Skip to main content

Advertisement

Log in

Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cancer metastasis refers to the spread of cancer cells from the primary neoplasm to distant sites, where secondary tumors are formed, and is the major cause of death from cancer. Natural phytochemicals containing phenolic compounds have been widely demonstrated to have the capability to prevent cancer metastasis. Among phenolic compounds, flavonoids are a very large subclass, and they are abundant in food and nutraceuticals. The number of reports demonstrating that flavonoids are an effective natural inhibitor of cancer invasion and metastasis is increasing in the scientific literature. Catechin derivatives, (−)-epigallocatechin-3-gallate, (−)-epigallocatechin, (−)-epicatechin-3-gallate, and (−)-epicatechin, are the most studied compounds in this topic so far; genistein/genistin, silibinin, quercetin, and anthocyanin have also been widely investigated for their inhibitory activities on invasion/metastasis. Other flavonoids in dietary vegetable foods that are responsible for anti-invasive and anti-metastatic activities of tumors include luteolin, apigenin, myricetin, tangeretin, kaempferol, glycitein, licoricidin, daidzein, and naringenin. To effectively overcome the metastatic cascade, including cell–cell attachment, tissue-barrier degradation, migration, invasion, cell–matrix adhesion, and angiogenesis, it is essential that a bioactive compound prevent tumor cells from metastasizing. This review summarizes the effects of flavonoids on the metastatic cascade and the related proteins, the in vitro anti-invasive activity of flavonoids against cancer cells, and the effects of flavonoids on anti-angiogenic and in vivo anti-metastatic models. The available scientific evidence indicates that flavonoids are a ubiquitous dietary phenolics subclass and exert extensive in vitro anti-invasive and in vivo anti-metastatic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ang:

Angiopoietin

AOM:

Azoxymethane

CXCR4:

CXC chemokine receptor 4

COX-2:

Cyclooxygenase-2

ECM:

Extracellular matrix

EGCG:

(−)-Epigallocatechin-3-gallate

EGFR:

Epidermal growth factor receptor

EMMPRIN:

Extracellular matrix metalloproteinase inducer

EMT:

Epithelial–mesenchymal transition

ER:

Estrogen receptor

ErbB2:

Epidermal growth factor receptor-related protein B2

FAK:

Focal adhesion kinase

FOXO3:

Forkhead box O3

HGF:

Hepatocyte growth factor

HIF:

Hypoxia-inducible factor

HRG:

Heregulin-β1

HSP:

Heat shock protein

HUVECs:

Human umbilical vein endothelial cells

iNOS:

Inducible nitric oxide synthase

KAI1:

Kangai-1

LLC:

Lewis lung carcinoma

MAPKAPK2:

MAP kinase-activated protein kinase 2

mdm2:

Murine double minute 2

MET:

Mesenchymal–epithelial transition

MMP:

Matrix metalloproteinases

MT-1 MMP:

Membrane type-1 MMP

MTA3:

Metastasis-associated protein 3

MUC1:

Mucin 1, cell surface-associated

OPG:

Osteoprotegerin

OPN:

Osteopontin

PAI:

Plasminogen activator inhibitor

PECAM:

Platelet endothelial cell adhesion molecule

PMA:

Phorbol 12-myristate 13-acetate

PKC:

Protein kinase C

PGE2:

Prostaglandin E2

PMN:

Polymorphonuclear phagocytes

PN-II:

Protease nexin-II

PSA:

Prostate-specific antigen

RANKL:

Receptor activator of nuclear factor-kB ligand

RECK:

Reversion-inducing cysteine-rich protein with kazal motifs

SLUG:

Zinc finger protein SNAI2

TIMP:

Tissue inhibitor metalloproteinase protein

TRAMP:

Transgenic adenocarcinoma of mouse prostate

uPA:

Urokinase plasminogen activator

uPAR:

Urokinase plasminogen activator receptor

VASP:

Vasodilator-stimulated phosphoprotein

VEGF:

Vascular endothelial growth factor

ZEB1:

Zinc finger E-box-binding homeobox 1

References

  1. Weiss, L. (1990). Metastatic inefficiency. Advances in Cancer Research, 54, 159–211.

    PubMed  CAS  Google Scholar 

  2. Liotta, L. A., Steeg, P. S., & Stetter-Stevenson, W. G. (1991). Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell, 64, 327–336.

    PubMed  CAS  Google Scholar 

  3. Condeelis, J., & Segall, J. E. (2003). Intravital imaging of cell movement in tumours. Nature Reviews. Cancer, 3, 921–930.

    PubMed  CAS  Google Scholar 

  4. Van Sumere, C. F. (1989). Phenols and phenolic acids. In J. B. Harborne (Ed.), Methods in plant biochemistry, volume 1 (Plant phenolics, pp. 29–74). London: Academic.

    Google Scholar 

  5. Shahidi, F. (2000). Antioxidants in food and food antioxidants. Die Nahrung, 44, 158–163.

    PubMed  CAS  Google Scholar 

  6. Shahidi, F. (2002). Antioxidants in plants and oleaginous seeds. In M. J. Morello, F. Shahidi, & C. T. Ho (Eds.), Free radicals in food: Chemistry, nutrition, and health effects, ACS symposium series 807 (pp. 162–175). Washington, DC: American Chemical Society.

    Google Scholar 

  7. Cook, N. C., & Samman, S. (1996). Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. The Journal of Nutritional Biochemistry, 7, 66–76.

    CAS  Google Scholar 

  8. Ververidis, F., Trantas, E., Douglas, C., Vollmer, G., Kretzschmar, G., & Panopoulos, N. (2007). Biotechnology of flavonoids and other phenylpropanoid-derived natural products. Part I: Chemical diversity, impacts on plant biology and human health. Biotechnology Journal, 2, 1214–1234.

    PubMed  CAS  Google Scholar 

  9. Sliva, D. (2008). Suppression of cancer invasiveness by dietary compounds. Mini Reviews in Medicinal Chemistry, 8, 677–688.

    PubMed  CAS  Google Scholar 

  10. Weng, C. J., & Yen, G. C. (2012). Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treatment Reviews, 38, 76–87.

    PubMed  CAS  Google Scholar 

  11. Christofori, G. (2006). New signals from the invasive front. Nature, 441, 444–450.

    PubMed  CAS  Google Scholar 

  12. Thiery, J. P. (2002). Epithelial–mesenchymal transitions in tumour progression. Nature Reviews. Cancer, 2, 442–454.

    PubMed  CAS  Google Scholar 

  13. Yang, J., & Weinberg, R. A. (2008). Epithelial–mesenchymal transition: At the crossroads of development and tumor metastasis. Developmental Cell, 14, 818–829.

    PubMed  CAS  Google Scholar 

  14. Joo, Y., Rew, J., Park, C., & Kim, S. (2002). Expression of E-cadherin, alpha- and beta-catenins in patients with pancreatic adenocarcinoma. Pancreatology, 2, 129–137.

    PubMed  CAS  Google Scholar 

  15. Nakajima, S., Doi, R., Toyoda, E., Tsuji, S., Wada, M., Koizumi, M., Tulachan, S. S., Ito, D., Kami, K., Mori, T., Kawaguchi, Y., Fujimoto, K., Hosotani, R., & Imamura, M. (2004). N-cadherin expression and epithelial–mesenchymal transition in pancreatic carcinoma. Clinical Cancer Research, 10, 4125–4133.

    PubMed  CAS  Google Scholar 

  16. Sanders, D. S., Bruton, R., Darnton, S. J., Casson, A. G., Hanson, I., Williams, H. K., & Jankowski, J. (1998). Sequential changes in cadherin–catenin expression associated with the progression and heterogeneity of primary oesophageal squamous carcinoma. International Journal of Cancer, 79, 573–579.

    CAS  Google Scholar 

  17. Muzio, L. Lo, Pannone, G., Mignogna, M. D., Staibano, S., Mariggio, M. A., Rubini, C., Procaccini, M., Dolci, M., Bufo, P., Rosa, G. De, & Piattelli, A. (2004). P-cadherin expression predicts clinical outcome in oral squamous cell carcinomas. Histology and Histopathology, 19, 1089–1099.

    PubMed  Google Scholar 

  18. Bachmann, I. M., Straume, O., Puntervoll, H. E., Kalvenes, M. B., & Akslen, L. A. (2005). Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clinical Cancer Research, 11, 8606–8614.

    PubMed  CAS  Google Scholar 

  19. Van Marck, V., Stove, C., Jacobs, K., Van den Eynden, G., & Bracke, M. (2011). P-cadherin in adhesion and invasion: Opposite roles in colon and bladder carcinoma. International Journal of Cancer, 128, 1031–1044.

    Google Scholar 

  20. Gamallo, C., Moreno-Bueno, G., Sarrio, D., Calero, F., Hardisson, D., & Palacios, J. (2001). The prognostic significance of P-cadherin in infiltrating ductal breast carcinoma. Modern Pathology, 14, 650–654.

    PubMed  CAS  Google Scholar 

  21. Paredes, J., Stove, C., Stove, V., Milanezi, F., Van Marck, V., Derycke, L., Mareel, M., Bracke, M., & Schmitt, F. (2004). P-cadherin is upregulated by the antiestrogen ICI 182,780 and promotes invasion of human breast cancer cells. Cancer Research, 64, 8309–8317.

