Cancer and Metastasis Reviews

, Volume 32, Issue 1–2, pp 201–210 | Cite as

The role of the tissue omega-6/omega-3 fatty acid ratio in regulating tumor angiogenesis

NON-THEMATIC REVIEW

Abstract

Angiogenesis is a necessary step in tumor growth and metastasis. It is well established that the metabolites of omega-6 and omega-3 fatty acids, which must be obtained through the diet and cannot be synthesized de novo in mammals, have differential effects on cellular processes. Omega-6 fatty acid (n−6 FA)-derived metabolites promote angiogenesis by increasing growth factor expression whereas omega-3 fatty acids (n−3 FA) have anti-angiogenic and antitumor properties. However, most studies thus far have failed to account for the role of the n−6 FA/n−3 FA ratio in angiogenesis and instead examined the absolute levels of n−6 and n−3 FA. This review highlights the biochemical interactions between n−6 and n−3 FA and focuses on how the n−6/n−3 FA ratio in tissues modulates tumor angiogenesis. We suggest that future work should consider the n−6/n−3 FA ratio to be a key element in experimental design and analysis. Furthermore, we recommend that clinical interventions should aim to both reduce n−6 metabolites and simultaneously increase n−3 FA intake.

Keywords

Omega-3 fatty acids Omega-6 fatty acids Fatty acid ratio Angiogenesis Cancer Inflammation 

References

  1. 1.
    Arnold, F., & West, D. (1991). Angiogenesis in wound healing. Pharmacology & Theraputics, 52, 407–422.CrossRefGoogle Scholar
  2. 2.
    Kleim, J. A., Cooper, N. R., & VandenBerg, P. M. (2002). Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Research, 934(1), 1–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Carmeliet, P. (2003). Angiogenesis in health and disease. Nature Medicine, 9(6), 653–660.PubMedCrossRefGoogle Scholar
  4. 4.
    Conway, E. M., Collen, D., & Carmeliet, P. (2001). Molecular mechanisms of blood vessel growth. Cardiovascular Research, 49(3), 507–521.PubMedCrossRefGoogle Scholar
  5. 5.
    Folkman, J., Cole, P., & Zimmerman, S. (1966). Tumor behavior in isolated perfused organs: in vitro growth and metastases of biopsy material in rabbit thyroid and canine intestinal segment. Annals of Surgery, 164(3), 491–502.PubMedCrossRefGoogle Scholar
  6. 6.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.PubMedCrossRefGoogle Scholar
  7. 7.
    Folkman, J., & Kalluri, R. (2004). Cancer without disease. Nature, 427(6977), 787.PubMedCrossRefGoogle Scholar
  8. 8.
    Blood, C. H., & Zetter, B. R. (1990). Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochimica et Biophysica Acta, 1032(1), 89–118.PubMedGoogle Scholar
  9. 9.
    Naumov, G. N., Akslen, L. A., & Folkman, J. (2006). Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle, 5(16), 1779–1787.PubMedCrossRefGoogle Scholar
  10. 10.
    Morisada, T., Kubota, Y., Urano, T., Suda, T., & Oike, Y. (2006). Angiopoietins and angiopoietin-like proteins in angiogenesis. Endothelium, 13(2), 71–79.PubMedCrossRefGoogle Scholar
  11. 11.
    Rajkumar, T. (2001). Growth factors and growth factor receptors in cancer. Current Science, 81, 535–541.Google Scholar
  12. 12.
    Wu, Y., & Zhou, B. P. (2010). TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. British Journal of Cancer, 102(4), 639–644.PubMedCrossRefGoogle Scholar
  13. 13.
    Li, A., Dubey, S., Varney, M. L., Dave, B. J., & Singh, R. K. (2003). IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. Journal of Immunology, 170(6), 3369–3376.Google Scholar
  14. 14.
    Kang, J. X. (2005). From fat to fat-1: a tale of omega-3 fatty acids. Journal of Membrane Biology, 206(2), 165–172.PubMedCrossRefGoogle Scholar
  15. 15.
    Burdge, G. C., & Calder, P. C. (2005). Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reproduction, Nutrition, Development, 45(5), 581–597.PubMedCrossRefGoogle Scholar
  16. 16.
