Cancer and Metastasis Reviews

, Volume 31, Issue 3–4, pp 419–428 | Cite as

Genomics screens for metastasis genes

  • Jinchun YanEmail author
  • Qihong HuangEmail author


Metastasis is responsible for most cancer mortality. The process of metastasis is complex, requiring the coordinated expression and fine regulation of many genes in multiple pathways in both the tumor and host tissues. Identification and characterization of the genetic programs that regulate metastasis is critical to understanding the metastatic process and discovering molecular targets for the prevention and treatment of metastasis. Genomic approaches and functional genomic analyses can systemically discover metastasis genes. In this review, we summarize the genetic tools and methods that have been used to identify and characterize the genes that play critical roles in metastasis.


Metastasis Genomic screen Functional genomics Next-generation sequencing 



We thank Ms. Lisa Bain and Gail Hauptfuhrer for editorial assistance. Because of page limitations, it is impossible to cite all the literatures. The authors apologize to colleagues whose valuable work, while uncited in this review, has enormous impact on the field. Q.H. is supported by R01CA148759 from NCI, W.W. Smith Foundation, Edward Mallinckrodt Jr. Foundation, and Breast Cancer Alliance.


  1. 1.
    Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nature Reviews Cancer, 3, 1–6.Google Scholar
  2. 2.
    Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.Google Scholar
  3. 3.
    Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer statistics, 2010. CA: A Cancer Journal for Clinicians, 60, 277–300.Google Scholar
  4. 4.
    Chambers, A. F., Naumov, G. N., Vantyghem, S. A., & Tuck, A. B. (2000). Clinical implications of experimental studies on metastatic inefficiency. Breast Cancer Research, 2, 400–407.PubMedGoogle Scholar
  5. 5.
    Parker, B. S., & Sukumar, S. (2003). Distant metastasis in breast cancer. Cancer Biology & Therapy, 2, 14–16.Google Scholar
  6. 6.
    Gupta, G. P., & Massague, J. (2006). Cancer metastasis: building a framework. Cell, 127, 679–695.PubMedGoogle Scholar
  7. 7.
    Steeg, P. S. (2006). Tumor metastasis: mechanistic insights and clinical challenges. Nature Medicine, 12, 895–904.PubMedGoogle Scholar
  8. 8.
    Welch, D. R., Steeg, P. S., & Rinker-Schaeffer, C. W. (2000). Molecular biology of breast cancer metastasis: genetic regulation of human breast carcinoma metastasis. Breast Cancer Research, 2(6), 408–416.PubMedGoogle Scholar
  9. 9.
    Mundy, G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Reviews Cancer, 2, 584–593.PubMedGoogle Scholar
  10. 10.
    Yokota, J. (2000). Tumor progression and metastasis. Carcinogenesis, 21, 497–503.PubMedGoogle Scholar
  11. 11.
    Hurst, D. R., & Welch, D. R. (2011). Metastasis suppressor genes: at the interface between the environment and tumor cell growth. International Review of Cell and Molecular Biology, 286, 107–180.PubMedGoogle Scholar
  12. 12.
    Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell, 147(2), 275–292.PubMedGoogle Scholar
  13. 13.
    Weiss, L. (1990). Metastasis inefficiency. Advances in Cancer Research, 54, 159–211.PubMedGoogle Scholar
  14. 14.
    Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M., McClanahan, T., Murphy, E., Yuan, W., Wagner, S. N., Barrera, J. L., Mohar, A., Verastegu, E., & Zlotnik, A. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.PubMedGoogle Scholar
  15. 15.
    Leone, A., Flatow, U., King, C. R., Sandeen, M. A., Margulies, I. M. K., Liotta, L. A., & Steeg, P. S. (1991). Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell, 65, 25–35.PubMedGoogle Scholar
  16. 16.
    Seraj, M. J., Samant, R. S., Verderame, M. F., & Welch, D. R. (2000). Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Research, 60, 2764–2769.PubMedGoogle Scholar
  17. 17.
    Lee, J., Miele, M. E., Hicks, D. J., Phillips, K. K., Trent, J. M., Weissman, B. E., & Welch, D. R. (1996). Kiss-1, a novel human malignant melanoma metastasis-suppressor gene. Journal of the National Cancer Institute, 88, 1731–1737.PubMedGoogle Scholar
  18. 18.
    Steeg, P. S. (2003). Metastasis suppressors alter the signal transduction of cancer cells. Nature Reviews Cancer, 3, 55–63.PubMedGoogle Scholar
  19. 19.
