Skip to main content

Advertisement

Log in

MicroRNA control of epithelial–mesenchymal transition and metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The great majority of cancer deaths are due to metastasis, which remains a poorly understood pathological process. The formation of a metastasis reflects a succession of complex steps leading to the macroscopic outgrowth of disseminated tumor cells at the secondary site. In the past 5 years, certain microRNAs (miRNAs) have been shown to regulate either a single step or multiple steps of metastasis, doing so by downregulating the expression of their target genes. In this review, we discuss recent studies on the functions and molecular mechanisms of miRNAs in regulating epithelial–mesenchymal transition (EMT) and cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3(6), 453–458.

    PubMed  CAS  Google Scholar 

  2. Cai, Y., Yu, X., Hu, S., & Yu, J. (2009). A brief review on the mechanisms of miRNA regulation. Genomics, Proteomics & Bioinformatics, 7(4), 147–154.

    CAS  Google Scholar 

  3. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.

    PubMed  CAS  Google Scholar 

  4. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    PubMed  CAS  Google Scholar 

  5. Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146(3), 353–358.

    PubMed  CAS  Google Scholar 

  6. Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J., & Pandolfi, P. P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465(7301), 1033–1038.

    PubMed  CAS  Google Scholar 

  7. Karreth, F. A., Tay, Y., Perna, D., Ala, U., Tan, S. M., Rust, A. G., et al. (2011). In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 147(2), 382–395.

    PubMed  CAS  Google Scholar 

  8. Tay, Y., Kats, L., Salmena, L., Weiss, D., Tan, S. M., Ala, U., et al. (2011). Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 147(2), 344–357.

    PubMed  CAS  Google Scholar 

  9. Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews. Cancer, 6(11), 857–866.

    PubMed  CAS  Google Scholar 

  10. Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs—microRNAs with a role in cancer. Nature Reviews. Cancer, 6(4), 259–269.

    PubMed  CAS  Google Scholar 

  11. Hurst, D. R., Edmonds, M. D., & Welch, D. R. (2009). Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Research, 69(19), 7495–7498.

    PubMed  CAS  Google Scholar 

  12. Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial–mesenchymal transition. The Journal of Clinical Investigation, 119(6), 1420–1428.

    PubMed  CAS  Google Scholar 

  13. Thiery, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2(6), 442–454.

    PubMed  CAS  Google Scholar 

  14. Yang, J., & Weinberg, R. A. (2008). Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental Cell, 14(6), 818–829.

    PubMed  CAS  Google Scholar 

  15. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.

    PubMed  CAS  Google Scholar 

  16. Gupta, P. B., Chaffer, C. L., & Weinberg, R. A. (2009). Cancer stem cells: mirage or reality? Nature Medicine, 15(9), 1010–1012.

    PubMed  CAS  Google Scholar 

  17. Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2(2), 76–83.

    PubMed  CAS  Google Scholar 

  18. Hajra, K. M., Chen, D. Y., & Fearon, E. R. (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Research, 62(6), 1613–1618.

    PubMed  CAS  Google Scholar 

  19. Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117(7), 927–939.

    PubMed  CAS  Google Scholar 

  20. Eger, A., Aigner, K., Sonderegger, S., Dampier, B., Oehler, S., Schreiber, M., et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 24(14), 2375–2385.

    PubMed  CAS  Google Scholar 

  21. Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Molecular Cell, 7(6), 1267–1278.

    PubMed  CAS  Google Scholar 

  22. Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.

    PubMed  CAS  Google Scholar 

  23. Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes & Development, 22(7), 894–907.

    CAS  Google Scholar 

  24. Shimono, Y., Zabala, M., Cho, R. W., Lobo, N., Dalerba, P., Qian, D., et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 138(3), 592–603.

    PubMed  CAS  Google Scholar 

  25. Gregory, P. A., Bracken, C. P., Smith, E., Bert, A. G., Wright, J. A., Roslan, S., et al. (2011). An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial–mesenchymal transition. Molecular Biology of the Cell, 22(10), 1686–1698.

    PubMed  CAS  Google Scholar 

  26. Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.

    PubMed  CAS  Google Scholar 

  27. Dykxhoorn, D. M., Wu, Y., Xie, H., Yu, F., Lal, A., Petrocca, F., et al. (2009). miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One, 4(9), e7181.

    PubMed  Google Scholar 

  28. Korpal, M., Ell, B. J., Buffa, F. M., Ibrahim, T., Blanco, M. A., Celia-Terrassa, T., et al. (2011). Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nature Medicine, 17(9), 1101–1108.