    Hoagland, K. M., Maier, K. G., Moreno, C., Yu, M., & Roman, R. J. (2001). Cytochrome P450 metabolites of arachidonic acid: novel regulators of renal function. Nephrology, Dialysis, Transplantation, 16(12), 2283–2285.PubMedCrossRefGoogle Scholar
  17. 17.
    Smith, W. L. (1989). The eicosanoids and their biochemical mechanisms of action. Biochemical Journal, 259(2), 315–324.PubMedGoogle Scholar
  18. 18.
    Arita, M., Yoshida, M., Hong, S., Tjonahen, E., Glickman, J. N., Petasis, N. A., et al. (2005). Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7671–7676.PubMedCrossRefGoogle Scholar
  19. 19.
    Bagga, D., Wang, L., Farias-Eisner, R., Glaspy, J. A., & Reddy, S. T. (2003). Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1751–1756.PubMedCrossRefGoogle Scholar
  20. 20.
    Jin, Y., Arita, M., Zhang, Q., Saban, D. R., Chauhan, S. K., Chiang, N., et al. (2009). Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators. Investigative Ophthalmology and Visual Science, 50(10), 4743–4752.PubMedCrossRefGoogle Scholar
  21. 21.
    Kamiyama, M., Pozzi, A., Yang, L., DeBusk, L. M., Breyer, R. M., & Lin, P. C. (2006). EP2, a receptor for PGE2, regulates tumor angiogenesis through direct effects on endothelial cell motility and survival. Oncogene, 25(53), 7019–7028.PubMedCrossRefGoogle Scholar
  22. 22.
    Nie, D., Lamberti, M., Zacharek, A., Li, L., Szekeres, K., Tang, K., et al. (2000). Thromboxane A(2) regulation of endothelial cell migration, angiogenesis, and tumor metastasis. Biochemical and Biophysical Research Communications, 267(1), 245–251.PubMedCrossRefGoogle Scholar
  23. 23.
    Pai, R., Szabo, I. L., Soreghan, B. A., Atay, S., Kawanaka, H., & Tarnawski, A. S. (2001). PGE(2) stimulates VEGF expression in endothelial cells via ERK2/JNK1 signaling pathways. Biochemical and Biophysical Research Communications, 286(5), 923–928.PubMedCrossRefGoogle Scholar
  24. 24.
    Pola, R., Gaetani, E., Flex, A., Aprahamian, T. R., Bosch-Marce, M., Losordo, D. W., et al. (2004). Comparative analysis of the in vivo angiogenic properties of stable prostacyclin analogs: a possible role for peroxisome proliferator-activated receptors. Journal of Molecular and Cellular Cardiology, 36(3), 363–370.PubMedCrossRefGoogle Scholar
  25. 25.
    Grimminger, F., Wahn, H., Mayer, K., Kiss, L., Walmrath, D., & Seeger, W. (1997). Impact of arachidonic versus eicosapentaenoic acid on exotonin-induced lung vascular leakage: relation to 4-series versus 5-series leukotriene generation. American Journal of Respiratory and Critical Care Medicine, 155(2), 513–519.PubMedCrossRefGoogle Scholar
  26. 26.
    Samuelsson, B. (1983). Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science, 220(4597), 568–575.PubMedCrossRefGoogle Scholar
  27. 27.
    Yuan, Y. M., Fang, S. H., Qian, X. D., Liu, L. Y., Xu, L. H., Shi, W. Z., et al. (2009). Leukotriene D4 stimulates the migration but not proliferation of endothelial cells mediated by the cysteinyl leukotriene cyslt(1) receptor via the extracellular signal-regulated kinase pathway. Journal of Pharmacological Sciences, 109(2), 285–292.PubMedCrossRefGoogle Scholar
  28. 28.
    Spencer, L., Mann, C., Metcalfe, M., Webb, M. B., Pollard, C., Spencer, D., et al. (2009). The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. European Journal of Cancer, 45(19493674), 2077–2086.PubMedCrossRefGoogle Scholar
  29. 29.
    Kang, J. X., & Weylandt, K. H. (2008). Modulation of inflammatory cytokines by omega-3 fatty acids. Sub-Cellular Biochemistry, 49(18751910), 133–143.PubMedCrossRefGoogle Scholar
  30. 30.