    Eccles, S. A., & Welch, D. R. (2007). Metastasis: recent discoveries and novel treatment. Lancet, 369, 1742–1757.PubMedGoogle Scholar
  20. 20.
    Kendal, W. S., Wang, R. Y., Hsu, T. C., & Frost, P. (1987). Rate of generation of major karyotypic abnormalities in relationship to the metastatic potential of B16 murine melanoma. Cancer Research, 47(14), 3835–3841.PubMedGoogle Scholar
  21. 21.
    Kalebic, T., Williams, J. E., Talmadge, J. E., Kao-Shan, C. S., Kravitz, B., Locklear, K., Siegal, G. P., Liotta, L. A., Sobel, M. E., & Steeg, P. S. (1987). A novel method for selection of invasive tumor cells: derivation and characterization of highly metastatic K1735 melanoma cell lines based on in vitro and in vivo invasive capacity. Clinical & Experimental Metastasis, 6(4), 301–318.Google Scholar
  22. 22.
    Pettaway, C. A., Pathak, S., Greene, G., Ramirez, E., Wilson, M. R., Killion, J. J., & Fidler, I. J. (1996). Selection of highly metastatic variants of different human prostatic carcinoma using orthotopic implantation in nude mice. Clinical Cancer Research, 2(9), 1627–1636.PubMedGoogle Scholar
  23. 23.
    Emerson, J. C., Salmon, S. E., Dalton, W., McGee, D. L., Yang, J. M., Thompson, F. H., & Trent, J. M. (1993). Cytogenetics and clinical correlations in breast cancer. Advances in Experimental Medicine and Biology, 330, 107–118.PubMedGoogle Scholar
  24. 24.
    Adeyinka, A., Pandis, N., Nilsson, J., Idvall, I., Mertens, F., Petersson, C., Heim, S., & Mitelman, F. (1996). Different cytogenetic patterns in skeletal breast cancer metastases. Genes, Chromosomes & Cancer, 16(1), 72–74.Google Scholar
  25. 25.
    Adeyinka, A., Kytola, S., Mertens, F., Pandis, N., & Larsson, C. (2000). Spectral karyotyping and chromosome banding studies of primary breast carcinoma and their lymph node metastases. International Journal of Molecular Medicine, 5(3), 235–240.PubMedGoogle Scholar
  26. 26.
    Dracopoli, N. C., Alhadeff, B., Houghton, A. N., & Old, L. J. (1987). Loss of heterozygosity at autosomal and X-linked loci during tumor progression in a patient with melanoma. Cancer Research, 47(15), 3995–4000.PubMedGoogle Scholar
  27. 27.
    Winqvist, R., Hampton, G. M., Mannermaa, A., Blanco, G., Alavaikko, M., Kiviniemi, H., Taskinen, P. J., Evans, G. A., Wright, F. A., Newsham, I., & Cavenee, W. K. (1995). Loss of heterozygosity for chromosome 11 in primary human breast tumors is associated with poor survival after metastasis. Cancer Research, 55(12), 2660–2664.PubMedGoogle Scholar
  28. 28.
    Fournier, R. E., & Ruddle, F. H. (1977). Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 74, 319–323.PubMedGoogle Scholar
  29. 29.
    Yoshida, B. A., Sokoloff, M. M., Welch, D. R., & Rinker-Schaeffer, C. W. (2000). Metastasis-suppressor genes: a review and perspective on an emerging field. Journal of the National Cancer Institute, 92(21), 1717–1730.PubMedGoogle Scholar
  30. 30.
    Ichikawa, T., Ichikawa, Y., & Isaacs, J. T. (1991). Genetic factors and suppression of metastatic ability of prostate cancer. Cancer Research, 51, 3788–3792.PubMedGoogle Scholar
  31. 31.
    Chekmareva, M. A., Hollowell, C. M., Smith, R. C., Davis, E. M., LeBeau, M. M., & Rinker-Schaeffer, C. W. (1997). Localization of prostate cancer metastasis-suppressor activity on human chromosome 17. Prostate, 33, 271–280.PubMedGoogle Scholar
  32. 32.
    Luu, H. H., Zagaja, G. P., Dubauskas, Z., Chen, S. L., Smith, R. C., Watabe, K., et al. (1998). Identification of a novel metastasis-suppressor region on human chromosome 12. Cancer Research, 58, 3561–3565.PubMedGoogle Scholar
  33. 33.