    PubMed  CAS  Google Scholar 

  29. Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., et al. (2010). miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.

    PubMed  CAS  Google Scholar 

  30. Martello, G., Rosato, A., Ferrari, F., Manfrin, A., Cordenonsi, M., Dupont, S., et al. (2010). A MicroRNA targeting dicer for metastasis control. Cell, 141(7), 1195–1207.

    PubMed  CAS  Google Scholar 

  31. Di Leva, G., Gasparini, P., Piovan, C., Ngankeu, A., Garofalo, M., Taccioli, C., et al. (2010). MicroRNA cluster 221–222 and estrogen receptor alpha interactions in breast cancer. Journal of the National Cancer Institute, 102(10), 706–721.

    PubMed  Google Scholar 

  32. Cochrane, D. R., Cittelly, D. M., Howe, E. N., Spoelstra, N. S., McKinsey, E. L., LaPara, K., et al. (2011). MicroRNAs link estrogen receptor alpha status and Dicer levels in breast cancer. Hormones and Cancer, 1(6), 306–319.

    Google Scholar 

  33. Stinson, S., Lackner, M. R., Adai, A. T., Yu, N., Kim, H. J., O’Brien, C., et al. (2011). miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Science Signaling, 4(186), pt5.

    PubMed  CAS  Google Scholar 

  34. Kong, W., Yang, H., He, L., Zhao, J. J., Coppola, D., Dalton, W. S., et al. (2008). MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Molecular and Cellular Biology, 28(22), 6773–6784.

    PubMed  CAS  Google Scholar 

  35. Kumarswamy, R., Mudduluru, G., Ceppi, P., Muppala, S., Kozlowski, M., Niklinski, J., et al. (2012). MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. International Journal of Cancer, 130(9), 2044–2053.

    Google Scholar 

  36. Wang, F. E., Zhang, C., Maminishkis, A., Dong, L., Zhi, C., Li, R., et al. (2010). MicroRNA-204/211 alters epithelial physiology. The FASEB Journal, 24(5), 1552–1571.

    CAS  Google Scholar 

  37. Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.

    PubMed  CAS  Google Scholar 

  38. Carrio, M., Arderiu, G., Myers, C., & Boudreau, N. J. (2005). Homeobox D10 induces phenotypic reversion of breast tumor cells in a three-dimensional culture model. Cancer Research, 65(16), 7177–7185.

    PubMed  CAS  Google Scholar 

  39. Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291), 1071–1076.

    PubMed  CAS  Google Scholar 

  40. Sasayama, T., Nishihara, M., Kondoh, T., Hosoda, K., & Kohmura, E. (2009). MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. International Journal of Cancer, 125(6), 1407–1413.

    CAS  Google Scholar 

  41. Sun, L., Yan, W., Wang, Y., Sun, G., Luo, H., Zhang, J., et al. (2011). MicroRNA-10b induces glioma cell invasion by modulating MMP-14 and uPAR expression via HOXD10. Brain Research, 1389, 9–18.

    PubMed  CAS  Google Scholar 

  42. Tian, Y., Luo, A., Cai, Y., Su, Q., Ding, F., Chen, H., et al. (2010). MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. Journal of Biological Chemistry, 285(11), 7986–7994.

    PubMed  CAS  Google Scholar 

  43. Gabriely, G., Yi, M., Narayan, R. S., Niers, J. M., Wurdinger, T., Imitola, J., et al. (2011). Human glioma growth is controlled by microRNA-10b. Cancer Research, 71(10), 3563–3572.

    PubMed  CAS  Google Scholar 

  44. Pan, X., Wang, Z. X., & Wang, R. (2011). MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biology & Therapy, 10(12), 1224–1232.

    Google Scholar 

  45. Medina, P. P., Nolde, M., & Slack, F. J. (2010). OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature, 467(7311), 86–90.

    PubMed  CAS  Google Scholar 

  46. Wu, W. Y., Xue, X. Y., Chen, Z. J., Han, S. L., Huang, Y. P., Zhang, L. F., et al. (2011). Potentially predictive microRNAs of gastric cancer with metastasis to lymph node. World Journal of Gastroenterology, 17(31), 3645–3651.

    PubMed  CAS  Google Scholar 

  47. Asangani, I. A., Rasheed, S. A., Nikolova, D. A., Leupold, J. H., Colburn, N. H., Post, S., et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 27(15), 2128–2136.