    Kang, J. X. (2011). Omega-3: a link between global climate change and human health. Biotechnology Advances, 29(4), 388–390.PubMedCrossRefGoogle Scholar
  31. 31.
    Simopoulos, A. P. (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. Journal of the American College of Nutrition, 21(6), 495–505.PubMedGoogle Scholar
  32. 32.
    Simopoulos, A. P. (2006). Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomedicine and Pharmacotherapy, 60(9), 502–507.CrossRefGoogle Scholar
  33. 33.
    Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10(3), 181–193.PubMedCrossRefGoogle Scholar
  34. 34.
    Gately, S., & Li, W. W. (2004). Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Seminars in Oncology, 31(2 Suppl 7), 2–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Soslow, R. A., Dannenberg, A. J., Rush, D., Woerner, B. M., Khan, K. N., Masferrer, J., et al. (2000). COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer, 89(12), 2637–2645.PubMedCrossRefGoogle Scholar
  36. 36.
    Gallo, O., Franchi, A., Magnelli, L., Sardi, I., Vannacci, A., Boddi, V., et al. (2001). Cyclooxygenase-2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor angiogenesis and metastasis. Neoplasia, 3(1), 53–61.Google Scholar
  37. 37.
    Greenhough, A., Smartt, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C., et al. (2009). The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30(3), 377–386.PubMedCrossRefGoogle Scholar
  38. 38.
    Kaidi, A., Qualtrough, D., Williams, A. C., & Paraskeva, C. (2006). Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Research, 66(13), 6683–6691.PubMedCrossRefGoogle Scholar
  39. 39.
    Kyzas, P. A., Stefanou, D., & Agnantis, N. J. (2005). COX-2 expression correlates with VEGF-C and lymph node metastases in patients with head and neck squamous cell carcinoma. Modern Pathology, 18(1), 153–160.PubMedCrossRefGoogle Scholar
  40. 40.
    Su, J. L., Shih, J. Y., Yen, M. L., Jeng, Y. M., Chang, C. C., Hsieh, C. Y., et al. (2004). Cyclooxygenase-2 induces EP1- and HER-2/Neu-dependent vascular endothelial growth factor-C up-regulation: a novel mechanism of lymphangiogenesis in lung adenocarcinoma. Cancer Research, 64(2), 554–564.PubMedCrossRefGoogle Scholar
  41. 41.
    Chien, M. H., Ku, C. C., Johansson, G., Chen, M. W., Hsiao, M., Su, J. L., et al. (2009). Vascular endothelial growth factor-C (VEGF-C) promotes angiogenesis by induction of COX-2 in leukemic cells via the VEGF-R3/JNK/AP-1 pathway. Carcinogenesis, 30(12), 2005–2013.PubMedCrossRefGoogle Scholar
  42. 42.
    Lala, P. K., Al-Mutter, N., & Orucevic, A. (1997). Effects of chronic indomethacin therapy on the development and progression of spontaneous mammary tumors in C3H/HEJ mice. International Journal of Cancer, 73(3), 371–380.CrossRefGoogle Scholar
  43. 43.
    Yoshida, S., Amano, H., Hayashi, I., Kitasato, H., Kamata, M., Inukai, M., et al. (2003). COX-2/VEGF-dependent facilitation of tumor-associated angiogenesis and tumor growth in vivo. Laboratory Investigation, 83(10), 1385–1394.PubMedCrossRefGoogle Scholar
  44. 44.
    Timoshenko, A. V., Chakraborty, C., Wagner, G. F., & Lala, P. K. (2006). COX-2-mediated stimulation of the lymphangiogenic factor VEGF-C in human breast cancer. British Journal of Cancer, 94(8), 1154–1163.PubMedCrossRefGoogle Scholar
  45. 45.
    Honn, K. V., Tang, D. G., Gao, X., Butovich, I. A., Liu, B., Timar, J., et al. (1994). 12-lipoxygenases and 12(S)-HETE: role in cancer metastasis. Cancer and Metastasis Reviews, 13(3–4), 365–396.PubMedCrossRefGoogle Scholar
  46. 46.
    Nie, D., Hillman, G. G., Geddes, T., Tang, K., Pierson, C., Grignon, D. J., et al. (1998). Platelet-type 12-lipoxygenase in a human prostate carcinoma stimulates angiogenesis and tumor growth. Cancer Research, 58(18), 4047–4051.PubMedGoogle Scholar
  47. 47.