    Matsuda, T., Sasaki, M., Kato, H., Yamada, H., Cohen, M., Barrett, J. C., et al. (1997). Human chromosome 7 carries a putative tumor suppressor gene(s) involved in choriocarcinoma. Oncogene, 15, 2773–2781.PubMedGoogle Scholar
  34. 34.
    Miele, M. E., Robertson, G., Lee, J. H., Coleman, A., McGary, C. T., Fisher, P. B., et al. (1996). Metastasis suppressed, but tumorigenicity and local invasiveness unaffected, in the human melanoma cell line MelJuSo after introduction of human chromosome 1 or 6. Molecular Carcinogenesis, 15, 284–299.PubMedGoogle Scholar
  35. 35.
    You, J., Miele, M. E., Dong, C., & Welch, D. R. (1995). Suppression of human melanoma metastasis by introduction of chromosome 6 may be partially due to inhibition of motility, but not to inhibition of invasion. Biochemical and Biophysical Research Communication, 208, 476–484.Google Scholar
  36. 36.
    Miele, M. E., De La Rosa, A., Lee, J. H., Hicks, D. J., Dennis, J. W., Steeg, P. S., et al. (1997). Suppression of human melanoma metastasis following introduction of chromosome 6 is independent of NME1 (Nm23). Clinical & Experimental Metastasis, 15, 259–265.Google Scholar
  37. 37.
    Phillips, K. K., Welch, D. R., Miele, M. E., Lee, J. H., Wei, L. L., & Weissman, B. E. (1996). Suppression of MDA-MB-435 breast carcinoma cell metastasis following the introduction of human chromosome 11. Cancer Research, 56, 1222–1227.PubMedGoogle Scholar
  38. 38.
    Nihei, N., Ichikawa, T., Kawana, Y., Kuramochi, H., Kugoh, H., Oshimura, M., et al. (1996). Mapping of metastasis suppressor gene(s) for rat prostate cancer on the short arm of human chromosome 8 by irradiated microcell-mediated chromosome transfer. Genes, Chromosomes & Cancer, 17, 260–268.Google Scholar
  39. 39.
    Kuramochi, H., Ichikawa, T., Nihei, N., Kawana, Y., Suzuki, H., Schalken, J. A., et al. (1997). Suppression of invasive ability of highly metastatic rat prostate cancer by Introduction of human chromosome 8. Prostate, 31, 14–20.PubMedGoogle Scholar
  40. 40.
    Nihei, N., Ichikawa, T., Kawana, Y., Kuramochi, H., Kugo, Oshimura, M., et al. (1995). Localization of metastasis suppressor gene(s) for rat prostate cancer to the long arm of human chromosome 10. Genes, Chromosomes & Cancer, 14, 112–119.Google Scholar
  41. 41.
    Rinker-Schaeffer, C. W., Hawkins, A. L., Ru, N., Dong, J., Stoica, G., Griffin, C. A., et al. (1994). Differential suppression of mammary and prostate cancer metastasis by human chromosomes 7 and 11. Cancer Research, 54, 6249–6256.PubMedGoogle Scholar
  42. 42.
    Ichikawa, T., Ichikawa, Y., Dong, J., Hawkins, A. L., Griffin, C. A., Isaacs, W. B., et al. (1992). Localization of metastasis suppressor gene(s) for prostatic cancer to the short arm of human chromosome 11. Cancer Research, 52, 3486–3490.PubMedGoogle Scholar
  43. 43.
    Mashimo, T., Watabe, M., Cuthbert, A. P., Newbold, R. F., Rinker-Schaeffer, C. W., Helfer, E., et al. (1998). Human chromosome 16 suppresses metastasis but not tumorigenesis in rat prostatic tumor cells. Cancer Research, 58, 4572–4576.PubMedGoogle Scholar
  44. 44.
    Seraj, M. J., Harding, M. A., Gildea, J. J., Welch, D. R., & Theodorescu, D. (2001). The relationaship between BRMS1 and RhoGDI2 gene expression to metastatic potential in lineage related human breast cancer cell lines. Clinical Experimental Metastasis, 18, 519–525.Google Scholar
  45. 45.
    Shevde, L. A., Samant, R. S., Goldberg, S. F., Sikaneta, T., Alessandrini, A., Donahue, H. J., Mauger, D. T., & Welch, D. R. (2002). Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Experimental Cell Research, 273, 229–239.PubMedGoogle Scholar
  46. 46.