    PubMed  CAS  Google Scholar 

  48. Yan, L. X., Huang, X. F., Shao, Q., Huang, M. Y., Deng, L., Wu, Q. L., et al. (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA, 14(11), 2348–2360.

    PubMed  CAS  Google Scholar 

  49. Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., & Mo, Y. Y. (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Research, 18(3), 350–359.

    PubMed  CAS  Google Scholar 

  50. Huang, T. H., Wu, F., Loeb, G. B., Hsu, R., Heidersbach, A., Brincat, A., et al. (2009). Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. Journal of Biological Chemistry, 284(27), 18515–18524.

    PubMed  CAS  Google Scholar 

  51. Li, T., Li, D., Sha, J., Sun, P., & Huang, Y. (2009). MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochemical and Biophysical Research Communications, 383(3), 280–285.

    PubMed  CAS  Google Scholar 

  52. Wang, P., Zou, F., Zhang, X., Li, H., Dulak, A., Tomko, R. J., Jr., et al. (2009). microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Research, 69(20), 8157–8165.

    PubMed  CAS  Google Scholar 

  53. Connolly, E. C., Van Doorslaer, K., Rogler, L. E., & Rogler, C. E. (2010). Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Molecular Cancer Research, 8(5), 691–700.

    PubMed  CAS  Google Scholar 

  54. Cottonham, C. L., Kaneko, S., & Xu, L. (2010). miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. Journal of Biological Chemistry, 285(46), 35293–35302.

    PubMed  CAS  Google Scholar 

  55. Lou, Y., Yang, X., Wang, F., Cui, Z., & Huang, Y. (2010). MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein. International Journal of Molecular Medicine, 26(6), 819–827.

    PubMed  CAS  Google Scholar 

  56. Voorhoeve, P. M., le Sage, C., Schrier, M., Gillis, A. J., Stoop, H., Nagel, R., et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell, 124(6), 1169–1181.

    PubMed  CAS  Google Scholar 

  57. Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biology, 10(2), 202–210.

    PubMed  CAS  Google Scholar 

  58. Preis, M., Gardner, T. B., Gordon, S. R., Pipas, J. M., Mackenzie, T. A., Klein, E. E., et al. (2011). MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clinical Cancer Research, 17(17), 5812–5821.

    PubMed  CAS  Google Scholar 

  59. Nakata, K., Ohuchida, K., Mizumoto, K., Kayashima, T., Ikenaga, N., Sakai, H., et al. (2011). MicroRNA-10b is overexpressed in pancreatic cancer, promotes its invasiveness, and correlates with a poor prognosis. Surgery, 150(5), 916–922.

    PubMed  Google Scholar 

  60. Valastyan, S., Reinhardt, F., Benaich, N., Calogrias, D., Szasz, A. M., Wang, Z. C., et al. (2009). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell, 137(6), 1032–1046.

    PubMed  CAS  Google Scholar 

  61. Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.

    PubMed  CAS  Google Scholar 

  62. Song, G., Zhang, Y., & Wang, L. (2009). MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. Journal of Biological Chemistry, 284(46), 31921–31927.

    PubMed  CAS  Google Scholar 

  63. Liu, B., Peng, X. C., Zheng, X. L., Wang, J., & Qin, Y. W. (2009). MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer, 66(2), 169–175.

    PubMed  Google Scholar 

  64. Crawford, M., Brawner, E., Batte, K., Yu, L., Hunter, M. G., Otterson, G. A., et al. (2008). MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochemical and Biophysical Research Communications, 373(4), 607–612.

    PubMed  CAS  Google Scholar 

  65. Png, K. J., Halberg, N., Yoshida, M., & Tavazoie, S. F. (2011). A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 481(7380), 190–194.

    PubMed  Google Scholar 

  66. Valastyan, S., Chang, A., Benaich, N., Reinhardt, F., & Weinberg, R. A. (2010). Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of miR-31 on metastasis. Cancer Research, 70(12), 5147–5154.

    PubMed  CAS  Google Scholar 

  67. Valastyan, S., Chang, A., Benaich, N., Reinhardt, F., & Weinberg, R. A. (2011). Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes & Development, 25(6), 646–659.

    CAS  Google Scholar 

  68. Valastyan, S., Benaich, N., Chang, A., Reinhardt, F., & Weinberg, R. A. (2009). Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes & Development, 23(22), 2592–2597.

    CAS  Google Scholar 

  69. Bussing, I., Slack, F. J., & Grosshans, H. (2008). let-7 microRNAs in development, stem cells and cancer. Trends in Molecular Medicine, 14(9), 400–409.