    Chatterjee, M., Das, S., Roy, K., & Chatterjee, M. (2011). Overexpression of 5-lipoxygenase and its relation with cell proliferation and angiogenesis in 7,12-dimethylbenz(alpha)anthracene-induced rat mammary carcinogenesis. Molecular Carcinogenesis. doi:10.1002/mc.21858.
  48. 48.
    Ye, Y. N., Liu, E. S., Shin, V. Y., Wu, W. K., & Cho, C. H. (2004). Contributory role of 5-lipoxygenase and its association with angiogenesis in the promotion of inflammation-associated colonic tumorigenesis by cigarette smoking. Toxicology, 203(1–3), 179–188.PubMedCrossRefGoogle Scholar
  49. 49.
    Romano, M., & Claria, J. (2003). Cyclooxygenase-2 and 5-lipoxygenase converging functions on cell proliferation and tumor angiogenesis: implications for cancer therapy. The FASEB Journal, 17(14), 1986–1995.CrossRefGoogle Scholar
  50. 50.
    Webler, A. C., Michaelis, U. R., Popp, R., Barbosa-Sicard, E., Murugan, A., Falck, J. R., et al. (2008). Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. American Journal of Physiology. Cell Physiology, 295(5), C1292–C1301.PubMedCrossRefGoogle Scholar
  51. 51.
    Michaelis, U. R., Fisslthaler, B., Barbosa-Sicard, E., Falck, J. R., Fleming, I., & Busse, R. (2005). Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. Journal of Cell Science, 118(Pt 23), 5489–5498.PubMedCrossRefGoogle Scholar
  52. 52.
    Wang, Y., Wei, X., Xiao, X., Hui, R., Card, J. W., Carey, M. A., et al. (2005). Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways. Journal of Pharmacology and Experimental Therapeutics, 314(2), 522–532.PubMedCrossRefGoogle Scholar
  53. 53.
    Hyde, C. A., & Missailidis, S. (2009). Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. International Immunopharmacology, 9(6), 701–715.PubMedCrossRefGoogle Scholar
  54. 54.
    James, M. J., Gibson, R. A., & Cleland, L. G. (2000). Dietary polyunsaturated fatty acids and inflammatory mediator production. American Journal of Clinical Nutrition, 71(1 Suppl), 343S–348S.PubMedGoogle Scholar
  55. 55.
    Chen, Z. Y., & Istfan, N. W. (2000). Docosahexaenoic acid is a potent inducer of apoptosis in HT-29 colon cancer cells. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 63(5), 301–308.PubMedCrossRefGoogle Scholar
  56. 56.
    Larsson, S. C., Kumlin, M., Ingelman-Sundberg, M., & Wolk, A. (2004). Dietary long-chain n−3 fatty acids for the prevention of cancer: a review of potential mechanisms. American Journal of Clinical Nutrition, 79(6), 935–945.PubMedGoogle Scholar
  57. 57.
    Ambring, A., Johansson, M., Axelsen, M., Gan, L., Strandvik, B., & Friberg, P. (2006). Mediterranean-inspired diet lowers the ratio of serum phospholipid n−6 to n−3 fatty acids, the number of leukocytes and platelets, and vascular endothelial growth factor in healthy subjects. American Journal of Clinical Nutrition, 83(3), 575–581.PubMedGoogle Scholar
  58. 58.
    Spencer, L., Mann, C., Metcalfe, M., Webb, M., Pollard, C., Spencer, D., et al. (2009). The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. European Journal of Cancer, 45(12), 2077–2086.PubMedCrossRefGoogle Scholar
  59. 59.
    Connor, K. M., SanGiovanni, J. P., Lofqvist, C., Aderman, C. M., Chen, J., Higuchi, A., et al. (2007). Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nature Medicine, 13(17589522), 868–873.PubMedCrossRefGoogle Scholar
  60. 60.
    Kang, J. X., & Weylandt, K. H. (2008). Modulation of inflammatory cytokines by omega-3 fatty acids. Sub-Cellular Biochemistry, 49, 133–143.PubMedCrossRefGoogle Scholar
  61. 61.