    PubMed  CAS  Google Scholar 

  22. Stefansson, I. M., Salvesen, H. B., & Akslen, L. A. (2004). Prognostic impact of alterations in Pcadherin expression and related cell adhesion markers in endometrial cancer. Journal of Clinical Oncology, 22, 1242–1252.

    PubMed  CAS  Google Scholar 

  23. Taniuchi, K., Nakagawa, H., Hosokawa, M., Nakamura, T., Eguchi, H., Ohigashi, H., Ishikawa, O., Katagiri, T., & Nakamura, Y. (2005). Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Research, 65, 3092–3099.

    PubMed  CAS  Google Scholar 

  24. Gravdal, K., Halvorsen, O. J., Haukaas, S. A., & Akslen, L. A. (2007). A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clinical Cancer Research, 13, 7003–7011.

    PubMed  CAS  Google Scholar 

  25. Tothill, R. W., Tinker, A. V., George, J., Brown, R., Fox, S. B., Lade, S., Johnson, D. S., Trivett, M. K., Etemadmoghadam, D., Locandro, B., Traficante, N., Fereday, S., Hung, J. A., Chiew, Y. E., Haviv, I., Australian Ovarian Cancer Study Group, Gertig, D., DeFazio, A., & Bowtell, D. D. (2008). Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clinical Cancer Research, 14, 5198–5208.

    PubMed  CAS  Google Scholar 

  26. Imai, K., Hirata, S., Irie, A., Senju, S., Ikuta, Y., Yokomine, K., Harao, M., Inoue, M., Tsunoda, T., Nakatsuru, S., Nakagawa, H., Nakamura, Y., Baba, H., & Nishimura, Y. (2008). Identification of a novel tumor-associated antigen, cadherin 3/P-cadherin, as a possible target for immunotherapy of pancreatic, gastric, and colorectal cancers. Clinical Cancer Research, 14, 6487–6495.

    PubMed  CAS  Google Scholar 

  27. Francí, C., Takkunen, M., Dave, N., Alameda, F., Gómez, S., Rodríguez, R., Escrivà, M., Montserrat-Sentís, B., Baró, T., Garrido, M., Bonilla, F., Virtanen, I., & García de Herreros, A. (2006). Expression of Snail protein in tumor-stroma interface. Oncogene, 25, 5134–5144.

    PubMed  Google Scholar 

  28. Hipp, S., Walch, A., Schuster, T., Höfler, H., & Becker, K. F. (2008). Precise measurement of the E-cadherin repressor Snail in formalin-fixed endometrial carcinoma using protein lysate microarrays. Clinical & Experimental Metastasis, 25, 679–683.

    CAS  Google Scholar 

  29. Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., & Brabletz, T. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9, 582–589.

    PubMed  CAS  Google Scholar 

  30. Chang, T. H., Tsai, M. F., Su, K. Y., Wu, S. G., Huang, C. P., Yu, S. L., Yu, Y. L., Lan, C. C., Yang, C. H., Lin, S. B., Wu, C. P., Shih, J. Y., & Yang, P. C. (2011). Slug confers resistance to the epidermal growth factor receptor tyrosine kinase inhibitor. American Journal of Respiratory and Critical Care Medicine, 183, 1071–1079.

    PubMed  CAS  Google Scholar 

  31. Myatt, S. S., & Lam, E. W. (2007). The emerging roles of forkhead box (Fox) proteins in cancer. Nature Reviews. Cancer, 7, 847–859.

    PubMed  CAS  Google Scholar 

  32. Humphries, M. J. (2000). Integrin structure. Biochemical Society Transactions, 28, 311–339.

    PubMed  CAS  Google Scholar 

  33. Yamamoto, M., Bharti, A., Li, Y., & Kufe, D. (1997). Interaction of the DF3/MUC1 breast carcinoma-associated antigen and beta-catenin in cell adhesion. Journal of Biological Chemistry, 272, 12492–12494.

    PubMed  CAS  Google Scholar 

  34. Huang, L., Chen, D., Liu, D., Yin, L., Kharbanda, S., & Kufe, D. (2005). MUC1 oncoprotein blocks glycogen synthase kinase 3beta-mediated phosphorylation and degradation of beta-catenin. Cancer Research, 65, 10413–10422.

    PubMed  CAS  Google Scholar 

  35. Roy, L. D., Sahraei, M., Subramani, D. B., Besmer, D., Nath, S., Tinder, T. L., Bajaj, E., Shanmugam, K., Lee, Y. Y., Hwang, S. I. L., Gendler, S. J., & Mukherjee, P. (2011). MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene, 30, 1449–1459.

    PubMed  CAS  Google Scholar 

  36. Sahai, E. (2007). Illuminating the metastatic process. Nature Reviews. Cancer, 7, 737–749.

    PubMed  CAS  Google Scholar 

  37. Wyckoff, J. B., Jones, J. G., Condeelis, J. S., & Segall, J. E. (2000). A critical step in metastasis: In vivo analysis of intravasation at the primary tumor. Cancer Research, 60, 2504–2511.

    PubMed  CAS  Google Scholar 

  38. Ghosh, M., Song, X., Mouneimne, G., Sidani, M., Lawrence, D. S., & Condeelis, J. S. (2004). Cofilin promotes actin polymerization and defines the direction of cell motility. Science, 304, 743–746.

    PubMed  CAS  Google Scholar 

  39. Kleiner, D. E., & Stetler-Stevenson, W. G. (1999). Matrix metalloproteinases and metastasis. Cancer Chemotherapy and Pharmacology, 43, S41–S51.

    Google Scholar 

  40. Westermarck, J., & Kahari, V. M. (1999). Regulation of matrix metalloproteinase expression in tumor invasion. The FASEB Journal, 13, 781–792.

    CAS  Google Scholar 

  41. Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Reviews. Cancer, 3, 362–374.

    PubMed  CAS  Google Scholar 

  42. Rao, J. S. (2003). Molecular mechanisms of glioma invasiveness: The role of proteases. Nature Reviews. Cancer, 3, 489–501.

    PubMed  CAS  Google Scholar 

  43. Yamamoto, H., Itoh, F., Iku, S., Adachi, Y., Fukushima, H., Sasaki, S., Mukaiya, M., Hirata, K., & Imai, K. (2001). Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human pancreatic adenocarcinomas: Clinicopathologic and prognostic significance of matrilysin expression. Journal of Clinical Oncology, 19, 1118–1127.

    PubMed  CAS  Google Scholar 

  44. Chung, T. W., Moon, S. K., Lee, Y. C., Kim, J. G., Ko, J. H., & Kim, C. H. (2002). Enhanced expression of matrix metalloproteinase-9 by hepatitis B virus infection in liver cells. Archives of Biochemistry and Biophysics, 408, 147–154.

    PubMed  CAS  Google Scholar 

  45. Muramatsu, T., & Miyauchi, T. (2004). Basigin (CD147): A multifunctional transmembrane protein involved in reproduction, neural function, inflammation and tumor invasion. Histology and Histopathology, 18, 981–987.

    Google Scholar 

  46. Jinga, D. C., Blidaru, A., Condrea, I., Ardeleanu, C., Dragomir, C., Szegli, G., Stefanescu, M., & Matache, C. (2006). MMP-9 and MMP-2 gelatinases and TIMP-1 and TIMP-2 inhibitors in breast cancer: Correlations with prognostic factors. Journal of Cellular and Molecular Medicine, 10, 499–510.

    PubMed  CAS  Google Scholar 

  47. Tan, X., Egami, H., Nozawa, F., Abe, M., & Baba, H. (2006). Analysis of the invasion-metastasis mechanism in pancreatic cancer: Involvement of plasmin(ogen) cascade proteins in the invasion of pancreatic cancer cells. International Journal of Oncology, 28, 369–374.

    PubMed  CAS  Google Scholar 

  48. Mazar, A. P. (2001). The urokinase plasminogen activator receptor (uPAR) as a target for the diagnosis and therapy of cancer. Anti-Cancer Drugs, 12, 387–400.

    PubMed  CAS  Google Scholar 

  49. Sliva, D., Labarrere, C., Slivova, V., Sedlak, M., Lloyd, F. P., Jr., & Ho, N. W. (2002). Ganoderma lucidum suppresses motility of highly invasive breast and prostate cancer cells. Biochemical and Biophysical Research Communications, 298, 603–612.

    PubMed  CAS  Google Scholar 

  50. Sidenius, N., & Blasi, F. (2003). The urokinase plasminogen activator system in cancer: Recent advances and implication for prognosis and therapy. Cancer and Metastasis Reviews, 22, 205–222.

    PubMed  CAS  Google Scholar 

  51. Han, B., Nakamura, M., Mori, I., Nakamura, Y., & Kakudo, K. (2005). Urokinase-type plasminogen activator system and breast cancer (review). Oncology Reports, 14, 105–112.

    PubMed  CAS  Google Scholar 

  52. Duggan, C., Kennedy, S., Kramer, M. D., Barnes, C., Elvin, P., McDermott, E., O’Higgins, N., & Duffy, M. J. (1997). Plasminogen activator inhibitor type 2 in breast cancer. British Journal of Cancer, 76, 622–627.