    PubMed  Google Scholar 

  70. Boyerinas, B., Park, S. M., Hau, A., Murmann, A. E., & Peter, M. E. (2010). The role of let-7 in cell differentiation and cancer. Endocrine-Related Cancer, 17(1), F19–F36.

    PubMed  CAS  Google Scholar 

  71. Mayr, C., Hemann, M. T., & Bartel, D. P. (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science, 315(5818), 1576–1579.

    PubMed  CAS  Google Scholar 

  72. Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.

    PubMed  CAS  Google Scholar 

  73. Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.

    PubMed  CAS  Google Scholar 

  74. Liu, H., Patel, M. R., Prescher, J. A., Patsialou, A., Qian, D., Lin, J., et al. (2010). Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18115–18120.

    PubMed  CAS  Google Scholar 

  75. Malanchi, I., Santamaria-Martinez, A., Susanto, E., Peng, H., Lehr, H. A., Delaloye, J. F., et al. (2011). Interactions between cancer stem cells and their niche govern metastatic colonization. Nature, 481(7379), 85–89.

    PubMed  Google Scholar 

  76. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.

    PubMed  CAS  Google Scholar 

  77. Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105(30), 10513–10518.

    PubMed  CAS  Google Scholar 

  78. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18(10), 997–1006.

    PubMed  CAS  Google Scholar 

  79. Ng, E. K., Chong, W. W., Jin, H., Lam, E. K., Shin, V. Y., Yu, J., et al. (2009). Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut, 58(10), 1375–1381.

    PubMed  CAS  Google Scholar 

  80. Huang, Z., Huang, D., Ni, S., Peng, Z., Sheng, W., & Du, X. (2009). Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. International Journal of Cancer, 127(1), 118–126.

    Google Scholar 

  81. Camps, C., Buffa, F. M., Colella, S., Moore, J., Sotiriou, C., Sheldon, H., et al. (2008). hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clinical Cancer Research, 14(5), 1340–1348.

    PubMed  CAS  Google Scholar 

  82. Volinia, S., Galasso, M., Sana, M. E., Wise, T. F., Palatini, J., Huebner, K., et al. (2012). Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 3024–3029.

    PubMed  CAS  Google Scholar 

  83. Li, J., Huang, H., Sun, L., Yang, M., Pan, C., Chen, W., et al. (2009). MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clinical Cancer Research, 15(12), 3998–4008.

    PubMed  CAS  Google Scholar 

  84. Zhi, F., Chen, X., Wang, S., Xia, X., Shi, Y., Guan, W., et al. (2010). The use of hsa-miR-21, hsa-miR-181b and hsa-miR-106a as prognostic indicators of astrocytoma. European Journal of Cancer, 46(9), 1640–1649.

    PubMed  CAS  Google Scholar 

  85. Jiang, J., Zheng, X., Xu, X., Zhou, Q., Yan, H., Zhang, X., et al. (2011). Prognostic significance of miR-181b and miR-21 in gastric cancer patients treated with S-1/Oxaliplatin or Doxifluridine/Oxaliplatin. PLoS One, 6(8), e23271.

    PubMed  CAS  Google Scholar 

  86. Pramanik, D., Campbell, N. R., Karikari, C., Chivukula, R., Kent, O. A., Mendell, J. T., et al. (2011). Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Molecular Cancer Therapeutics, 10(8), 1470–1480.

    PubMed  CAS  Google Scholar 

  87. Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E. G., et al. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 28(4), 341–347.

    PubMed  CAS  Google Scholar 

  88. Makeyev, E. V., & Maniatis, T. (2008). Multilevel regulation of gene expression by microRNAs. Science, 319(5871), 1789–1790.

    PubMed  CAS  Google Scholar 

  89. Mei, M., Ren, Y., Zhou, X., Yuan, X. B., Han, L., Wang, G. X., et al. (2010). Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technology in Cancer Research & Treatment, 9(1), 77–86.

    CAS  Google Scholar 

  90. Iorio, M. V., Casalini, P., Piovan, C., Di Leva, G., Merlo, A., Triulzi, T., et al. (2009). microRNA-205 regulates HER3 in human breast cancer. Cancer Research, 69(6), 2195–2200.

    PubMed  CAS  Google Scholar 

  91. Lujambio, A., Calin, G. A., Villanueva, A., Ropero, S., Sanchez-Cespedes, M., Blanco, D., et al. (2008). A microRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13556–13561.

