Skip to main content

Advertisement

Log in

Potential molecular targets for inhibiting bone invasion by oral squamous cell carcinoma: a review of mechanisms

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Bone invasion is a common characteristic of oral squamous cell carcinoma (OSCC), with adverse affects on patient functionality and survival. Recent studies suggest that it is osteoclasts, rather than malignant keratinocytes themselves, which play the major role in facilitating the entry of the tumour into bone, and its progression within bone. Osteoclasts respond to a variety of local signalling pathways, initiated by products of the malignant epithelial cells. In the present review, we firstly introduce the clinical patterns of bone invasion, and then summarise these signalling pathways and their diverse roles in sequential phases of bone invasion. We also review current researches regarding the incidence and mechanisms of distant metastases to bone, and explain briefly the concept of epithelial-mesenchymal transition, which may generate cancer stem cells and initiate the bone invasion. Finally, we discuss more briefly approaches to the diagnosis and management of OSCC patients with bone invasion. With all these studies and some recent discoveries in our own laboratory, an enhanced understanding of bone invasion will be achieved, which should indicate potential molecular targets for future biotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Warnakulasuriya, S. (2009). Global epidemiology of oral and oropharyngeal cancer. Oral Oncology, 45(4–5), 309–316.

    Article  PubMed  Google Scholar 

  2. Johnson, N. W., Jayasekara, P., & Amarasinghe, A. A. H. K. (2011). Squamous cell carcinoma and precursor lesions of the oral cavity: epidemiology and aetiology. Periodontology 2000, 57(1), 19–37.

    Article  PubMed  Google Scholar 

  3. Johnson, N. W., Warnakulasuriya, S., Gupta, P. C., Dimba, E., Chindia, M., Otoh, E. C., et al. (2011). Global inequalities in incidence and outcomes for oral cancer: causes and solutions. Advances in Dental Research, 23(2), 237–246.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, Y. L., Kuo, S. W., Fang, K. H., & Hao, S. P. (2011). Prognostic impact of marginal mandibulectomy in the presence of superficial bone invasion and the nononcologic outcome. Head & Neck, 33(5), 708–713.

    Article  Google Scholar 

  5. Lubek, J., El-Hakim, M., Salama, A. R., Liu, X., & Ord, R. A. (2011). Gingival carcinoma: retrospective analysis of 72 patients and indications for elective neck dissection. British Journal of Oral and Maxillofacial Surgery, 49(3), 182–185.

    Article  PubMed  Google Scholar 

  6. Hoffmannová, J., Foltán, R., Vlk, M., Sipos, M., Horká, E., Pavlíková, G., et al. (2010). Hemimandibulectomy and therapeutic neck dissection with radiotherapy in the treatment of oral squamous cell carcinoma involving mandible: a critical review of treatment protocol in the years 1994–2004. International Journal of Oral and Maxillofacial Surgery, 39(6), 561–567.

    Article  PubMed  Google Scholar 

  7. Pandey, M., Rao, L. P., Das, S. R., Mathews, A., Chacko, E. M., & Naik, B. R. (2007). Patterns of mandibular invasion in oral squamous cell carcinoma of the mandibular region. World Journal of Surgical Oncology, 30, 5–12.

    Google Scholar 

  8. Brown, J. S., Lowe, D., Kalavrezos, N., D’Souza, J., Magennis, P., & Woolgar, J. (2002). Patterns of invasion and routes of tumor entry into the mandible by oral squamous cell carcinoma. Head & Neck, 24(4), 370–383.

    Article  Google Scholar 

  9. Shaw, R. J., Brown, J. S., Woolgar, J. A., Lowe, D., Rogers, S. N., & Vaughan, E. D. (2004). The influence of the pattern of mandibular invasion on recurrence and survival in oral squamous cell carcinoma. Head & Neck, 26(10), 861–869.

    Article  Google Scholar 

  10. Brown, J. S., & Browne, R. M. (1995). Factors influencing the patterns of invasion of the mandible by oral squamous cell carcinoma. International Journal of Oral and Maxillofacial Surgery, 24(6), 417–426.