    PubMed  CAS  Google Scholar 

  53. Sakakibara, T., Hibi, K., Koike, M., Fujiwara, M., Kodera, Y., Ito, K., & Nakao, A. (2005). Plasminogen activator inhibitor-1 as a potential marker for the malignancy of colorectal cancer. British Journal of Cancer, 93, 799–803.

    PubMed  CAS  Google Scholar 

  54. Kang, H. G., Kim, H. S., Kim, K. J., Oh, J. H., Lee, M. R., Seol, S. M., & Han, I. (2007). RECK expression in osteosarcoma: Correlation with matrix metalloproteinases activation and tumor invasiveness. Journal of Orthopaedic Research, 25, 696–702.

    PubMed  CAS  Google Scholar 

  55. Rao, A. R., Motiwala, H. G., & Karim, O. M. (2008). The discovery of prostate-specific antigen. BJU International, 101, 5–10.

    PubMed  CAS  Google Scholar 

  56. Lilja, H. (2003). Biology of prostate-specific antigen. Urology, 62, 27–33.

    PubMed  Google Scholar 

  57. Fuchs, E. (1882). Das Sarcom des Uvealtractus. In W. Braumueller (Ed.), Metastasenbildung (pp. 197–206). Vienna: Wilhelm Braumuller.

    Google Scholar 

  58. Paget, S. (1889). The distribution of secondary growths in cancer of the breast. Lancet, 1, 571–573.

    Google Scholar 

  59. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3, 453–458.

    PubMed  CAS  Google Scholar 

  60. Ruoslahti, E., & Rajotte, D. (2000). An address system in the vasculature of normal tissues and tumors. Annual Review of Immunology, 18, 813–827.

    PubMed  CAS  Google Scholar 

  61. Brown, D. M., & Metadherin, R. E. (2004). A cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell, 5, 365–374.

    PubMed  CAS  Google Scholar 

  62. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S. N., Barrera, J. L., Mohar, A., Verástegui, E., & Zlotnik, A. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.

    PubMed  CAS  Google Scholar 

  63. Harbeck, B., Hüttelmaier, S., Schluter, K., Jockusch, B. M., & Illenberger, S. (2000). Phosphorylation of the vasodilator-stimulated phosphoprotein regulates its interaction with actin. The Journal of Biological Chemistry, 275, 30817–30825.

    PubMed  CAS  Google Scholar 

  64. McDougall, S. R., Anderson, A. R., & Chaplain, M. A. (2006). Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic targeting strategies. Journal of Theoretical Biology, 241, 564–589.

    PubMed  Google Scholar 

  65. Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews. Cancer, 3, 401–410.

    PubMed  CAS  Google Scholar 

  66. Kalluri, R. (2003). Basement membranes: Structure, assembly and role in tumour angiogenesis. Nature Reviews. Cancer, 3, 422–433.

    PubMed  CAS  Google Scholar 

  67. Thurston, G. (2003). Role of Angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell and Tissue Research, 314, 61–68.

    PubMed  CAS  Google Scholar 

  68. Smith, T. G., Robbins, P. A., & Ratcliffe, P. J. (2008). The human side of hypoxia-inducible factor. British Journal of Haematology, 141, 325–334.

    PubMed  CAS  Google Scholar 

  69. Harris, A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nature Reviews. Cancer, 2, 38–47.

    PubMed  CAS  Google Scholar 

  70. Sullivan, R., & Graham, C. H. (2007). Hypoxia-driven selection of the metastatic phenotype. Cancer and Metastasis Reviews, 26, 319–331.

    PubMed  CAS  Google Scholar 

  71. Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3, 721–732.

    PubMed  CAS  Google Scholar 

  72. Semenza, G. L. (2007). Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discovery Today, 12, 853–859.

    PubMed  CAS  Google Scholar 

  73. Melillo, G. (2006). Inhibiting hypoxia-inducible factor 1 for cancer therapy. Molecular Cancer Research, 4, 601–605.

    PubMed  CAS  Google Scholar 

  74. Steeg, P. S. (2006). Tumor metastasis: Mechanistic insights and clinical challenges. Nature Medicine, 12, 895–904.

    PubMed  CAS  Google Scholar 

  75. Khan, N., & Mukhtar, H. (2007). Tea polyphenols for health promotion. Life Sciences, 81, 519–533.

    PubMed  CAS  Google Scholar 

  76. Chacko, S. M., Thambi, P. T., Kuttan, R., & Nishigaki, I. (2010). Beneficial effects of green tea: A literature review. Chinese Medicine, 5, 13.

    PubMed  Google Scholar 

  77. Cao, Y., Cao, R., & Brakenhielm, E. (2002). Antiangiogenic mechanisms of diet-derived polyphenols. The Journal of Nutritional Biochemistry, 13, 380–390.

    PubMed  CAS  Google Scholar 

  78. Khan, N., Afaq, F., Saleem, M., Ahmad, N., & Mukhtar, H. (2006). Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Research, 66, 2500–2505.

    PubMed  CAS  Google Scholar 

  79. Kaufmann, R., Henklein, P., Henklein, P., & Settmacher, U. (2009). Green tea polyphenol epigallocatechin-3-gallate inhibits thrombin-induced hepatocellular carcinoma cell invasion and p42/p44-MAPKinase activation. Oncology Reports, 21, 1261–1267.

    PubMed  CAS  Google Scholar 

  80. Lu, L., Liu, H. M., & Tang, W. X. (2007). Effect of epigallocatechin-3-gallate on the invasiveness of hepatocarcinoma cells in vitro. Zhonghua Gan Zang Bing Za Zhi, 15, 825–827.

    PubMed  CAS  Google Scholar 

  81. Lee, S. J., Lee, K. W., Hur, H. J., Chun, J. Y., Kim, S. Y., & Lee, H. J. (2007). Phenolic phytochemicals derived from red pine (Pinus densiflora) inhibit the invasion and migration of SK-Hep-1 human hepatocellular carcinoma cells. Annals of the New York Academy of Sciences, 1095, 536–544.

    PubMed  CAS  Google Scholar 

  82. Zhen, M. C., Huang, X. H., Wang, Q., Sun, K., Liu, Y. J., Li, W., Zhang, L. J., Cao, L. Q., & Chen, X. L. (2006). Green tea polyphenol epigallocatechin-3-gallate suppresses rat hepatic stellate cell invasion by inhibition of MMP-2 expression and its activation. Acta Pharmacologica Sinica, 27, 1600–1607.

    PubMed  CAS  Google Scholar 

  83. Zhang, G., Miura, Y., & Yagasaki, K. (2000). Suppression of adhesion and invasion of hepatoma cells in culture by tea compounds through antioxidative activity. Cancer Letters, 159, 169–173.

    PubMed  CAS  Google Scholar 

  84. Zhang, G., Miura, Y., & Yagasaki, K. (2001). Inhibition of hepatoma cell invasion beneath mesothelial-cell monolayer by sera from tea- and related component-treated rats and their modes of action. Cytotechnology, 36, 187–193.

    PubMed  CAS  Google Scholar 

  85. Yang, J., Wei, D., & Liu, J. (2005). Repressions of MMP-9 expression and NF-kappa B localization are involved in inhibition of lung carcinoma 95-D cell invasion by (−)-epigallocatechin-3-gallate. Biomedicine & Pharmacotherapy, 59, 98–103.

    CAS  Google Scholar 

  86. Hazgui, S., Bonnomet, A., Nawrocki-Raby, B., Milliot, M., Terryn, C., Cutrona, J., Polette, M., Birembaut, P., & Zahm, J. M. (2008). Epigallocatechin-3-gallate (EGCG) inhibits the migratory behavior of tumor bronchial epithelial cells. Respiratory Research, 9, 33.

    PubMed  Google Scholar 

  87. Belguise, K., Guo, S., & Sonenshein, G. E. (2007). Activation of FOXO3a by the green tea polyphenol epigallocatechin-3-gallate induces estrogen receptor alpha expression reversing invasive phenotype of breast cancer cells. Cancer Research, 67, 5763–5770.

    PubMed  CAS  Google Scholar 

  88. Thangapazham, R. L., Passi, N., & Maheshwari, R. K. (2007). Green tea polyphenol and epigallocatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells. Cancer Biology & Therapy, 6, 1938–1943.

    CAS  Google Scholar 

  89. Sen, T., & Chatterjee, A. (2010). Epigallocatechin-3-gallate (EGCG) downregulates EGF-induced MMP-9 in breast cancer cells: Involvement of integrin receptor α5β1 in the process. European Journal of Nutrition, 50, 465–478.

    PubMed  Google Scholar 

  90. Slivova, V., Zaloga, G., DeMichele, S. J., Mukerji, P., Huang, Y. S., Siddiqui, R., Harvey, K., Valachovicova, T., & Sliva, D. (2005). Green tea polyphenols modulate secretion of urokinase plasminogen activator (uPA) and inhibit invasive behavior of breast cancer cells. Nutrition and Cancer, 52, 66–73.

    PubMed  CAS  Google Scholar 

  91. Zhang, Y., Han, G., Fan, B., Zhou, Y., Zhou, X., Wei, L., & Zhang, J. (2009). Green tea (−)-epigallocatechin-3-gallate down-regulates VASP expression and inhibits breast cancer cell migration and invasion by attenuating Rac1 activity. European Journal of Pharmacology, 606, 172–179.

