 116, 602–614.PubMedCrossRefGoogle Scholar
  55. 55.
    Yu, W., Kim, J., & Ossowski, L. (1997). Reduction in surface urokinase receptor forces malginant cells into a protracted state of dormancy. The Journal of Cell Biology, 137, 767–777.PubMedCrossRefGoogle Scholar
  56. 56.
    Aguirre-Ghiso, J., Kovalski, K., & Ossowski, L. (1999). Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signalling. The Journal of Cell Biology, 147, 89–104.PubMedCrossRefGoogle Scholar
  57. 57.
    Aguirre-Ghiso, J., Liu, D., Mignatti, A., Kovalski, K., & Ossowski, L. (2001). Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Molecular Biology of the Cell, 12, 863–879.PubMedCrossRefGoogle Scholar
  58. 58.
    Aguirre-Ghiso, J., Estrada, Y., Liu, D., & Ossowski, L. (2003). ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Research, 63, 1684–1695.PubMedGoogle Scholar
  59. 59.
    Barkan, D., Kleinman, H., Simmons, J. L., Asmussen, H., Kamaraju, A. K., Hoenorhoff, M. J., Liu, Z. Y., Costes, S. V., Cho, E. H., Lockett, S., Khanna, C., Chambers, A. F., & Green, J. E. (2008). Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Research, 68, 6241–6250.PubMedCrossRefGoogle Scholar
  60. 60.
    White, D., Kirpios, N. A., Zuo, D., Hassel, J. A., Blaess, S., Mueller, U., & Muller, W. J. (2004). Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essentail role in mammary tumor induction. Cancer Cell, 2, 159–170.CrossRefGoogle Scholar
  61. 61.
    Zhao, J., Reiske, H., & Guan, J. L. (1998). Regulation of the cell cycle by focal adhesion kinase. The Journal of Cell Biology, 143, 1997–2008.PubMedCrossRefGoogle Scholar
  62. 62.
    Kren, A., Baeriswyl, V., Lehembre, F., Wunderlin, C., Strittmatter, K., Antoniadis, H., Fassler, R., Cavallaro, U., & Christofori, G. (2007). Incrased tumor cell dissemination and cellular senescence in the absence of beta1-integrin function. EMBO, 26(12), 2832–2842.CrossRefGoogle Scholar
  63. 63.
    Lim, P., Bliss, S. A., Patel, S. A., Taborga, M., Dave, M. A., Gregory, L. A., Greco, S. J., Bryan, M., Patel, P. S., & Rameshwar, P. (2011). Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiesence in breast cancer cells. Cancer Research, 71(5), 1550–1560.PubMedCrossRefGoogle Scholar
  64. 64.
    Kinoshita, Y., Kalier, T., Rahaman, J., Dottino, P., & Kohtz, D. S. (2012). Alterations in nuclear pore architecture allow cancer cell entry into or exit from drug-resistant dormancy. American Journal of Pathology, 180(1), 375–389.PubMedCrossRefGoogle Scholar
  65. 65.
    Holleb, A., & Folkman, J. (1972). Tumor angiogenesis. CA: A Cancer Journal for Clinicians, 22(4), 226–229.CrossRefGoogle Scholar
  66. 66.
    Lu, X., Mu, E., Wei, Y., Riethdorf, S., Yang, Q., Yuan, M., et al. (2011). VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging Œ ± 4Œ ≤ 1-positive osteoclast progenitors. Cancer Cell, 20(6), 701–714. doi: 10.1016/j.ccr.2011.11.002.PubMedCrossRefGoogle Scholar
  67. 67.
    Morrissey, C., Roudier, M. P., Dowell, A., True, L. D., Ketchanji, M., Welty, C., et al. (2012). Effects of androgen deprivation therapy and bisphosphonate treatment on bone in patients with metastatic castration resistant prostate cancer: results from the University of Washington rapid autopsy series. Journal of Bone and Mineral Research. doi: 10.1002/jbmr.1749.Google Scholar
  68. 68.
    Martin, T. J., & Sims, N. A. (2005). Osteoclast-derived activity in the coupling of bone formation to resorption. Trends in Molecular Medicine, 11(2), 76–81.PubMedCrossRefGoogle Scholar
  69. 69.
    McAllister, S. S., Gifford, A. M., Greiner, A. L., Kelleher, S. P., Saelzler, M. P., Ince, T. A., et al. (2008). Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell, 133(6), 994–1005. doi: 10.1016/j.cell.2008.04.045.PubMedCrossRefGoogle Scholar
  70. 70.
    Sun, Y., Campisi, J., Higano, C., Beer, T. M., Porter, P., Coleman, I., et al. (2012). Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. [10.1038/nm.2890]. Nat Med, 18(9), 1359–1368. Scholar
  71. 71.
    Liu, W., Laitinen, S., Khan, S., Vihinen, M., Kowalski, J., Yu, G., Chen, L., Ewing, C. M., Eisenberger, M. A., Carducci, M. A., Nelson, W. G., Yegnasubramanian, S., Luo, J., Wang, Y., Xu, J., Isaacs, W. B., Visakorpi, T., & Bova, G. S. (2009). Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nature Medicine, 15(5), 559–565.PubMedCrossRefGoogle Scholar
  72. 72.
    Pienta, K., Abate-Shen, C., Agus, D. B., Attar, R. M., Chung, L. W., Greenberg, N. M., Hahn, W. C., Isaacs, J. T., Navone, N. M., Peehl, D. M., Simons, J. W., Solit, D. B., Soule, H. R., VanDyke, T. A., Weber, M. J., Wu, L., & Vessella, R. L. (2008). The current state of preclinical prostate cancer animal models. Prostate, 68(6), 629–639.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nazanin S. Ruppender
    • 1
  • Colm Morrissey
    • 1
  • Paul H. Lange
    • 2
    • 1
  • Robert L. Vessella
    • 2
    • 1
  1. 1.Department of UrologyUniversity of WashingtonSeattleUSA
  2. 2.Department of Veterans AffairsVA Medical CenterSeattleUSA

Personalised recommendations