    Article  PubMed  CAS  Google Scholar 

  11. Ito, M., Izumi, N., Cheng, J., Sakai, H., Shingaki, S., Nakajima, T., et al. (2003). Jaw bone remodeling at the invasion front of gingival squamous cell carcinomas. Journal of Oral Pathology & Medicine, 32(1), 10–17.

    Article  Google Scholar 

  12. Goda, T., Shimo, T., Yoshihama, Y., Hassan, N. M., Ibaragi, S., Kurio, N., et al. (2010). Bone destruction by invading oral squamous carcinoma cells mediated by the transforming growth factor-beta signalling pathway. Anticancer Research, 30(7), 2615–2623.

    PubMed  CAS  Google Scholar 

  13. Ebrahimi, A., Murali, R., Gao, K., Elliott, M. S., & Clark, J. R. (2011). The prognostic and staging implications of bone invasion in oral squamous cell carcinoma. Cancer, 117(19), 4460–4467.

    Article  PubMed  Google Scholar 

  14. Wysluch, A., Stricker, I., Hölzle, F., Wolff, K. D., & Maurer, P. (2010). Intraoperative evaluation of bony margins with frozen-section analysis and trephine drill extraction technique: a preliminary study. Head & Neck, 32(11), 1473–1478.

    Article  Google Scholar 

  15. Kayamori, K., Sakamoto, K., Nakashima, T., Takayanagi, H., Morita, K., Omura, K., et al. (2010). Roles of interleukin-6 and parathyroid hormone-related peptide in osteoclast formation associated with oral cancers: significance of interleukin-6 synthesized by stromal cells in response to cancer cells. American Journal of Pathology, 176(2), 968–980.

    Article  PubMed  CAS  Google Scholar 

  16. Martin, C. K., Werbeck, J. L., Thudi, N. K., Lanigan, L. G., Wolfe, T. D., Toribio, R. E., et al. (2010). Zoledronic acid reduces bone loss and tumor growth in an orthotopic xenograft model of osteolytic oral squamous cell carcinoma. Cancer Research, 70(21), 8607–8616.

    Article  PubMed  CAS  Google Scholar 

  17. Yavropoulou, M. P., & Yovos, J. G. (2008). Osteoclastogenesis–current knowledge and future perspectives. Journal of Musculoskeletal and Neuronal Interactions, 8(3), 204–216.

    PubMed  CAS  Google Scholar 

  18. Hadjidakis, D. J., & Androulakis, I. I. (2006). Bone remodeling. Annals of the New York Academy of Sciences, 1092, 385–396.

    Article  PubMed  CAS  Google Scholar 

  19. Raggatt, L. J., & Partridge, N. C. (2010). Cellular and molecular mechanisms of bone remodeling. Journal of Biological Chemistry, 285(33), 25103–25108.

    Article  PubMed  CAS  Google Scholar 

  20. Georges, S., Ruiz, Velasco, C., Trichet, V., Fortun, Y., Heymann, D., et al. (2009). Proteases and bone remodelling. Cytokine & Growth Factor Reviews, 20(1), 29–41.

    Article  CAS  Google Scholar 

  21. Woodward, J. K., Holen, I., Coleman, R. E., & Buttle, D. J. (2007). The roles of proteolytic enzymes in the development of tumour-induced bone disease in breast and prostate cancer. Bone, 41(6), 912–927.

    Article  PubMed  CAS  Google Scholar 

  22. Krane, S. M., & Inada, M. (2008). Matrix metalloproteinases and bone. Bone, 43(1), 7–18.

    Article  PubMed  CAS  Google Scholar 

  23. Kessenbrock, K., Plaks, V., & Werb, Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 141(1), 52–67.

    Article  PubMed  CAS  Google Scholar 

  24. Erdem, N. F., Carlson, E. R., Gerard, D. A., & Ichiki, A. T. (2007). Characterization of 3 oral squamous cell carcinoma cell lines with different invasion and/or metastatic potentials. Journal of Oral and Maxillofacial Surgery, 65(9), 1725–1733.