    PubMed  CAS  Google Scholar 

  92. Sen, T., Moulik, S., Dutta, A., Choudhury, P. R., Banerji, A., Das, S., Roy, M., & Chatterjee, A. (2009). Multifunctional effect of epigallocatechin-3-gallate (EGCG) in downregulation of gelatinase-A (MMP-2) in human breast cancer cell line MCF-7. Life Sciences, 84, 194–204.

    PubMed  CAS  Google Scholar 

  93. Kushima, Y., Iida, K., Nagaoka, Y., Kawaratani, Y., Shirahama, T., Sakaguchi, M., Baba, K., Hara, Y., & Uesato, S. (2009). Inhibitory effect of (−)-epigallocatechin and (−)-epigallocatechin gallate against heregulin beta1-induced migration/invasion of the MCF-7 breast carcinoma cell line. Biological & Pharmaceutical Bulletin, 32, 899–904.

    CAS  Google Scholar 

  94. Farabegoli, F., Papi, A., & Orlandi, M. (2011). (−)Epigallocatechin-3-gallate downregulates EGFR, MMP-2, MMP-9 EMMPRIN and inhibits the invasion of MCF-7 tamoxifen resistant cells. Biosciences Reports, 31, 99–108.

    CAS  Google Scholar 

  95. Bigelow, R. L., & Cardelli, J. A. (2006). The green tea catechins, (−)-epigallocatechin-3- gallate (EGCG) and (−)-epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene, 25, 1922–1930.

    PubMed  CAS  Google Scholar 

  96. Vayalil, P. K., & Katiyar, S. K. (2004). Treatment of epigallocatechin-3-gallate inhibits matrix metalloproteinases-2 and -9 via inhibition of activation of mitogen-activated protein kinases, c-Jun and NF-kappaB in human prostate carcinoma DU-145 cells. Prostate, 59, 33–42.

    PubMed  CAS  Google Scholar 

  97. Siddiqui, I. A., Malik, A., Adhami, V. M., Asim, M., Hafeez, B. B., Sarfaraz, S., & Mukhtar, H. (2008). Green tea polyphenol EGCG sensitizes human prostate carcinoma LNCaP cells to TRAIL-mediated apoptosis and synergistically inhibits biomarkers associated with angiogenesis and metastasis. Oncogene, 27, 2055–2063.

    PubMed  CAS  Google Scholar 

  98. Pezzato, E., Sartor, L., Dell’Aica, I., Dittadi, R., Gion, M., Belluco, C., Lise, M., & Garbisa, S. (2004). Prostate carcinoma and green tea: PSA-triggered basement membrane degradation and MMP-2 activation are inhibited by (−) epigallocatechin-3-gallate. International Journal of Cancer, 112, 787–792.

    CAS  Google Scholar 

  99. Sartor, L., Pezzato, E., Donà, M., Dell’Aica, I., Calabrese, F., Morini, M., Albini, A., & Garbisa, S. (2004). Prostate carcinoma and green tea: (−)epigallocatechin-3-gallate inhibits inflammation-triggered MMP-2 activation and invasion in murine TRAMP model. International Journal of Cancer, 112, 823–829.

    CAS  Google Scholar 

  100. Larsen, C. A., & Dashwood, R. H. (2010). (−)-Epigallocatechin-3-gallate inhibits Met signaling, proliferation, and invasiveness in human colon cancer cells. Archives of Biochemistry and Biophysics, 501, 52–57.

    PubMed  CAS  Google Scholar 

  101. Ogasawara, M., Matsunaga, T., & Suzuki, H. (2007). Differential effects of antioxidants on the in vitro invasion, growth and lung metastasis of murine colon cancer cells. Biological & Pharmaceutical Bulletin, 30, 200–204.

    CAS  Google Scholar 

  102. Lim, Y. C., Park, H. Y., Hwang, H. S., Kang, S. U., Pyun, J. H., Lee, M. H., Choi, E. C., & Kim, C. H. (2008). (−)-Epigallocatechin-3-gallate (EGCG) inhibits HGF-induced invasion and metastasis in hypopharyngeal carcinoma cells. Cancer Letters, 271, 140–152.

    PubMed  CAS  Google Scholar 

  103. Hsu, S. D., Singh, B. B., Lewis, J. B., Borke, J. L., Dickinson, D. P., Drake, L., Caughman, G. B., & Schuster, G. S. (2002). Chemoprevention of oral cancer by green tea. General Dentistry, 50, 140–146.

    PubMed  Google Scholar 

  104. Ho, Y. C., Yang, S. F., Peng, C. Y., Chou, M. Y., & Chang, Y. C. (2007). Epigallocatechin-3-gallate inhibits the invasion of human oral cancer cells and decreases the productions of matrix metalloproteinases and urokinase-plasminogen activator. Journal of Oral Pathology & Medicine, 36, 588–593.

    CAS  Google Scholar 

  105. Kato, K., Long, N. K., Makita, H., Toida, M., Yamashita, T., Hatakeyama, D., Hara, A., Mori, H., & Shibata, T. (2008). Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. British Journal of Cancer, 99, 647–654.

    PubMed  CAS  Google Scholar 

  106. Park, J. H., Yoon, J. H., Kim, S. A., Ahn, S. G., & Yoon, J. H. (2010). (−)-Epigallocatechin-3-gallate inhibits invasion and migration of salivary gland adenocarcinoma cells. Oncology Reports, 23, 585–590.

    PubMed  CAS  Google Scholar 

  107. Kim, H. S., Kim, M. H., Jeong, M., Hwang, Y. S., Lim, S. H., Shin, B. A., Ahn, B. W., & Jung, Y. D. (2004). EGCG blocks tumor promoter-induced MMP-9 expression via suppression of MAPK and AP-1 activation in human gastric AGS cells. Anticancer Research, 24, 747–753.

    PubMed  CAS  Google Scholar 

  108. Maeda-Yamamoto, M., Kawahara, H., Tahara, N., Tsuji, K., Hara, Y., & Isemura, M. (1999). Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells. Journal of Agricultural and Food Chemistry, 47, 2350–2354.

    PubMed  CAS  Google Scholar 

  109. Maeda-Yamamoto, M., Suzuki, N., Sawai, Y., Miyase, T., Sano, M., Hashimoto-Ohta, A., & Isemura, M. (2003). Association of suppression of extracellular signal-regulated kinase phosphorylation by epigallocatechin gallate with the reduction of matrix metalloproteinase activities in human fibrosarcoma HT1080 cells. Journal of Agricultural and Food Chemistry, 51, 1858–1863.

    PubMed  CAS  Google Scholar 

  110. Garbisa, S., Sartor, L., Biggin, S., Salvato, B., Benelli, R., & Albini, A. (2001). Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate. Cancer, 91, 822–832.

    PubMed  CAS  Google Scholar 

  111. Dell’Aica, I., Donà, M., Sartor, L., Pezzato, E., & Garbisa, S. (2002). (−) Epigallocatechin-3-gallate directly inhibits MT1-MMP activity, leading to accumulation of nonactivated MMP-2 at the cell surface. Laboratory Investigation, 82, 1685–1693.

    PubMed  Google Scholar 

  112. Takada, M., Nakamura, Y., Koizumi, T., Toyama, H., Kamigaki, T., Suzuki, Y., Takeyama, Y., & Kuroda, Y. (2002). Suppression of human pancreatic carcinoma cell growth and invasion by epigallocatechin-3-gallate. Pancreas, 25, 45–48.

    PubMed  Google Scholar 

  113. Pilorget, A., Berthet, V., Luis, J., Moghrabi, A., Annabi, B., & Béliveau, R. (2003). Medulloblastoma cell invasion is inhibited by green tea (−)epigallocatechin-3-gallate. Journal of Cellular Biochemistry, 90, 745–755.

    PubMed  CAS  Google Scholar 

  114. Takada, M., Ku, Y., Habara, K., Ajiki, T., Suzuki, Y., & Kuroda, Y. (2002). Inhibitory effect of epigallocatechin-3-gallate on growth and invasion in human biliary tract carcinoma cells. World Journal of Surgery, 26, 683–686.

    PubMed  Google Scholar 

  115. Fassina, G., Venè, R., Morini, M., Minghelli, S., Benelli, R., Noonan, D. M., & Albini, A. (2004). Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clinical Cancer Research, 10, 4865–4873.

    PubMed  CAS  Google Scholar 

  116. Liu, J. D., Chen, S. H., Lin, C. L., Tsai, S. H., & Liang, Y. C. (2001). Inhibition of melanoma growth and metastasis by combination with (−)-epigallocatechin-3-gallate and dacarbazine in mice. Journal of Cellular Biochemistry, 83, 631–642.

    PubMed  CAS  Google Scholar 

  117. Suzuki, Y., & Isemura, M. (2001). Inhibitory effect of epigallocatechin gallate on adhesion of murine melanoma cells to laminin. Cancer Letters, 173, 15–20.

    PubMed  CAS  Google Scholar 

  118. Wu, Y., Lin, Y., Liu, H., & Li, J. (2008). Inhibition of invasion and up-regulation of E-cadherin expression in human malignant melanoma cell line A375 by (−)-epigallocatechin-3-gallate. Journal of Huazhong University of Science and Technology. Medical Sciences, 28, 356–359.