    De Caterina, R., & Massaro, M. (2005). Omega-3 fatty acids and the regulation of expression of endothelial pro-atherogenic and pro-inflammatory genes. Journal of Membrane Biology, 206(2), 103–116.PubMedCrossRefGoogle Scholar
  62. 62.
    Weylandt, K. H., & Kang, J. X. (2005). Rethinking lipid mediators. The Lancet, 366(9486), 618–620.CrossRefGoogle Scholar
  63. 63.
    Wan, J. B., Huang, L. L., Rong, R., Tan, R., Wang, J., & Kang, J. X. (2010). Endogenously decreasing tissue n−6/n−3 fatty acid ratio reduces atherosclerotic lesions in apolipoprotein E-deficient mice by inhibiting systemic and vascular inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(12), 2487–2494.PubMedCrossRefGoogle Scholar
  64. 64.
    Schmocker, C., Weylandt, K. H., Kahlke, L., Wang, J., Lobeck, H., Tiegs, G., et al. (2007). Omega-3 fatty acids alleviate chemically induced acute hepatitis by suppression of cytokines. Hepatology, 45(4), 864–869.PubMedCrossRefGoogle Scholar
  65. 65.
    Bilal, S., Haworth, O., Wu, L., Weylandt, K. H., Levy, B. D., & Kang, J. X. (2011). Fat-1 transgenic mice with elevated omega-3 fatty acids are protected from allergic airway responses. Biochimica et Biophysica Acta, 1812(9), 1164–1169.PubMedCrossRefGoogle Scholar
  66. 66.
    Weylandt, K. H., Nadolny, A., Kahlke, L., Kohnke, T., Schmocker, C., Wang, J., et al. (2008). Reduction of inflammation and chronic tissue damage by omega-3 fatty acids in fat-1 transgenic mice with pancreatitis. Biochimica et Biophysica Acta, 1782(11), 634–641.PubMedCrossRefGoogle Scholar
  67. 67.
    Jia, Q., Lupton, J. R., Smith, R., Weeks, B. R., Callaway, E., Davidson, L. A., et al. (2008). Reduced colitis-associated colon cancer in fat-1 (n−3 fatty acid desaturase) transgenic mice. Cancer Research, 68(18483285), 3985–3991.PubMedCrossRefGoogle Scholar
  68. 68.
    White, P. J., Arita, M., Taguchi, R., Kang, J. X., & Marette, A. (2010). Transgenic restoration of long-chain n−3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice. Diabetes, 59(12), 3066–3073.PubMedCrossRefGoogle Scholar
  69. 69.
    Wada, S., Yamazaki, T., Kawano, Y., Miura, S., & Ezaki, O. (2008). Fish oil fed prior to ethanol administration prevents acute ethanol-induced fatty liver in mice. Journal of Hepatology, 49(3), 441–450.PubMedCrossRefGoogle Scholar
  70. 70.
    McCusker, M. M., & Grant-Kels, J. M. (2010). Healing fats of the skin: the structural and immunologic roles of the omega-6 and omega-3 fatty acids. Clinics in Dermatology, 28(4), 440–451.PubMedCrossRefGoogle Scholar
  71. 71.
    Wright, S. A., O’Prey, F. M., McHenry, M. T., Leahey, W. J., Devine, A. B., Duffy, E. M., et al. (2008). A randomised interventional trial of omega-3-polyunsaturated fatty acids on endothelial function and disease activity in systemic lupus erythematosus. Annals of the Rheumatic Diseases, 67(6), 841–848.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang, D., & Dubois, R. N. (2010). Eicosanoids and cancer. Nature Reviews. Cancer, 10(20168319), 181–193.PubMedCrossRefGoogle Scholar
  73. 73.
    Jackson, J. R., Seed, M. P., Kircher, C. H., Willoughby, D. A., & Winkler, J. D. (1997). The codependence of angiogenesis and chronic inflammation. The FASEB Journal, 11(6), 457–465.Google Scholar
  74. 74.
    Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257.PubMedCrossRefGoogle Scholar
  75. 75.
    Voronov, E., Shouval, D. S., Krelin, Y., Cagnano, E., Benharroch, D., Iwakura, Y., et al. (2003). IL-1 is required for tumor invasiveness and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2645–2650.PubMedCrossRefGoogle Scholar
  76. 76.