    Article  PubMed  Google Scholar 

  25. Chuang, H. C., Su, C. Y., Huang, H. Y., Huang, C. C., Chien, C. Y., Du, Y. Y., et al. (2008). Active matrix metalloproteinase-7 is associated with invasion in buccal squamous cell carcinoma. Modern Pathology, 21(12), 1444–1450.

    Article  PubMed  CAS  Google Scholar 

  26. Thiolloy, S., Halpern, J., Holt, G. E., Schwartz, H. S., Mundy, G. R., Matrisian, L. M., et al. (2009). Osteoclast-derived matrix metalloproteinase-7, but not matrix metalloproteinase-9, contributes to tumor-induced osteolysis. Cancer Research, 69(16), 6747–6755.

    Article  PubMed  CAS  Google Scholar 

  27. Lynch, C. C., Hikosaka, A., Acuff, H. B., Martin, M. D., Kawai, N., Singh, R. K., et al. (2005). MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell, 7(5), 485–496.

    Article  PubMed  CAS  Google Scholar 

  28. Goto, T., Yamaza, T., & Tanaka, T. (2003). Cathepsins in the osteoclast. Journal of Electron Microscopy, 52(6), 551–558.

    Article  PubMed  CAS  Google Scholar 

  29. Kawamata, H., Nakashiro, K., Uchida, D., Harada, K., Yoshida, H., & Sato, M. (1997). Possible contribution of active MMP2 to lymph-node metastasis and secreted cathepsin L to bone invasion of newly established human oral-squamous-cancer cell lines. International Journal of Cancer, 70(1), 120–127.

    Article  CAS  Google Scholar 

  30. Henson, B., Li, F., Coatney, D. D., Carey, T. E., Mitra, R. S., Kirkwood, K. L., et al. (2007). An orthotopic floor-of-mouth model for locoregional growth and spread of human squamous cell carcinoma. Journal of Oral Pathology & Medicine, 36(6), 363–370.

    Article  CAS  Google Scholar 

  31. Kawasaki, G., Kato, Y., & Mizuno, A. (2002). Cathepsin expression in oral squamous cell carcinoma: relationship with clinicopathologic factors. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 93(4), 446–454.

    Article  PubMed  Google Scholar 

  32. Boyle, W. J., Simonet, W. S., & Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature, 423(6937), 337–342.

    Article  PubMed  CAS  Google Scholar 

  33. Datta, N. S., & Abou-Samra, A. B. (2009). PTH and PTHrP signaling in osteoblasts. Cellular Signalling, 21(8), 1245–1254.

    Article  PubMed  CAS  Google Scholar 

  34. Dougall, W. C., & Chaisson, M. (2006). The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer and Metastasis Reviews, 25(4), 541–549.

    Article  PubMed  CAS  Google Scholar 

  35. Cochran, D. L. (2008). Inflammation and bone loss in periodontal disease. Journal of Periodontology, 79(8 Suppl), 1569–1576.

    Article  PubMed  CAS  Google Scholar 

  36. Ishikuro, M., Sakamoto, K., Kayamori, K., Akashi, T., Kanda, H., Izumo, T., et al. (2008). Significance of the fibrous stroma in bone invasion by human gingival squamous cell carcinomas. Bone, 43(3), 621–627.

    Article  PubMed  Google Scholar 

  37. Tada, T., Jimi, E., Okamoto, M., Ozeki, S., & Okabe, K. (2005). Oral squamous cell carcinoma cells induce osteoclast differentiation by suppression of osteoprotegerin expression in osteoblasts. International Journal of Cancer, 116(2), 253–262.

    Article  CAS  Google Scholar 

  38. Nakashima, T., & Takayanagi, H. (2008). The dynamic interplay between osteoclasts and the immune system. Archives of Biochemistry and Biophysics, 473(2), 166–171.