    Smith, P. W., Liu, Y., Siefert, S. A., Moskaluk, C. A., Petroni, G. R., & Jones, D. R. (2009). Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis and correlates with improved patient survival in non-small lung cancer. Cancer Letters, 276, 196–203.PubMedGoogle Scholar
  47. 47.
    Zhang, S., Lin, Q. D., & Di, W. (2006). Suppression of human ovarian carcinoma metastasis by the metastasis-suppressor gene, BRMS1. International Journal of Gynecology and Cancer, 16, 522–531.Google Scholar
  48. 48.
    Flolova, N., Edmonds, M. D., Bondenstine, T. M., Seitz, R., Johnson, M. R., Feng, R., Welch, D. R., & Frost, A. R. (2009). A shift from nuclear to cytoplasmic breast cancer metastasis suppressor 1 expression is associated with highly proliferative estrogen receptor-negative breast cancer. Tumor Biology, 30, 148–159.Google Scholar
  49. 49.
    Hicks, D. G., Yoder, B. J., Short, S., Tarr, S., Prescott, N., Crowe, J. P., Dawson, A. E., et al. (2006). Loss of BRMS1 protein expression predicts reduced disease-free survival in hormone receptor negative and HER2 positive subsets of breast cancer. Clinical Cancer Research, 12, 6702–6708.PubMedGoogle Scholar
  50. 50.
    Dong, J. T., Lamb, P. W., Rinker-Schaeffer, C. W., Vukanovic, J., Ichikawa, T., Isaacs, J. T., & Barrett, J. C. (1995). KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science, 268, 884–886.PubMedGoogle Scholar
  51. 51.
    Yang, X. H., Welch, D. R., Phillips, K. K., Weissman, B. E., & Wei, L. L. (1997). KAI1, a putative marker for metastatic potential in human breast cancer. Cancer Letters, 119, 149–155.PubMedGoogle Scholar
  52. 52.
    Phillips, K. K., White, A. E., Hicks, D. J., Welch, D. R., Barrett, J. C., Wei, L. L., & Weissman, B. E. (1998). Correlation between reduction of metastasis in the MDA-MB-435 model system and increased expression of the Kai-1 protein. Molecular Carcinogenesis, 21, 111–120.PubMedGoogle Scholar
  53. 53.
    Yang, X., Wei, L., Tang, C., Slack, R., Montgomory, E., & Lippman, M. (2000). KAI1 protein is downregulated during the progression of human breast cancer. Clinical Cancer Research, 6, 3424–3429.PubMedGoogle Scholar
  54. 54.
    Liu, F. S., Dong, J. T., Chen, J. T., Hsieh, Y. T., Ho, E. S., & Hung, M. J. (2000). Frequent downregulation and lack of mutation of the KAI1 metastasis suppressor gene in epithelial ovarian carcinoma. Gynecologic Oncology, 78, 10–15.PubMedGoogle Scholar
  55. 55.
    Lombardi, D. P., Geradts, J., Foley, J. F., Chiao, C., Lamb, P. W., & Barrett, J. C. (1999). Loss of KAI1 expression in the progression of colorectal cancer. Cancer Research, 59, 5724–5731.PubMedGoogle Scholar
  56. 56.
    Goucharuk, V. N., del-Rosario, A., Kren, L., Anwar, S., Sheehan, C. E., Carlson, J. A., & Ross, J. S. (2004). Co-downregulation of PTEN, KAI-1 and nm23-H1 tumor/metastasis suppressor proteins in non-small cell lung cancer. Annals of Diagnostic Pathology, 8, 6–16.Google Scholar
  57. 57.
    Kim, H. L., Van der Griend, D. J., Yang, X., Benson, B. A., Dubauskas, Z., Yoshida, B. A., et al. (2001). Mitogen-activated protein kinase kinase 4 metastasis suppressor gene expression is inversely related to histological pattern in advancing human prostate cancers. Cancer Research, 61, 2833–2837.PubMedGoogle Scholar
  58. 58.
    Cunningham, S. C., Kamanager, F., Kim, M. P., Hammoud, S., Haque, R., Lacobuzio-Donahue, C., et al. (2006). MKK4 status predicts survival after resection of gastric adenocarcinoma. Archives of Surgery, 141, 1095–1099.PubMedGoogle Scholar
  59. 59.