    Firestein, G. S. (1999). Starving the synovium: angiogenesis and inflammation in rheumatoid arthritis. Journal of Clinical Investigation, 103(1), 3–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Storgard, C. M., Stupack, D. G., Jonczyk, A., Goodman, S. L., Fox, R. I., & Cheresh, D. A. (1999). Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. Journal of Clinical Investigation, 103(1), 47–54.PubMedCrossRefGoogle Scholar
  78. 78.
    MacLean, C. H., Newberry, S. J., Mojica, W. A., Khanna, P., Issa, A. M., Suttorp, M. J., et al. (2006). Effects of omega-3 fatty acids on cancer risk: a systematic review. JAMA : The Journal of the American Medical Association, 295(4), 403–415.CrossRefGoogle Scholar
  79. 79.
    Terry, P., Bergkvist, L., Holmberg, L., & Wolk, A. (2001). No association between fat and fatty acids intake and risk of colorectal cancer. Cancer Epidemiology, Biomarkers & Prevention, 10(8), 913–914.Google Scholar
  80. 80.
    Godley, P. A., Campbell, M. K., Gallagher, P., Martinson, F. E., Mohler, J. L., & Sandler, R. S. (1996). Biomarkers of essential fatty acid consumption and risk of prostatic carcinoma. Cancer Epidemiology, Biomarkers & Prevention, 5(11), 889–895.Google Scholar
  81. 81.
    Ramon, J. M., Bou, R., Romea, S., Alkiza, M. E., Jacas, M., Ribes, J., et al. (2000). Dietary fat intake and prostate cancer risk: a case–control study in Spain. Cancer Causes & Control, 11(8), 679–685.CrossRefGoogle Scholar
  82. 82.
    Leitzmann, M. F., Stampfer, M. J., Michaud, D. S., Augustsson, K., Colditz, G. C., Willett, W. C., et al. (2004). Dietary intake of n−3 and n−6 fatty acids and the risk of prostate cancer. American Journal of Clinical Nutrition, 80(1), 204–216.PubMedGoogle Scholar
  83. 83.
    Simonsen, N., van’t Veer, P., Strain, J. J., Martin-Moreno, J. M., Huttunen, J. K., & Navajas, J. F. (1998). Adipose tissue omega-3 and omega-6 fatty acid content and breast cancer in the EURAMIC study. European Community Multicenter Study on Antioxidants, Myocardial Infarction, and Breast Cancer. American Journal of Epidemiology, 147(4), 342–352.PubMedCrossRefGoogle Scholar
  84. 84.
    Maillard, V., Bougnoux, P., Ferrari, P., Jourdan, M. L., Pinault, M., Lavillonniere, F., et al. (2002). N−3 and N−6 fatty acids in breast adipose tissue and relative risk of breast cancer in a case–control study in Tours, France. International Journal of Cancer, 98(1), 78–83.CrossRefGoogle Scholar
  85. 85.
    Williams, C. D., Whitley, B. M., Hoyo, C., Grant, D. J., Iraggi, J. D., Newman, K. A., et al. (2011). A high ratio of dietary n−6/n−3 polyunsaturated fatty acids is associated with increased risk of prostate cancer. Nutrition Research, 31(1), 1–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Kang, J. X. (2007). Fat-1 transgenic mice: a new model for omega-3 research. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 77(5–6), 263–267.PubMedCrossRefGoogle Scholar
  87. 87.
    Hudert, C. A., Weylandt, K. H., Lu, Y., Wang, J., Hong, S., Dignass, A., et al. (2006). Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11276–11281.PubMedCrossRefGoogle Scholar
  88. 88.
    Xia, S., Lu, Y., Wang, J., He, C., Hong, S., Serhan, C. N., et al. (2006). Melanoma growth is reduced in fat-1 transgenic mice: impact of omega-6/omega-3 essential fatty acids. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12499–12504.PubMedCrossRefGoogle Scholar
  89. 89.
    Berquin, I. M., Min, Y., Wu, R., Wu, J., Perry, D., Cline, J. M., et al. (2007). Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. Journal of Clinical Investigation, 117(7), 1866–1875.PubMedCrossRefGoogle Scholar
  90. 90.