    Article  PubMed  CAS  Google Scholar 

  39. Bar-Shavit, Z. (2007). The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. Journal of Cellular Biochemistry, 102(5), 1130–1139.

    Article  PubMed  CAS  Google Scholar 

  40. Dewhirst, F. E., Stashenko, P. P., Mole, J. E., & Tsurumachi, T. (1985). Purification and partial sequence of human osteoclast-activating factor: identity with interleukin 1 beta. Journal of Immunology, 135(4), 2562–2568.

    CAS  Google Scholar 

  41. Walsh, M. C., Kim, N., Kadono, Y., Rho, J., Lee, S. Y., Lorenzo, J., et al. (2006). Osteoimmunology: interplay between the immune system and bone metabolism. Annual Review of Immunology, 24, 33–63.

    Article  PubMed  CAS  Google Scholar 

  42. Okamoto, M., Hiura, K., Ohe, G., Ohba, Y., Terai, K., Oshikawa, T., et al. (2000). Mechanism for bone invasion of oral cancer cells mediated by interleukin-6 in vitro and in vivo. Cancer, 89(9), 1966–1975.

    Article  PubMed  CAS  Google Scholar 

  43. Shibahara, T., Nomura, T., Cui, N. H., & Noma, H. (2005). A study of osteoclast-related cytokines in mandibular invasion by squamous cell carcinoma. International Journal of Oral and Maxillofacial Surgery, 34(7), 789–793.

    Article  PubMed  CAS  Google Scholar 

  44. Van, Cann, E. M., de Slootweg, P. J., Wilde, P. C., Otte-Höller, I., Koole, R., et al. (2009). The prediction of mandibular invasion by squamous cell carcinomas with the expression of osteoclast-related cytokines in biopsy specimens. International Journal of Oral and Maxillofacial Surgery, 38(3), 279–284.

    Article  Google Scholar 

  45. Tsuchimochi, M., Kameta, A., Sue, M., & Katagiri, M. (2005). Immunohistochemical localization of parathyroid hormone-related protein (PTHrP) and serum PTHrP in normocalcemic patients with oral squamous cell carcinoma. Odontology, 93(1), 61–71.

    Article  PubMed  CAS  Google Scholar 

  46. Deyama, Y., Tei, K., Yoshimura, Y., Izumiyama, Y., Takeyama, S., Hatta, M., et al. (2008). Oral squamous cell carcinomas stimulate osteoclast differentiation. Oncology Reports, 20(3), 663–668.

    PubMed  CAS  Google Scholar 

  47. Yamada, T., Tsuda, M., Ohba, Y., Kawaguchi, H., Totsuka, Y., & Shindoh, M. (2008). PTHrP promotes malignancy of human oral cancer cell downstream of the EGFR signaling. Biochemical and Biophysical Research Communications, 368(3), 575–581.

    Article  PubMed  CAS  Google Scholar 

  48. Takayama, Y., Mori, T., Nomura, T., Shibahara, T., & Sakamoto, M. (2010). Parathyroid-related protein plays a critical role in bone invasion by oral squamous cell carcinoma. International Journal of Oncology, 36(6), 1387–1394.

    PubMed  CAS  Google Scholar 

  49. Gronthos, S., & Zannettino, A. C. (2007). The role of the chemokine CXCL12 in osteoclastogenesis. Trends in Endocrinology and Metabolism, 18(3), 108–113.

    Article  PubMed  CAS  Google Scholar 

  50. Bonfil, R. D., Chinni, S., Fridman, R., Kim, H. R., & Cher, M. L. (2007). Proteases, growth factors, chemokines, and the microenvironment in prostate cancer bone metastasis. Urologic Oncology, 25(5), 407–411.

    PubMed  CAS  Google Scholar 

  51. Tang, C. H., Chuang, J. Y., Fong, Y. C., Maa, M. C., Way, T. D., & Hung, C. H. (2008). Bone-derived SDF-1 stimulates IL-6 release via CXCR4, ERK and NF-kappaB pathways and promotes osteoclastogenesis in human oral cancer cells. Carcinogenesis, 29(8), 1483–1492.