    CAS  Google Scholar 

  119. Kwak, I., Shin, Y. H., Kim, M., Cha, H. Y., Nam, H. J., Lee, B. S., Chaudhary, S. C., Pai, K. S., & Lee, J. H. (2011). Epigallocatechin-3-gallate inhibits paracrine and autocrine hepatocyte growth factor/scatter factor-induced tumor cell migration and invasion. Experimental & Molecular Medicine, 43, 111–120.

    CAS  Google Scholar 

  120. Messina, M., Nagata, C., & Wu, A. H. (2006). Estimated Asian adult soy protein and isoflavone intakes. Nutrition and Cancer, 55, 1–12.

    PubMed  CAS  Google Scholar 

  121. Bobe, G., Sansbury, L. B., Albert, P. S., Cross, A. J., Kahle, L., Ashby, J., Slattery, M. L., Caan, B., Paskett, E., Iber, F., Kikendall, J. W., Lance, P., Daston, C., Marshall, J. R., Schatzkin, A., & Lanza, E. (2008). Dietary flavonoids and colorectal adenoma recurrence in the polyp prevention trial. Cancer Epidemiology, Biomarkers & Prevention, 17, 1344–1353.

    CAS  Google Scholar 

  122. Hwang, Y. W., Kim, S. Y., Jee, S. H., Kim, Y. N., & Nam, C. M. (2009). Soy food consumption and risk of prostate cancer: A meta-analysis of observational studies. Nutrition and Cancer, 61, 598–606.

    PubMed  CAS  Google Scholar 

  123. Magee, P. J., & Rowland, I. R. (2004). Phyto-oestrogens, their mechanism of action: Current evidence for a role in breast and prostate cancer. British Journal of Nutrition, 91, 513–531.

    PubMed  CAS  Google Scholar 

  124. Park, O. J., & Surh, Y. J. (2004). Chemopreventive potential of epigallocatechin gallate and genistein: Evidence from epidemiological and laboratory studies. Toxicology Letters, 150, 43–56.

    PubMed  CAS  Google Scholar 

  125. Sarkar, F. H., & Li, Y. (2002). Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer and Metastasis Reviews, 21, 265–280.

    PubMed  CAS  Google Scholar 

  126. Sarkar, F. H., & Li, Y. (2003). Soy isoflavones and cancer prevention. Cancer Investigation, 217, 44–757.

    Google Scholar 

  127. Gu, Y., Zhu, C. F., Iwamoto, H., & Chen, J. S. (2005). Genistein inhibits invasive potential of human hepatocellular carcinoma by altering cell cycle, apoptosis, and angiogenesis. World Journal of Gastroenterology, 11, 6512–6517.

    PubMed  CAS  Google Scholar 

  128. Valachovicova, T., Slivova, V., Bergman, H., Shuherk, J., & Sliva, D. (2004). Soy isoflavones suppress invasiveness of breast cancer cells by the inhibition of NF-kappaB/AP-1-dependent and -independent pathways. International Journal of Oncology, 25, 1389–1395.

    PubMed  CAS  Google Scholar 

  129. Magee, P. J., McGlynn, H., & Rowland, I. R. (2004). Differential effects of isoflavones and lignans on invasiveness of MDA-MB-231 breast cancer cells in vitro. Cancer Letters, 208, 35–41.

    PubMed  CAS  Google Scholar 

  130. Kousidou, O. C., Mitropoulou, T. N., Roussidis, A. E., Kletsas, D., Theocharis, A. D., & Karamanos, N. K. (2005). Genistein suppresses the invasive potential of human breast cancer cells through transcriptional regulation of metalloproteinases and their tissue inhibitors. International Journal of Oncology, 26, 1101–1109.

    PubMed  CAS  Google Scholar 

  131. Hsu, E. L., Chen, N. A., Westbrook, F., Wang, R., Zhang, R., Taylor, T., & Hankinson, O. (2009). Modulation of CXCR4, CXCL12, and tumor cell invasion potential in vitro by phytochemicals. Journal of Oncology, 2009, 491985.

    PubMed  Google Scholar 

  132. Shao, Z. M., Wu, J., Shen, Z. Z., & Barsky, S. H. (1998). Genistein inhibits both constitutive and EGF-stimulated invasion in ER-negative human breast carcinoma cell lines. Anticancer Research, 18, 1435–1439.

    PubMed  CAS  Google Scholar 

  133. Scholar, E. M., & Toews, M. L. (1994). Inhibition of invasion of murine mammary carcinoma cells by the tyrosine kinase inhibitor genistein. Cancer Letters, 87, 159–162.

    PubMed  CAS  Google Scholar 

  134. Farina, H. G., Pomies, M., Alonso, D. F., & Gomez, D. E. (2006). Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncology Reports, 16, 885–891.

    PubMed  CAS  Google Scholar 

  135. Zhang, L. L., Li, L., Wu, D. P., Fan, J. H., Li, X., Wu, K. J., Wang, X. Y., & He, D. L. (2008). A novel anti-cancer effect of genistein: Reversal of epithelial mesenchymal transition in prostate cancer cells. Acta Pharmacologica Sinica, 29, 1060–1068.

    PubMed  CAS  Google Scholar 

  136. Li, Y., Kucuk, O., Hussain, M., Abrams, J., Cher, M. L., & Sarkar, F. H. (2006). Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Research, 66, 4816–4825.

    PubMed  CAS  Google Scholar 

  137. El Touny, L. H., & Banerjee, P. P. (2009). Identification of a biphasic role for genistein in the regulation of prostate cancer growth and metastasis. Cancer Research, 69, 3695–3703.

    PubMed  CAS  Google Scholar 

  138. Huang, X., Chen, S., Xu, L., Liu, Y., Deb, D. K., Platanias, L. C., & Bergan, R. C. (2005). Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Research, 65, 3470–3478.

    PubMed  CAS  Google Scholar 

  139. Xu, L., & Bergan, R. C. (2006). Genistein inhibits matrix metalloproteinase type 2 activation and prostate cancer cell invasion by blocking the transforming growth factor beta-mediated activation of mitogen-activated protein kinase-activated protein kinase 2-27-kDa heat shock protein pathway. Molecular Pharmacology, 70, 869–877.

    PubMed  CAS  Google Scholar 

  140. Xu, L., Ding, Y., Catalona, W. J., Yang, X. J., Anderson, W. F., Jovanovic, B., Wellman, K., Killmer, J., Huang, X., Scheidt, K. A., Montgomery, R. B., & Bergan, R. C. (2009). MEK4 function, genistein treatment, and invasion of human prostate cancer cells. Journal of the National Cancer Institute, 101, 1141–1155.

    PubMed  CAS  Google Scholar 

  141. El Touny, L. H., & Banerjee, P. P. (2007). Genistein induces the metastasis suppressor kangai-1 which mediates its anti-invasive effects in TRAMP cancer cells. Biochemical and Biophysics Research Communications, 361, 169–175.

    CAS  Google Scholar 

  142. Yan, C., & Han, R. (1999). Protein tyrosine kinase inhibitor genistein suppresses in vitro invasion of HT1080 human fibrosarcoma cells. Zhonghua Zhong Liu Za Zhi, 21, 171–174.

    PubMed  CAS  Google Scholar 

  143. Yan, C., & Han, R. (1999). Effects of genistein on invasion and matrix metalloproteinase activities of HT1080 human fibrosarcoma cells. Chinese Medical Sciences Journal, 14, 129–133.

    PubMed  CAS  Google Scholar 

  144. Hölting, T., Siperstein, A. E., Clark, O. H., & Duh, Q. Y. (1995). Epidermal growth factor (EGF)- and transforming growth factor alpha-stimulated invasion and growth of follicular thyroid cancer cells can be blocked by antagonism to the EGF receptor and tyrosine kinase in vitro. European Journal of Endocrinology, 132, 229–235.

    PubMed  Google Scholar 

  145. Yan, C., & Han, R. (1998). Genistein suppresses adhesion-induced protein tyrosine phosphorylation and invasion of B16-BL6 melanoma cells. Cancer Letters, 129, 117–124.

    PubMed  CAS  Google Scholar 

  146. Singh, R. P., & Agarwal, R. (2002). Flavonoid antioxidant silymarin and skin cancer. Antioxidants & Redox Signaling, 4, 655–663.

    CAS  Google Scholar 

  147. Chu, S. C., Chiou, H. L., Chen, P. N., Yang, S. F., & Hsieh, Y. S. (2004). Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Molecular Carcinogenesis, 40, 143–149.

    PubMed  CAS  Google Scholar 

  148. Chen, P. N., Hsieh, Y. S., Chiou, H. L., & Chu, S. C. (2005). Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chemico-Biological Interactions, 156, 141–150.

    PubMed  CAS  Google Scholar 

  149. Lee, S. O., Jeong, Y. J., Im, H. G., Kim, C. H., Chang, Y. C., & Lee, I. S. (2007). Silibinin suppresses PMA-induced MMP-9 expression by blocking the AP-1 activation via MAPK signaling pathways in MCF-7 human breast carcinoma cells. Biochemical and Biophysics Research Communications, 354, 165–171.