    Griffitts, J., Saunders, D., Tesiram, Y. A., Reid, G. E., Salih, A., Liu, S., et al. (2010). Non-mammalian fat-1 gene prevents neoplasia when introduced to a mouse hepatocarcinogenesis model: omega-3 fatty acids prevent liver neoplasia. Biochimica et Biophysica Acta, 1801(10), 1133–1144.PubMedCrossRefGoogle Scholar
  91. 91.
    Jia, Q., Lupton, J. R., Smith, R., Weeks, B. R., Callaway, E., Davidson, L. A., et al. (2008). Reduced colitis-associated colon cancer in fat-1 (n−3 fatty acid desaturase) transgenic mice. Cancer Research, 68(10), 3985–3991.PubMedCrossRefGoogle Scholar
  92. 92.
    Kang, J. X., Wang, J., Wu, L., & Kang, Z. B. (2004). Transgenic mice: fat-1 mice convert n−6 to n−3 fatty acids. Nature, 427(6974), 504.PubMedCrossRefGoogle Scholar
  93. 93.
    Lim, K., Han, C., Dai, Y., Shen, M., & Wu, T. (2009). Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through blocking beta-catenin and cyclooxygenase-2. Molecular Cancer Therapeutics, 8(11), 3046–3055.PubMedCrossRefGoogle Scholar
  94. 94.
    Lu, Y., Nie, D., Witt, W. T., Chen, Q., Shen, M., Xie, H., et al. (2008). Expression of the fat-1 gene diminishes prostate cancer growth in vivo through enhancing apoptosis and inhibiting GSK-3 beta phosphorylation. Molecular Cancer Therapeutics, 7(10), 3203–3211.PubMedCrossRefGoogle Scholar
  95. 95.
    Nowak, J., Weylandt, K. H., Habbel, P., Wang, J., Dignass, A., Glickman, J. N., et al. (2007). Colitis-associated colon tumorigenesis is suppressed in transgenic mice rich in endogenous n−3 fatty acids. Carcinogenesis, 28(9), 1991–1995.PubMedCrossRefGoogle Scholar
  96. 96.
    Weylandt, K. H., Krause, L. F., Gomolka, B., Chiu, C. Y., Bilal, S., Nadolny, A., et al. (2011). Suppressed liver tumorigenesis in fat-1 mice with elevated omega-3 fatty acids is associated with increased omega-3 derived lipid mediators and reduced TNF-alpha. Carcinogenesis, 32(6), 897–903.PubMedCrossRefGoogle Scholar
  97. 97.
    Giovannucci, E., Rimm, E. B., Stampfer, M. J., Colditz, G. A., Ascherio, A., & Willett, W. C. (1994). Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Annals of Internal Medicine, 121(4), 241–246.PubMedCrossRefGoogle Scholar
  98. 98.
    Wallace, J. M. (2002). Nutritional and botanical modulation of the inflammatory cascade—eicosanoids, cyclooxygenases, and lipoxygenases—as an adjunct in cancer therapy. Integrative Cancer Therapies, 1(1), 7–37.PubMedGoogle Scholar
  99. 99.
    Gogos, C. A., Ginopoulos, P., Salsa, B., Apostolidou, E., Zoumbos, N. C., & Kalfarentzos, F. (1998). Dietary omega-3 polyunsaturated fatty acids plus vitamin E restore immunodeficiency and prolong survival for severely ill patients with generalized malignancy: a randomized control trial. Cancer, 82(2), 395–402.PubMedCrossRefGoogle Scholar
  100. 100.
    Okamoto, Y., Okano, K., Izuishi, K., Usuki, H., Wakabayashi, H., & Suzuki, Y. (2009). Attenuation of the systemic inflammatory response and infectious complications after gastrectomy with preoperative oral arginine and omega-3 fatty acids supplemented immunonutrition. World Journal of Surgery, 33(9), 1815–1821.PubMedCrossRefGoogle Scholar
  101. 101.
    Wigmore, S. J., Barber, M. D., Ross, J. A., Tisdale, M. J., & Fearon, K. C. (2000). Effect of oral eicosapentaenoic acid on weight loss in patients with pancreatic cancer. Nutrition and Cancer, 36(2), 177–184.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Harvard Medical SchoolBostonUSA
  2. 2.Laboratory for Lipid Medicine and TechnologyMassachusetts General HospitalCharlestownUSA

Personalised recommendations