    Article  PubMed  CAS  Google Scholar 

  52. Pandruvada, S. N., Yuvaraj, S., Liu, X., Sundaram, K., Shanmugarajan, S., Ries, W. L., et al. (2010). Role of CXC chemokine ligand 13 in oral squamous cell carcinoma associated osteolysis in athymic mice. International Journal of Cancer, 126(10), 2319–2329.

    CAS  Google Scholar 

  53. Matsuo, K., & Irie, N. (2008). Osteoclast-osteoblast communication. Archives of Biochemistry and Biophysics, 473(2), 201–209.

    Article  PubMed  CAS  Google Scholar 

  54. Huang, S. M., Li, J., & Harari, P. M. (2002). Molecular inhibition of angiogenesis and metastatic potential in human squamous cell carcinomas after epidermal growth factor receptor blockade. Molecular Cancer Therapeutics, 1(7), 507–514.

    PubMed  CAS  Google Scholar 

  55. Prime, S. S., Eveson, J. W., Stone, A. M., Huntley, S. P., Davies, M., Paterson, I. C., et al. (2004). Metastatic dissemination of human malignant oral keratinocyte cell lines following orthotopic transplantation reflects response to TGF-beta 1. The Journal of Pathology, 203(4), 927–932.

    Article  PubMed  CAS  Google Scholar 

  56. Shimo, T., Kubota, S., Goda, T., Yoshihama, Y., Kurio, N., Nishida, T., et al. (2008). Clinical significance and pathogenic function of connective tissue growth factor (CTGF/CCN2) in osteolytic mandibular squamous cell carcinoma. Anticancer Research, 28(4C), 2343–2348.

    PubMed  Google Scholar 

  57. Van der Pluijm, G. (2011). Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone, 48(1), 37–43.

    Article  PubMed  Google Scholar 

  58. Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews. Cancer, 9(4), 265–273.

    Article  PubMed  CAS  Google Scholar 

  59. Sterling, J. A., Edwards, J. R., Martin, T. J., & Mundy, G. R. (2011). Advances in the biology of bone metastasis: how the skeleton affects tumor behavior. Bone, 48(1), 6–15.

    Article  PubMed  CAS  Google Scholar 

  60. Chaffer, C. L., & Weinberg, R. A. (2011). A perspective on cancer cell metastasis. Science, 331(6024), 1559–1564.

    Article  PubMed  CAS  Google Scholar 

  61. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.

    Article  PubMed  CAS  Google Scholar 

  62. Davies, M., Prime, S. S., Stone, A. M., Huntley, S. P., Eveson, J. W., & Paterson, I. C. (2000). Endogenous TGF-beta1 inhibits the growth and metastatic dissemination of rat oral carcinoma cell lines but enhances local bone resorption. Journal of Oral Pathology & Medicine, 29(5), 232–240.

    Article  CAS  Google Scholar 

  63. Qiao, B., Johnson, N. W., & Gao, J. (2010). Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-beta1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and −9 expressions. International Journal of Oncology, 37(3), 663–668.

    PubMed  CAS  Google Scholar 

  64. Zhau, H. E., Odero-Marah, V., Lue, H. W., Nomura, T., Wang, R., Chu, G., et al. (2008). Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model. Clinical & Experimental Metastasis, 25(6), 601–610.

    Article  CAS  Google Scholar 

  65. Odero-Marah, V. A., Wang, R., Chu, G., Zayzafoon, M., Xu, J., Shi, C., et al. (2008). Receptor activator of NF-kappaB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells. Cell Research, 18(8), 858–870.

    Article  PubMed  CAS  Google Scholar 

  66. He, H., Yang, X., Davidson, A. J., Wu, D., Marshall, F. F., Chung, L. W., et al. (2010). Progressive epithelial to mesenchymal transitions in ARCaP E prostate cancer cells during xenograft tumor formation and metastasis. Prostate, 70(5), 518–528.