    Stark, A. M., Tongers, K., Maass, N., Mehdorn, N. M., & Held-Feindt, J. (2004). Reduced metastasis-suppressor gene mRNA expression in breast cancer brain metastasis. Journal of Cancer Research and Clinical Oncology, 131, 191–198.PubMedGoogle Scholar
  60. 60.
    Xin, W., Yun, K. J., Ricci, F., Zahurak, M., Qiu, W., Su, G. H., et al. (2004). MAP2K4/MKK4 expression in pancreatic cancer: genetic validation of immunochemistry and relationship to disease course. Clinical Cancer Research, 10, 8516–8520.PubMedGoogle Scholar
  61. 61.
    Yoshida, B. A., Dubauskas, Z., Chekmareva, M. A., Christiano, T. R., Stadler, W. M., & Rinker-Schaeffer, C. W. (1999). Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Research, 59(21), 5483–5487.PubMedGoogle Scholar
  62. 62.
    Welch, D. R., Chen, P., Miele, M. E., McGary, C. T., Bower, J. M., Weissman, B. E., & Stanbridge, E. J. (1994). Microcell-mediated transfer to chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenicity. Oncogene, 9, 255–262.PubMedGoogle Scholar
  63. 63.
    Lapatto, R., Pallais, J. C., Zhang, D., Chan, Y. M., Mahan, A., Cerrato, F., Le, W. W., Hoffman, G. E., & Seminara, S. B. (2007). Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice. Endocrinology, 148, 4927–4936.PubMedGoogle Scholar
  64. 64.
    Lee, J.-H., & Welch, D. R. (1997). Suppression of metastasis in human breast carcinoma MDA-MB-435 cells after transfection with the metastasis suppressor gene KiSS-1. Cancer Research, 57, 2384–2387.PubMedGoogle Scholar
  65. 65.
    Jiang, Y., Berk, M., Singh, L. H., Tan, H. Y., Yin, L. H., Powell, C. T., & Xu, Y. (2005). KiSS-1 suppresses metastasis in human ovarian cancer via inhibition of protein kinase C alpha. Clinical & Experimental Metastasis, 22, 369–376.Google Scholar
  66. 66.
    McNally, L. R., Welch, D. R., Beck, B. H., Stafford, L. J., Long, J. W., Sellers, J. C., et al. (2010). KISS1 overexpression suppresses metastasis of pancreatic adenocarcinoma in a xenograft mouse model. Clinical & Experimental Metastasis, 27(8), 591–600.Google Scholar
  67. 67.
    Beck, B. H., & Welch, D. R. (2010). The KISS1 metastasis suppressor: a good night kiss for disseminated cancer cells. European Journal of Cancer, 46, 1283–1289.PubMedGoogle Scholar
  68. 68.
    Dhar, D. K., Naora, H., Kubota, H., Maruyama, R., Yoshimura, H., Tonomoto, Y., et al. (2004). Downregulation of KiSS1 expression is responsible for tumor invasion and worse prognosis in gastric carcinoma. International Journal of Cancer, 111, 868–872.Google Scholar
  69. 69.
    Hata, K., Dhar, D. K., Watanabe, Y., Nakai, H., & Hoshiai, H. (2007). Expression of metastatin and a G protein coupled receptor (AXOR12) in epithelial ovarian cancer. European Journal of Cancer, 43, 1452–1459.PubMedGoogle Scholar
  70. 70.
    Ikeguchi, M., Yamaguchi, K., & Kaibara, N. (2004). Clinical significance of the loss of KiSS1 and orphan G-protein-coupled receptor (hOT7T175) gene expression in esophageal squamous cell carcinoma. Clinical Cancer Research, 10, 1379–1383.PubMedGoogle Scholar
  71. 71.
    Katagiri, F., Nagai, K., Kida, A., Tomita, K., Oishi, S., Takeyama, M., et al. (2009). Clinical significance of plasma metastatin level in pancreatic cancer patients. Oncology Reports, 21, 815–819.PubMedGoogle Scholar
  72. 72.
    Martin, T. A., Watkins, G., & Jiang, W. G. (2005). KISS1 expression in human breast cancer. Clinical & Experimental Metastasis, 22, 503–511.Google Scholar
  73. 73.
    Prentice, L. M., Klausen, C., Kalloger, S., Kobel, M., McKinney, S., Santos, J. L., et al. (2007). Kisspeptin and GPR54 immunoreactivity in a cohort of 518 patients defines favourable prognosis of clear cell subtype in ovarian carcinoma. BMC Medicine, 5, 33.PubMedGoogle Scholar
  74. 74.