    PubMed  CAS  Google Scholar 

  92. Sun, L., Yao, Y., Liu, B., Lin, Z., Lin, L., Yang, M., et al. (2011). MiR-200b and miR-15b regulate chemotherapy-induced epithelial–mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene, 31(4), 432–445.

    PubMed  Google Scholar 

  93. Zhang, Z., Liu, S., Shi, R., & Zhao, G. (2011). miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genetics, 204(9), 486–491.

    PubMed  CAS  Google Scholar 

  94. Gebeshuber, C. A., Zatloukal, K., & Martinez, J. (2009). miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Reports, 10(4), 400–405.

    PubMed  CAS  Google Scholar 

  95. Dong, P., Kaneuchi, M., Watari, H., Hamada, J., Sudo, S., Ju, J., et al. (2011). MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1. Molecular Cancer, 10, 99.

    PubMed  CAS  Google Scholar 

  96. Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Journal of Biological Chemistry, 283(22), 14910–14914.

    PubMed  CAS  Google Scholar 

  97. Kim, T., Veronese, A., Pichiorri, F., Lee, T. J., Jeon, Y. J., Volinia, S., et al. (2011). p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. The Journal of Experimental Medicine, 208(5), 875–883.

    PubMed  CAS  Google Scholar 

  98. Vetter, G., Saumet, A., Moes, M., Vallar, L., Le Bechec, A., Laurini, C., et al. (2010). miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene, 29(31), 4436–4448.

    PubMed  CAS  Google Scholar 

  99. Han, H. B., Gu, J., Zuo, H. J., Chen, Z. G., Zhao, W., Li, M., et al. (2012). Let-7c functions as a metastasis suppressor by targeting MMP11 and PBX3 in colorectal cancer. The Journal of Pathology, 226(3), 544–555.

    Google Scholar 

  100. Ji, J., Zhao, L., Budhu, A., Forgues, M., Jia, H. L., Qin, L. X., et al. (2010). Let-7g targets collagen type I alpha2 and inhibits cell migration in hepatocellular carcinoma. Journal of Hepatology, 52(5), 690–697.

    PubMed  CAS  Google Scholar 

  101. Qian, P., Zuo, Z., Wu, Z., Meng, X., Li, G., Zhang, W., et al. (2011). Pivotal role of reduced let-7g expression in breast cancer invasion and metastasis. Cancer Research, 71(20), 6463–6474.

    PubMed  CAS  Google Scholar 

  102. Yang, Q., Jie, Z., Cao, H., Greenlee, A. R., Yang, C., Zou, F., et al. (2011). Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis, 32(5), 713–722.

    PubMed  CAS  Google Scholar 

  103. Chang, T. C., Zeitels, L. R., Hwang, H. W., Chivukula, R. R., Wentzel, E. A., Dews, M., et al. (2009). Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3384–3389.

    PubMed  CAS  Google Scholar 

  104. Dangi-Garimella, S., Yun, J., Eves, E. M., Newman, M., Erkeland, S. J., Hammond, S. M., et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. EMBO Journal, 28(4), 347–358.

    PubMed  CAS  Google Scholar 

  105. Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., et al. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Research, 68(10), 3566–3572.

    PubMed  CAS  Google Scholar 

  106. Reddy, S. D., Ohshiro, K., Rayala, S. K., & Kumar, R. (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Research, 68(20), 8195–8200.

    PubMed  CAS  Google Scholar 

  107. Weiss, F. U., Marques, I. J., Woltering, J. M., Vlecken, D. H., Aghdassi, A., Partecke, L. I., et al. (2009). Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology, 137(6), 2136–2145. e2131-2137.

    PubMed  CAS  Google Scholar 

  108. Li, G., Wu, Z., Peng, Y., Liu, X., Lu, J., Wang, L., et al. (2010). MicroRNA-10b induced by Epstein–Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Letters, 299(1), 29–36.

    PubMed  CAS  Google Scholar 

  109. Takeshita, F., Patrawala, L., Osaki, M., Takahashi, R. U., Yamamoto, Y., Kosaka, N., et al. (2010). Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Molecular Therapy, 18(1), 181–187.

    PubMed  CAS  Google Scholar 

  110. Dews, M., Homayouni, A., Yu, D., Murphy, D., Sevignani, C., Wentzel, E., et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 38(9), 1060–1065.

    PubMed  CAS  Google Scholar 

  111. Liu, S., Goldstein, R. H., Scepansky, E. M., & Rosenblatt, M. (2009). Inhibition of rho-associated kinase signaling prevents breast cancer metastasis to human bone. Cancer Research, 69(22), 8742–8751.