    CAS  Google Scholar 

  150. Kim, S., Choi, J. H., Lim, H. I., Lee, S. K., Kim, W. W., Kim, J. S., Kim, J. H., Choe, J. H., Yang, J. H., Nam, S. J., & Lee, J. E. (2009). Silibinin prevents TPA-induced MMP-9 expression and VEGF secretion by inactivation of the Raf/MEK/ERK pathway in MCF-7 human breast cancer cells. Phytomedicine, 16, 573–580.

    PubMed  CAS  Google Scholar 

  151. Mokhtari, M. J., Motamed, N., & Shokrgozar, M. A. (2008). Evaluation of silibinin on the viability, migration and adhesion of the human prostate adenocarcinoma (PC-3) cell line. Cell Biology International, 32, 888–892.

    PubMed  CAS  Google Scholar 

  152. Wu, K. J., Zeng, J., Zhu, G. D., Zhang, L. L., Zhang, D., Li, L., Fan, J. H., Wang, X. Y., & He, D. L. (2009). Silibinin inhibits prostate cancer invasion, motility and migration by suppressing vimentin and MMP-2 expression. Acta Pharmacologica Sinica, 30, 1162–1168.

    PubMed  CAS  Google Scholar 

  153. Wu, K., Zeng, J., Li, L., Fan, J., Zhang, D., Xue, Y., Zhu, G., Yang, L., Wang, X., & He, D. (2010). Silibinin reverses epithelial-to-mesenchymal transition in metastatic prostate cancer cells by targeting transcription factors. Oncology Reports, 23, 1545–1552.

    PubMed  CAS  Google Scholar 

  154. Chen, P. N., Hsieh, Y. S., Chiang, C. L., Chiou, H. L., Yang, S. F., & Chu, S. C. (2006). Silibinin inhibits invasion of oral cancer cells by suppressing the MAPK pathway. Journal of Dental Research, 85, 220–225.

    PubMed  CAS  Google Scholar 

  155. Chang, H. R., Chen, P. N., Yang, S. F., Sun, Y. S., Wu, S. W., Hung, T. W., Lian, J. D., Chu, S. C., & Hsieh, Y. S. (2011). Silibinin inhibits the invasion and migration of renal carcinoma 786-O cells in vitro, inhibits the growth of xenografts in vivo and enhances chemosensitivity to 5-fluorouracil and paclitaxel. Molecular Carcinogenesis, 50, 811–823.

    PubMed  CAS  Google Scholar 

  156. Hsieh, Y. S., Chu, S. C., Yang, S. F., Chen, P. N., Liu, Y. C., & Lu, K. H. (2007). Silibinin suppresses human osteosarcoma MG-63 cell invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of MMP-2. Carcinogenesis, 28, 977–987.

    PubMed  CAS  Google Scholar 

  157. Naderi, G. A., Asgary, S., Sarraf-Zadegan, N., & Shirvany, H. (2003). Anti-oxidant effect of flavonoids on the susceptibility of LDL oxidation. Molecular and Cellular Biochemistry, 246, 193–196.

    PubMed  CAS  Google Scholar 

  158. Mamani-Matsuda, M. (2006). Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators. Biochemical Pharmacology, 72, 1304–1310.

    PubMed  CAS  Google Scholar 

  159. Lotito, S. B., & Frei, B. (2006). Dietary flavonoids attenuate tumor necrosis factor alpha-induced adhesion molecule expression in human aortic endothelial cells. Structure–function relationships and activity after first pass metabolism. The Journal of Biological Chemistry, 281, 37102–37110.

    PubMed  CAS  Google Scholar 

  160. Lin, C. W., Hou, W. C., Shen, S. C., Juan, S. H., Ko, C. H., Wang, L. M., & Chen, Y. C. (2008). Quercetin inhibition of tumor invasion via suppressing PKC delta/ERK/AP-1-dependent matrix metalloproteinase-9 activation in breast carcinoma cells. Carcinogenesis, 29, 1807–1815.

    PubMed  CAS  Google Scholar 

  161. Phromnoi, K., Yodkeeree, S., Anuchapreeda, S., & Limtrakul, P. (2009). Inhibition of MMP-3 activity and invasion of the MDA-MB-231 human invasive breast carcinoma cell line by bioflavonoids. Acta Pharmacologica Sinica, 30, 1169–1176.

    PubMed  CAS  Google Scholar 

  162. Vijayababu, M. R., Arunkumar, A., Kanagaraj, P., Venkataraman, P., Krishnamoorthy, G., & Arunakaran, J. (2006). Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3). Molecular and Cellular Biochemistry, 287, 109–116.

    PubMed  CAS  Google Scholar 

  163. Senthilkumar, K., Arunkumar, R., Elumalai, P., Sharmila, G., Gunadharini, D. N., Banudevi, S., Krishnamoorthy, G., Benson, C. S., & Arunakaran, J. (2011). Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3). Cell Biochemistry and Function, 29, 87–95.

    PubMed  CAS  Google Scholar 

  164. Labbé, D., Provençal, M., Lamy, S., Boivin, D., Gingras, D., & Béliveau, R. (2009). The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. The Journal of Nutrition, 139, 646–652.

    PubMed  Google Scholar 

  165. Chiu, W. T., Shen, S. C., Chow, J. M., Lin, C. W., Shia, L. T., & Chen, Y. C. (2010). Contribution of reactive oxygen species to migration/invasion of human glioblastoma cells U87 via ERK-dependent COX-2/PGE(2) activation. Neurobiology of Disease, 37, 118–129.

    PubMed  CAS  Google Scholar 

  166. Zhang, F. L., Zhang, W., Chen, X. M., & Luo, R. Y. (2008). Effects of quercetin and quercetin in combination with cisplatin on adhesion, migration and invasion of HeLa cells. Zhonghua Fu Chan Ke Za Zhi, 43, 619–621.

    PubMed  CAS  Google Scholar 

  167. Zhang, W., & Zhang, F. (2009). Effects of quercetin on proliferation, apoptosis, adhesion and migration, and invasion of HeLa cells. European Journal of Gynaecological Oncology, 30, 60–64.

    PubMed  CAS  Google Scholar 

  168. Lin, Y. S., Tsai, P. H., Kandaswami, C. C., Cheng, C. H., Ke, F. C., Lee, P. P., Hwang, J. J., & Lee, M. T. (2011). Effects of dietary flavonoids, luteolin and quercetin on the reversal of epithelial–mesenchymal transition in A431 epidermal cancer cells. Cancer Science, 102, 1829–1839.

    PubMed  CAS  Google Scholar 

  169. Caltagirone, S., Rossi, C., Poggi, A., Ranelletti, F. O., Natali, P. G., Brunetti, M., Aiello, F. B., & Piantelli, M. (2000). Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. International Journal of Cancer, 87, 595–600.

    CAS  Google Scholar 

  170. Zhang, X. M., Huang, S. P., & Xu, Q. (2004). Quercetin inhibits the invasion of murine melanoma B16-BL6 cells by decreasing pro-MMP-9 via the PKC pathway. Cancer Chemotherapy and Pharmacology, 53, 82–88.

    PubMed  CAS  Google Scholar 

  171. Jeong, Y., Tyner, A. L., & Park, J. H. (2007). Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. American Journal of Physiology. Gastrointestinal and Liver Physiology, 292, G66–G75.

    PubMed  Google Scholar 

  172. Selvendiran, K., Koga, H., Ueno, T., Yoshida, T., Maeyama, M., Torimura, T., Yano, H., Kojiro, M., & Sata, M. (2006). Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: An implication for the antitumor potential of flavonoids. Cancer Research, 66, 4826–4834.

    PubMed  CAS  Google Scholar 

  173. Lee, W. J., Wu, L. F., Chen, W. K., Wang, C. J., & Tseng, T. H. (2006). Inhibitory effect of luteolin on hepatocyte growth factor/scatter factor-induced HepG2 cell invasion involving both MAPK/ERKs and PI3K-Akt pathways. Chemico-Biological Interactions, 160, 123–133.

    PubMed  CAS  Google Scholar 

  174. Attoub, S., Hassan, A. H., Vanhoecke, B., Iratni, R., Takahashi, T., Gaben, A. M., Bracke, M., Awad, S., John, A., Kamalboor, H. A., Al Sultan, M. A., Arafat, K., Gespach, C., & Petroianu, G. (2011). Inhibition of cell survival, invasion, tumor growth and histone deacetylase activity by the dietary flavonoid luteolin in human epithelioid cancer cells. European Journal of Pharmacology, 651, 18–25.

    PubMed  CAS  Google Scholar 

  175. Lansky, E. P., Harrison, G., Froom, P., & Jiang, W. G. (2005). Pomegranate (Punica granatum) pure chemicals show possible synergistic inhibition of human PC-3 prostate cancer cell invasion across Matrigel. Investigational New Drugs, 23, 121–122.

    PubMed  CAS  Google Scholar 

  176. Zhou, Q., Yan, B., Hu, X., Li, X. B., Zhang, J., & Fang, J. (2009). Luteolin inhibits invasion of prostate cancer PC3 cells through E-cadherin. Molecular Cancer Therapeutics, 8, 1684–1691.