    Shirasaki, F., Takada, M., Hatta, N., & Takehara, K. (2001). Loss of expression of the metastasis suppressor gene KiSS1 during melanoma progression and its association with LOH of chromosome 6q16.3–q23. Cancer Research, 61, 7422–7425.PubMedGoogle Scholar
  75. 75.
    Steeg, P. S., Bevilacqua, G., Kopper, L., Thorgeirsson, U. P., Talmadge, J. E., Liotta, L. A., & Sobel, M. E. (1988). Evidence for a novel gene associated with low tumor metastatic potential. Journal of the National Cancer Institute, 80, 200–204.PubMedGoogle Scholar
  76. 76.
    Lacombe, M. L., Milon, L., Munier, A., Mehus, J. G., & Lambeth, D. O. (2000). The human Nm23/nucleoside diphosphate kinases. Journal of Bioenergetics and Biomembranes, 32, 247–258.PubMedGoogle Scholar
  77. 77.
    Marshall, J. C., Lee, J. H., & Steeg, P. S. (2009). Clinical-translational strategies for the elevation of Nm23-H1 metastasis suppressor gene expression. Molecular and Cellular Biochemistry, 329, 115–120.PubMedGoogle Scholar
  78. 78.
    Steeg, P. S., & Theodorescu, D. (2007). Metastasis: a therapeutic target for cancer. Nature Clinical Practice Oncology, 5, 206–219.Google Scholar
  79. 79.
    Marshall, J. C., Collins, J., Marino, N., & Steeg, P. S. (2009). The Nm23-H1 metastasis suppressor as a translational target. European Journal of Cancer, 46, 1278–1282.Google Scholar
  80. 80.
    Ouatas, T., Halverson, D., & Steeg, P. S. (2003). Dexamethasone and medroxyprogesterone acetate elevate Nm23-H1 metastasis suppressor expression in metastatic human breast cancer cells via glucocorticoid receptor-dependent, translational and post-transcriptional mechanisms: new use for old compounds. Clinical Cancer Research, 9, 3763–3772.PubMedGoogle Scholar
  81. 81.
    Palmieri, D., Halverson, D. O., Ouatas, T., Horak, C. E., Salerno, M., Johnson, J., et al. (2005). Medroxyprogesterone acetate elevation of Nm23-H1 metastasis suppressor expression in hormone receptor-negative breast cancer. Journal of the National Cancer Institute, 97, 632–642.PubMedGoogle Scholar
  82. 82.
    Kang, Y., Seigel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., Guise, T. A., & Massague, J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedGoogle Scholar
  83. 83.
    Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., Viale, A., Olshen, A. B., Gerald, W. L., & Massague, J. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436, 518–524.PubMedGoogle Scholar
  84. 84.
    Bos, P. D., Zhang, X. H.-F., Nadal, C., Shu, W., Gomis, R. R., Nguyen, D. X., Minn, A. J., van de Vijver, M. J., Gerald, W. L., Foekens, J. A., & Mssague, J. (2009). Genes that mediate breast cancer metastasis to the brain. Nature, 549, 1005–1009.Google Scholar
  85. 85.
    Aslakson, C. J., & Miller, F. R. (1992). Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Research, 52, 1399–1405.PubMedGoogle Scholar
  86. 86.
    Yang, J., Mani, S. A., Donaher, J. L., Ramaswarmy, S., Itzykson, R. A., Come, C., Savagner, P., Gitelman, I., Richardson, A., & Weinberg, R. A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.PubMedGoogle Scholar
  87. 87.
    Timar, J., Gyorffy, B., & Raso, E. (2010). Gene signatures of the metastatic potential of cutaneous melanoma: too much for too little? Clinical & Experimental Metastasis, 27, 371–387.Google Scholar
  88. 88.
    Freeman, J. A., Tyler, D. S., Nevins, J. R., & Augustine, C. K. (2011). Use of gene expression and pathway signatures to characterize the complexity of human melanoma. The American Journal of Pathology, 178, 2513–2522.Google Scholar
  89. 89.
    Ptitsyn, A. (2009). Computational analysis of gene expression space associated with Metastatic cancer. BMC Bioinformatics, 10, S6.PubMedGoogle Scholar
  90. 90.
    Taylor, B. S., Varambally, S., & Chinnaiyan, A. (2006). A systems approach to model metastatic progression. Cancer Research, 66, 5537–5539.PubMedGoogle Scholar
  91. 91.