    PubMed  CAS  Google Scholar 

  112. Xu, D., Takeshita, F., Hino, Y., Fukunaga, S., Kudo, Y., Tamaki, A., et al. (2011). miR-22 represses cancer progression by inducing cellular senescence. The Journal of Cell Biology, 193(2), 409–424.

    PubMed  CAS  Google Scholar 

  113. Coulouarn, C., Factor, V. M., Andersen, J. B., Durkin, M. E., & Thorgeirsson, S. S. (2009). Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene, 28(40), 3526–3536.

    PubMed  CAS  Google Scholar 

  114. Tsai, W. C., Hsu, P. W., Lai, T. C., Chau, G. Y., Lin, C. W., Chen, C. M., et al. (2009). MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology, 49(5), 1571–1582.

    PubMed  CAS  Google Scholar 

  115. Li, Y., Vandenboom, T. G., 2nd, Wang, Z., Kong, D., Ali, S., Philip, P. A., et al. (2010). miR-146a suppresses invasion of pancreatic cancer cells. Cancer Research, 70(4), 1486–1495.

    PubMed  CAS  Google Scholar 

  116. Lin, S. L., Chiang, A., Chang, D., & Ying, S. Y. (2008). Loss of mir-146a function in hormone-refractory prostate cancer. RNA, 14(3), 417–424.

    PubMed  CAS  Google Scholar 

  117. Xia, H., Qi, Y., Ng, S. S., Chen, X., Li, D., Chen, S., et al. (2009). microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Research, 1269, 158–165.

    PubMed  CAS  Google Scholar 

  118. Kogo, R., Mimori, K., Tanaka, F., Komune, S., & Mori, M. (2011). Clinical significance of miR-146a in gastric cancer cases. Clinical Cancer Research, 17(13), 4277–4284.

    PubMed  CAS  Google Scholar 

  119. Bhaumik, D., Scott, G. K., Schokrpur, S., Patil, C. K., Campisi, J., & Benz, C. C. (2008). Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene, 27(42), 5643–5647.

    PubMed  CAS  Google Scholar 

  120. Edmonds, M. D., Hurst, D. R., Vaidya, K. S., Stafford, L. J., Chen, D., & Welch, D. R. (2009). Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression. International Journal of Cancer, 125(8), 1778–1785.

    CAS  Google Scholar 

  121. Meng, Z., Fu, X., Chen, X., Zeng, S., Tian, Y., Jove, R., et al. (2010). miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology, 52(6), 2148–2157.

    PubMed  CAS  Google Scholar 

  122. Kondo, N., Toyama, T., Sugiura, H., Fujii, Y., & Yamashita, H. (2008). miR-206 Expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Research, 68(13), 5004–5008.

    PubMed  CAS  Google Scholar 

  123. Yan, D., Dong Xda, E., Chen, X., Wang, L., Lu, C., Wang, J., et al. (2009). MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. Journal of Biological Chemistry, 284(43), 29596–29604.

    PubMed  CAS  Google Scholar 

  124. Penna, E., Orso, F., Cimino, D., Tenaglia, E., Lembo, A., Quaglino, E., et al. (2011). microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO Journal, 30(10), 1990–2007.

    PubMed  CAS  Google Scholar 

  125. Xu, Y., Zhao, F., Wang, Z., Song, Y., Luo, Y., Zhang, X., et al. (2012). MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene, 31(11), 1398–1407.

  126. Png, K. J., Yoshida, M., Zhang, X. H., Shu, W., Lee, H., Rimner, A., et al. (2011). MicroRNA-335 inhibits tumor reinitiation and is silenced through genetic and epigenetic mechanisms in human breast cancer. Genes & Development, 25(3), 226–231.

    Google Scholar 

  127. Lee, D. Y., Deng, Z., Wang, C. H., & Yang, B. B. (2007). MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20350–20355.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The miRNA research in the Ma Lab is supported by an NIH Pathway to Independence (K99/R00) Award CA138572, a CPRIT First-Time, Tenure-Track Faculty Award R1004, a University of Texas STARS Award, and a Faculty Development Award from MD Anderson’s Cancer Center Support Grant CA016672 from NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Ma, L. MicroRNA control of epithelial–mesenchymal transition and metastasis. Cancer Metastasis Rev 31, 653–662 (2012). https://doi.org/10.1007/s10555-012-9368-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9368-6

Keywords

Navigation