    PubMed  CAS  Google Scholar 

  177. Lin, C. W., Shen, S. C., Chien, C. C., Yang, L. Y., Shia, L. T., & Chen, Y. C. (2010). 12-O-tetradecanoylphorbol-13-acetate-induced invasion/migration of glioblastoma cells through activating PKC alpha/ERK/NF-kappaB-dependent MMP-9 expression. Journal of Cellular Physiology, 225, 472–481.

    PubMed  CAS  Google Scholar 

  178. Ross, J. A., & Kasum, C. M. (2002). Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 22, 19–34.

    PubMed  CAS  Google Scholar 

  179. Gupta, S., Afaq, F., & Mukhtar, H. (2001). Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochemical and Biophysics Research Communications, 287, 914–920.

    CAS  Google Scholar 

  180. Wang, W., Heideman, L., Chung, C. S., Pelling, J. C., Koehler, K. J., & Birt, D. F. (2000). Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines. Molecular Carcinogenesis, 28, 102–110.

    PubMed  Google Scholar 

  181. Way, T. D., Kao, M. C., & Lin, J. K. (2004). Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. The Journal of Biological Chemistry, 279, 4479–4489.

    PubMed  CAS  Google Scholar 

  182. Zheng, P. W., Chiang, L. C., & Lin, C. C. (2005). Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sciences, 76, 1367–1379.

    PubMed  CAS  Google Scholar 

  183. Czyz, J., Madeja, Z., Irmer, U., Korohoda, W., & Hülser, D. F. (2005). Flavonoid apigenin inhibits motility and invasiveness of carcinoma cells in vitro. International Journal of Cancer, 114, 12–18.

    CAS  Google Scholar 

  184. Lindenmeyer, F., Li, H., Menashi, S., Soria, C., & Lu, H. (2001). Apigenin acts on the tumor cell invasion process and regulates protease production. Nutrition and Cancer, 39, 139–147.

    PubMed  CAS  Google Scholar 

  185. Lee, W. J., Chen, W. K., Wang, C. J., Lin, W. L., & Tseng, T. H. (2008). Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells. Toxicology and Applied Pharmacology, 226, 178–191.

    PubMed  CAS  Google Scholar 

  186. Franzen, C. A., Amargo, E., Todorović, V., Desai, B. V., Huda, S., Mirzoeva, S., Chiu, K., Grzybowski, B. A., Chew, T. L., Green, K. J., & Pelling, J. C. (2009). The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Cancer Prevention Research (Phila), 2, 830–841.

    CAS  Google Scholar 

  187. Zhu, F., Liu, X. G., & Liang, N. C. (2003). Effect of emodin and apigenin on invasion of human ovarian carcinoma HO-8910 PM cells in vitro. Ai Zheng, 22, 358–362.

    PubMed  CAS  Google Scholar 

  188. Hu, X. W., Meng, D., & Fang, J. (2008). Apigenin inhibited migration and invasion of human ovarian cancer A2780 cells through focal adhesion kinase. Carcinogenesis, 29, 2369–2376.

    PubMed  CAS  Google Scholar 

  189. Noh, H. J., Sung, E. G., Kim, J. Y., Lee, T. J., & Song, I. H. (2010). Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by apigenin via the inhibition of p38 mitogen-activated protein kinase-dependent matrix metalloproteinase-9 expression. Oncology Reports, 24, 277–283.

    PubMed  CAS  Google Scholar 

  190. Maggiolini, M., Recchia, A. G., Bonofiglio, D., Catalano, S., Vivacqua, A., Carpino, A., Rago, V., Rossi, R., & Andò, S. (2005). The red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor in human breast cancer cells. Journal of Molecular Endocrinology, 35, 269–281.

    PubMed  CAS  Google Scholar 

  191. Nöthlings, U., Murphy, S. P., Wilkens, L. R., Henderson, B. E., & Kolonel, L. N. (2007). Flavonols and pancreatic cancer risk: The multiethnic cohort study. American Journal of Epidemiology, 166, 924–931.

    PubMed  Google Scholar 

  192. Shih, Y. W., Wu, P. F., Lee, Y. C., Shi, M. D., & Chiang, T. A. (2009). Myricetin suppresses invasion and migration of human lung adenocarcinoma A549 cells: Possible mediation by blocking the ERK signaling pathway. Journal of Agricultural and Food Chemistry, 57, 3490–3499.

    PubMed  CAS  Google Scholar 

  193. Ko, C. H., Shen, S. C., Lee, T. J., & Chen, Y. C. (2005). Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectal carcinoma cells. Molecular Cancer Therapeutics, 4, 281–290.

    PubMed  CAS  Google Scholar 

  194. Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., & Yano, M. (1999). Antiproliferative activity of flavonoids on several cancer cell lines. Bioscience, Biotechnology, and Biochemistry, 63, 896–899.

    PubMed  CAS  Google Scholar 

  195. Bracke, M., Vyncke, B., Opdenakker, G., Foidart, J. M., de Pestel, G., & Mareel, M. (1991). Effects of catechins and citrus flavonoids on invasion in vitro. Clinical & Experimental Metastasis, 9, 13–25.

    CAS  Google Scholar 

  196. Mareel, M. M., & De Mets, M. (1989). Anti-invasive activities of experimental chemotherapeutic agents. Critical Reviews in Oncology/Haematology, 9, 263–303.

    CAS  Google Scholar 

  197. Brack, M. E., Boterberg, T., Depypere, H. T., Stove, C., Leclercq, G., & Mareel, M. M. (2002). The citrus methoxyflavone tangeretin affects human cell–cell interactions. Advances in Experimental Medicine and Biology, 505, 135–139.

    PubMed  Google Scholar 

  198. Rooprai, H. K., Kandanearatchi, A., Maidment, S. L., Christidou, M., Trillo-Pazos, G., Dexter, D. T., Rucklidge, G. J., Widmer, W., & Pilkington, G. J. (2001). Evaluation of the effects of swainsonine, captopril, tangeretin and nobiletin on the biological behaviour of brain tumour cells in vitro. Neuropathology and Applied Neurobiology, 27, 29–39.

    PubMed  CAS  Google Scholar 

  199. Martínez Conesa, C., Vicente Ortega, V., Yáñez Gascón, M. J., Alcaraz Baños, M., Canteras Jordana, M., Benavente-García, O., & Castillo, J. (2005). Treatment of metastatic melanoma B16F10 by the flavonoids tangeretin, rutin, and diosmin. Journal of Agricultural and Food Chemistry, 53, 6791–6797.

    PubMed  Google Scholar 

  200. Park, J. S., Rho, H. S., Kim, D. H., & Chang, I. S. (2006). Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. Journal of Agricultural and Food Chemistry, 54, 2951–2956.

    PubMed  CAS  Google Scholar 

  201. Calderon-Montaño, J. M., Burgos-Moron, E., Perez-Guerrero, C., & Lopez-Lazaro, M. (2011). A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chemistry, 11, 298–344.

    PubMed  Google Scholar 

  202. Shen, S. C., Lin, C. W., Lee, H. M., Chien, L. L., & Chen, Y. C. (2006). Lipopolysaccharide plus 12-o-tetradecanoylphorbol 13-acetate induction of migration and invasion of glioma cells in vitro and in vivo: Differential inhibitory effects of flavonoids. Neuroscience, 140, 477–489.

    PubMed  CAS  Google Scholar 

  203. Lee, E. J., Kim, S. Y., Hyun, J. W., Min, S. W., Kim, D. H., & Kim, H. S. (2010). Glycitein inhibits glioma cell invasion through down-regulation of MMP-3 and MMP-9 gene expression. Chemico-Biological Interactions, 185, 18–24.

    PubMed  CAS  Google Scholar 

  204. Park, S. Y., Lim, S. S., Kim, J. K., Kang, I. J., Kim, J. S., Lee, C., Kim, J., & Park, J. H. (2010). Hexane-ethanol extract of Glycyrrhiza uralensis containing licoricidin inhibits the metastatic capacity of DU145 human prostate cancer cells. British Journal of Nutrition, 104, 1–11.

    Google Scholar 

  205. Kahkonen, M. P., & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycons. Journal of Agricultural and Food Chemistry, 51, 628–633.

    PubMed  Google Scholar 

  206. Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W., Fong, H. H., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C., & Pezzuto, J. M. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275, 218–220.

    PubMed  CAS  Google Scholar 

  207. Middleton, E., Jr., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 52, 673–751.

    PubMed  CAS  Google Scholar 

  208. Katsube, N., Iwashita, K., Tsushida, T., Yamaki, K., & Kobori, M. (2003). Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus) and the anthocyanins. Journal of Agricultural and Food Chemistry, 51, 68–75.

    PubMed  CAS  Google Scholar 

  209. Bagchi, D., Sen, C. K., Bagchi, M., & Atala, M. (2004). Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry (Mosc), 69, 75–80.

    CAS  Google Scholar 

  210. Nagase, H., Sasaki, K., Kito, H., Haga, A., & Sato, T. (1998). Inhibitory effect of delphinidin from Solanum melongena on human fibrosarcoma HT-1080 invasiveness in vitro. Planta Medica, 64, 216–219.

    PubMed  CAS  Google Scholar 

  211. Chen, P. N., Chu, S. C., Chiou, H. L., Kuo, W. H., Chiang, C. L., & Hsieh, Y. S. (2006). Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Letters, 235, 248–259.