    LaTulippe, E., Satagopan, J., Smith, A., Scher, H., Scardino, P., Reuter, V., & Gerald, W. L. (2002). Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Research, 62, 4499–4506.PubMedGoogle Scholar
  92. 92.
    Bignotti, E., Tassi, R. A., Calza, S., Ravaggi, A., Bandiera, E., Rossi, E., et al. (2007). Gene expression profile of ovarian serous papillary carcinomas: identification of metastasis-associated genes. American Journal of Obstetrics and Gynecology, 196, 245e1–245e11.Google Scholar
  93. 93.
    Watanabe, T., Kobunai, T., Tanaka, T., Ishihara, S., Matsuda, K., & Nagawa, H. (2009). Gene expression signature and prediction of lymph node metastasis in colorectal cancer by DNA microarray. Diseases of the Colon & Rectum, 52, 1941–1948.Google Scholar
  94. 94.
    Salazar, R., Roepman, P., Capella, G., Moreno, V., Simon, S., Dreezen, C., et al. (2011). Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. Journal of Clinical Oncology, 29, 17–24.PubMedGoogle Scholar
  95. 95.
    Inamura, K., & Ishikawa, Y. (2010). Lung cancer progression and metastasis from the prognostic point of view. Clinical & Experimental Metastasis, 27, 389–397.Google Scholar
  96. 96.
    Winter, S. F., & Hunter, K. W. (2008). Mouse modifier genes in mammary tumorigenesis and metastasis. Journal of Mammary Gland Biology and Neoplasia, 13, 337–342.PubMedGoogle Scholar
  97. 97.
    Hunter, K. W., & Alsarraj, J. (2009). Gene expression profiles and breast cancer metastasis: a genetic perspective. Clinical & Experimental Metastasis, 26, 497–503.Google Scholar
  98. 98.
    Park, Y., Zhao, X., Lesueur, F., Lowy, D. R., Lancaster, M., Pharoah, P., Qian, X., & Hunter, K. W. (2005). Sipa1 is a candidate for underlying the metastasis efficiency modifier locus Mtes1. Nature Genetics, 37, 1055–1062.PubMedGoogle Scholar
  99. 99.
    Crawford, N. P., Qian, X., Ziogas, A., Papageorge, A. G., Boersma, B. J., Walker, R. C., Lukes, L., Rowe, W. L., Zhang, J., Ambs, S., Lowy, D. R., Anton-Culver, H., & Hunter, K. W. (2007). Rrp1b, a new candidate susceptibility gene for breast cancer progression and metastasis. PLoS Genetics, 3, e214.PubMedGoogle Scholar
  100. 100.
    Crawford, N. P., Alsarraj, J., Lukes, L., Walker, R. C., Officewala, J. S., Yang, H. H., et al. (2008). Bromodomain 4 activation predicts breast cancer survival. Proceedings of the National Academy of Sciences of the United States of America, 105, 6380–6385.PubMedGoogle Scholar
  101. 101.
    Gumireddy, K., Li, A., Gimotty, P. A., Klein-Szanto, A. J., Showe, L. C., Katsaros, D., Coukos, G., Zhang, L., & Huang, Q. (2009). KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nature Cell Biology, 11(11), 1297–1304.PubMedGoogle Scholar
  102. 102.
    Gobeil, S., Zhu, X., Doillon, C. J., & Green, M. R. (2008). A genome-wide shRNA screen identified GAS1 as a novel metastasis suppressor gene. Genes & Development, 22, 2932–2940.Google Scholar
  103. 103.
    Gumireddy, K., Sun, F., Klein-Szanto, A. J., Gibbins, G. M., Gimotty, P. A., Saunders, A. J., Schultz, P. G., & Huang, Q. (2007). An in vivo selection for metastasis promoting genes in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 104(16), 6696–6701.PubMedGoogle Scholar
  104. 104.
    Huang, Q., Gumireddy, K., Schrier, M., le Sage, C., Nagel, R., Nair, S., Egan, D. A., Li, A., Huang, G., Klein-Szanto, A. J., Gimotty, P. A., Katsaros, D., Coukos, G., Zhang, L., Puré, E., & Agami, R. (2008). The microRNAs miR-373 and miR-520c promote tumor invasion and metastasis. Nature Cell Biology, 10(2), 202–210.PubMedGoogle Scholar
  105. 105.