    PubMed  CAS  Google Scholar 

  212. Shin, D. Y., Ryu, C. H., Lee, W. S., Kim, D. C., Kim, S. H., Hah, Y. S., Lee, S. J., Shin, S. C., Kang, H. S., & Choi, Y. H. (2009). Induction of apoptosis and inhibition of invasion in human hepatoma cells by anthocyanins from meoru. Annals of the New York Academy of Sciences, 1171, 137–148.

    PubMed  CAS  Google Scholar 

  213. Shin, D. Y., Lee, W. S., Kim, S. H., Kim, M. J., Yun, J. W., Lu, J. N., Lee, S. J., Tsoy, I., Kim, H. J., Ryu, C. H., Kim, G. Y., Kang, H. S., Shin, S. C., & Choi, Y. H. (2009). Anti-invasive activity of anthocyanins isolated from Vitis coignetiae in human hepatocarcinoma cells. Journal of Medicinal Food, 12, 967–972.

    PubMed  CAS  Google Scholar 

  214. Ho, M. L., Chen, P. N., Chu, S. C., Kuo, D. Y., Kuo, W. H., Chen, J. Y., & Hsieh, Y. S. (2010). Peonidin 3-glucoside inhibits lung cancer metastasis by downregulation of proteinases activities and MAPK pathway. Nutrition and Cancer, 62, 505–516.

    PubMed  CAS  Google Scholar 

  215. Syed, D. N., Afaq, F., Sarfaraz, S., Khan, N., Kedlaya, R., Setaluri, V., & Mukhtar, H. (2008). Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation. Toxicology and Applied Pharmacology, 231, 52–60.

    PubMed  CAS  Google Scholar 

  216. Xu, M., Bower, K. A., Wang, S., Frank, J. A., Chen, G., Ding, M., Wang, S., Shi, X., Ke, Z., & Luo, J. (2010). Cyanidin-3-glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2. Molecular Cancer, 9, 285.

    PubMed  Google Scholar 

  217. Matchett, M. D., MacKinnon, S. L., Sweeney, M. I., Gottschall-Pass, K. T., & Hurta, R. A. (2005). Blueberry flavonoids inhibit matrix metalloproteinase activity in DU145 human prostate cancer cells. Biochemistry and Cell Biology, 83, 637–643.

    PubMed  CAS  Google Scholar 

  218. Matchett, M. D., MacKinnon, S. L., Sweeney, M. I., Gottschall-Pass, K. T., & Hurta, R. A. (2006). Inhibition of matrix metalloproteinase activity in DU145 human prostate cancer cells by flavonoids from lowbush blueberry (Vaccinium angustifolium): Possible roles for protein kinase C and mitogen-activated protein-kinase-mediated events. The Journal of Nutritional Biochemistry, 17, 117–125.

    PubMed  CAS  Google Scholar 

  219. Yun, J. W., Lee, W. S., Kim, M. J., Lu, J. N., Kang, M. H., Kim, H. G., Kim, D. C., Choi, E. J., Choi, J. Y., Kim, H. G., Lee, Y. K., Ryu, C. H., Kim, G., Choi, Y. H., Park, O. J., & Shin, S. C. (2010). Characterization of a profile of the anthocyanins isolated from Vitis coignetiae Pulliat and their anti-invasive activity on HT-29 human colon cancer cells. Food and Chemical Toxicology, 48, 903–909.

    PubMed  CAS  Google Scholar 

  220. Shin, D. Y., Lu, J. N., Kim, G. Y., Jung, J. M., Kang, H. S., Lee, W. S., & Choi, Y. H. (2011). Anti-invasive activities of anthocyanins through modulation of tight junctions and suppression of matrix metalloproteinase activities in HCT-116 human colon carcinoma cells. Oncology Reports, 25, 567–572.

    PubMed  CAS  Google Scholar 

  221. Chen, P. N., Kuo, W. H., Chiang, C. L., Chiou, H. L., Hsieh, Y. S., & Chu, S. C. (2006). Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chemico-Biological Interactions, 163, 218–229.

    PubMed  CAS  Google Scholar 

  222. Lamy, S., Lafleur, R., Bédard, V., Moghrabi, A., Barrette, S., Gingras, D., & Béliveau, R. (2007). Anthocyanidins inhibit migration of glioblastoma cells: Structure–activity relationship and involvement of the plasminolytic system. Journal of Cellular Biochemistry, 100, 100–111.

    PubMed  CAS  Google Scholar 

  223. Shankar, S., Ganapathy, S., Hingorani, S. R., & Srivastava, R. K. (2008). EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Frontiers in Bioscience, 13, 440–452.

    PubMed  Google Scholar 

  224. Pfeffer, U., Ferrari, N., Dell’Eva, R., Indraccolo, S., Morini, M., Noonan, D. M., & Albini, A. (2005). Molecular mechanisms of action of angiopreventive anti-oxidants on endothelial cells: Microarray gene expression analyses. Mutation Research, 591, 198–211.

    PubMed  CAS  Google Scholar 

  225. Yamakawa, S., Asai, T., Uchida, T., Matsukawa, M., Akizawa, T., & Oku, N. (2004). (−)-Epigallocatechin gallate inhibits membrane-type 1 matrix metalloproteinase, MT1-MMP, and tumor angiogenesis. Cancer Letters, 210, 47–55.

    PubMed  CAS  Google Scholar 

  226. Iishi, H., Tatsuta, M., Baba, M., Yano, H., Sakai, N., & Akedo, H. (2000). Genistein attenuates peritoneal metastasis of azoxymethane-induced intestinal adenocarcinomas in Wistar rats. International Journal of Cancer, 86, 416–420.

    CAS  Google Scholar 

  227. Lakshman, M., Xu, L., Ananthanarayanan, V., Cooper, J., Takimoto, C. H., Helenowski, I., Pelling, J. C., & Bergan, R. C. (2008). Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Research, 68, 2024–2032.

    PubMed  CAS  Google Scholar 

  228. Singh, A. V., Franke, A. A., Blackburn, G. L., & Zhou, J. R. (2006). Soy phytochemicals prevent orthotopic growth and metastasis of bladder cancer in mice by alterations of cancer cell proliferation and apoptosis and tumor angiogenesis. Cancer Research, 66, 1851–1858.

    PubMed  CAS  Google Scholar 

  229. Singh, R. P., Raina, K., Sharma, G., & Agarwal, R. (2008). Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial–mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clinical Cancer Research, 14, 7773–7780.

    PubMed  CAS  Google Scholar 

  230. Raina, K., Rajamanickam, S., Singh, R. P., Deep, G., Chittezhath, M., & Agarwal, R. (2008). Stage-specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Cancer Research, 68, 6822–6830.

    PubMed  CAS  Google Scholar 

  231. Singh, R. P., Dhanalakshmi, S., Agarwal, C., & Agarwal, R. (2005). Silibinin strongly inhibits growth and survival of human endothelial cells via cell cycle arrest and downregulation of survivin, Akt and NF-kappaB: Implications for angioprevention and antiangiogenic therapy. Oncogene, 24, 1188–1202.

    PubMed  CAS  Google Scholar 

  232. Devipriya, S., Ganapathy, V., & Shyamaladevi, C. S. (2006). Suppression of tumor growth and invasion in 9,10 dimethyl benz(a) anthracene induced mammary carcinoma by the plant bioflavonoid quercetin. Chemico-Biological Interactions, 162, 106–113.

    PubMed  CAS  Google Scholar 

  233. Tan, W. F., Lin, L. P., Li, M. H., Zhang, Y. X., Tong, Y. G., Xiao, D., & Ding, J. (2003). Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential. European Journal of Pharmacology, 459, 255–262.

    PubMed  CAS  Google Scholar 

  234. Tatsuta, A., Iishi, H., Baba, M., Yano, H., Murata, K., Mukai, M., & Akedo, H. (2000). Suppression by apigenin of peritoneal metastasis of intestinal adenocarcinomas induced by azoxymethane in Wistar rats. Clinical & Experimental Metastasis, 18, 657–662.

    CAS  Google Scholar 

  235. Fang, J., Zhou, Q., Liu, L. Z., Xia, C., Hu, X., Shi, X., & Jiang, B. H. (2007). Apigenin inhibits tumor angiogenesis through decreasing HIF-1alphaand VEGF expression. Carcinogenesis, 28, 858–864.

    PubMed  CAS  Google Scholar 

  236. Lentini, A., Forni, C., Provenzano, B., & Beninati, S. (2007). Enhancement of transglutaminase activity and polyamine depletion in B16-F10 melanoma cells by flavonoids naringenin and hesperitin correlate to reduction of the in vivo metastatic potential. Amino Acids, 32, 95–100.

    PubMed  CAS  Google Scholar 

  237. Ding, M., Feng, R., Wang, S. Y., Bowman, L., Lu, Y., Qian, Y., Castranova, V., Jiang, B. H., & Shi, X. (2006). Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. The Journal of Biological Chemistry, 281, 17359–17368.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by a research grant from National Science Council (NSC100-2313-B-165-001-MY3), Taiwan, Republic of China.

Conflict of interest statement

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gow-Chin Yen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, CJ., Yen, GC. Flavonoids, a ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastatic activities. Cancer Metastasis Rev 31, 323–351 (2012). https://doi.org/10.1007/s10555-012-9347-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9347-y

Keywords

Navigation