    Gumireddy, K., & Huang, Q. (2010). Identification of metastasis genes by a functional genomics approach. Cell Cycle, 9(3), 423.PubMedGoogle Scholar
  106. 106.
    Turajlic, S., Furney, S. J., Lambros, M. B., Mitsopoulos, C., Kozarewa, I., Geyer, F. C., et al. (2011). Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Research. doi: 10.1101/gr.125529.111.
  107. 107.
    Kabbarah, O., Nogueira, C., Feng, B., Nazarian, R. M., Bosenberg, M., Wu, M., et al. (2010). Integrative genome comparison of primary and metastatic melanomas. PLoS One, 5, e10770.PubMedGoogle Scholar
  108. 108.
    Vermaat, J. S., Nijman, I. J., Koudijs, M. J., Gerritse, F. L., Scherer, S. J., Mokry, M., et al. (2011). Primary colorectal cancers and their subsequent hepatic metastases are genetically different: implications for selection of patients for targeted treatment. Clinical Cancer Research. doi: 10.1158/1078-0432.CCR-11-1965.
  109. 109.
    Sayagues, J. M., Fontanillo, C., del Mar Abad, M., Gonzales-Gonzales, M., Saraquete, M. E., del Carmon Chillon, M., et al. (2010). Mapping of genetic abnormalities of primary tumours from metastatic CRC by high-resolution SNP arrays. PLoS One, 5, e13752.PubMedGoogle Scholar
  110. 110.
    Ghadimi, B. M., Grade, M., Monkemeyer, C., Kulle, B., Gaedcke, J., Gunawan, B., et al. (2006). Distinct chromosomal profiles in metastasizing and non-metastasizing colorectal carcinomas. Cellular Oncology, 28, 273–281.PubMedGoogle Scholar
  111. 111.
    Al-Mulla, F., AlFadhili, S., Al-Hakim, A. H., Going, J. J., & Bitar, M. S. (2006). Metastatic recurrence of early stage colorectal cancer is linked to loss of heterozygosity on chromosomes 4 and 14q. Journal of Clinical Pathology, 59, 624–630.PubMedGoogle Scholar
  112. 112.
    Macintosh, C. A., Stower, M., Reid, N., & Maitland, N. J. (1998). Precise of microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Research, 58, 23–28.PubMedGoogle Scholar
  113. 113.
    Liu, W., Laitinen, S., Khan, S., Vihinen, M., Kowalski, J., Yu, G., et al. (2009). Copy Number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nature Medicine, 15, 559–565.PubMedGoogle Scholar
  114. 114.
    Robbins, C. M., Tembe, W. A., Baker, A., Sinari, S., Moses, T. Y., Beckstrom-Sternberg, S., et al. (2011). Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors. Genome Research, 21, 47–55.PubMedGoogle Scholar
  115. 115.
    Holcomb, I. N., Young, J. M., Coleman, I. M., Sarali, K., Grove, D. I., Hsu, L., et al. (2009). Comparative analysis of chromosome alterations in soft-tissue metastases within and across patients with castration-resistant prostate cancer. Cancer Research, 69, 7793–7802.PubMedGoogle Scholar
  116. 116.
    Taylor, B. S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B. S., et al. (2009). Intergrative genomic profiling of human prostate cancer. Cancer Cell, 18, 11–22.Google Scholar
  117. 117.
    Kumar, A., White, T. A., MacKenzie, A. P., Clegg, N., Lee, C., Dumpit, R. F., et al. (2011). Exome sequencing identified a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proceedings of the National Academy of Sciences of the United States of America, 108, 17087–17092.PubMedGoogle Scholar
  118. 118.
    Campbell, P. J., Yachida, S., Mudie, L. J., Stephens, P. J., Pleasance, E. D., Stebbings, L. A., et al. (2010). The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 467, 1109–1113.PubMedGoogle Scholar
  119. 119.
    Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., et al. (2010). Distance metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467, 1114–1117.PubMedGoogle Scholar
  120. 120.
    Ding, L., Ellis, M. J., Li, S., Larson, D. E., Chen, K., Wallis, J. W., et al. (2010). Genome remodeling in a basal-like breast cancer metastasis and xenograft. Nature, 464, 999–1005.PubMedGoogle Scholar
  121. 121.
    Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., et al. (2009). Mutational evolution in a lobular breast tumor profiled at single nucleotide resolution. Nature, 461, 809–813.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.University of Washington Medical CenterSeattleUSA
  2. 2.The Wistar InstitutePhiladelphiaUSA

Personalised recommendations