    PubMed  CAS  Google Scholar 

  67. Thompson, E. W., & Williams, E. D. (2008). EMT and MET in carcinoma–clinical observations, regulatory pathways and new models. Clinical & Experimental Metastasis, 25(6), 591–592.

    Article  Google Scholar 

  68. Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S., & Weinberg, R. A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Research, 68(10), 3645–3654.

    Article  PubMed  CAS  Google Scholar 

  69. Lo, J. F., Yu, C. C., Chiou, S. H., Huang, C. Y., Jan, C. I., Lin, S. C., et al. (2011). The epithelial-mesenchymal transition mediator S100A4 maintains cancer-initiating cells in head and neck cancers. Cancer Research, 71(5), 1912–1923.

    Article  PubMed  CAS  Google Scholar 

  70. Sethi, S., Macoska, J., Chen, W., & Sarkar, F. H. (2010). Molecular signature of epithelial-mesenchymal transition (EMT) in human prostate cancer bone metastasis. American Journal of Translational Resreach, 3(1), 90–99.

    Google Scholar 

  71. Lo, W. L., Yu, C. C., Chiou, G. Y., Chen, Y. W., Huang, P. I., Chien, C. S., et al. (2011). MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. The Journal of Pathology, 223(4), 482–495.

    Article  PubMed  CAS  Google Scholar 

  72. Pentenero, M., Cistaro, A., Brusa, M., Ferraris, M. M., Pezzuto, C., Carnino, R., et al. (2008). Accuracy of 18F-FDG-PET/CT for staging of oral squamous cell carcinoma. Head & Neck, 30(11), 1488–1496.

    Article  Google Scholar 

  73. Vidiri, A., Guerrisi, A., Pellini, R., Manciocco, V., Covello, R., Mattioni, O., et al. (2010). Multi-detector row computed tomography (MDCT) and magnetic resonance imaging (MRI) in the evaluation of the mandibular invasion by squamous cell carcinomas (SCC) of the oral cavity. Correlation with pathological data. Journal of Experimental & Clinical Cancer Research, 17, 29–73.

    Google Scholar 

  74. Abd El-Hafez, Y. G., Chen, C. C., Ng, S. H., Lin, C. Y., Wang, H. M., Chan, S. C., et al. (2011). Comparison of PET/CT and MRI for the detection of bone marrow invasion in patients with squamous cell carcinoma of the oral cavity. Oral Oncology, 47(4), 288–295.

    Article  PubMed  Google Scholar 

  75. Van, Cann, E. M., Koole, R., Oyen, W. J., de Rooy, J. W., de Wilde, P. C., et al. (2008). Assessment of mandibular invasion of squamous cell carcinoma by various modes of imaging: constructing a diagnostic algorithm. International Journal of Oral and Maxillofacial Surgery, 37(6), 535–541.

    Article  Google Scholar 

  76. Ayad, T., Guertin, L., Soulières, D., Belair, M., Temam, S., & Nguyen-Tân, P. F. (2009). Controversies in the management of retromolar trigone carcinoma. Head & Neck, 31(3), 398–405.

    Article  Google Scholar 

  77. Guerra, M. F., Campo, F. J., Gías, L. N., & Pérez, J. S. (2003). Rim versus sagittal mandibulectomy for the treatment of squamous cell carcinoma: two types of mandibular preservation. Head & Neck, 25(12), 982–989.

    Article  Google Scholar 

  78. Scully, C., & Bagan, J. (2009). Oral squamous cell carcinoma overview. Oral Oncology, 45(4–5), 301–308.

    Article  PubMed  CAS  Google Scholar 

  79. Do, L., Syed, N., Puthawala, A., Azawi, S., Williams, R., & Vora, N. (2010). Prognostic significance of bone or cartilage invasion of locally advanced head and neck cancers. American Journal of Clinical Oncology, 33(6), 591–594.

    Article  PubMed  Google Scholar 

  80. Zhao, L., Guo, Q. L., You, Q. D., Wu, Z. Q., & Gu, H. Y. (2004). Gambogic acid induces apoptosis and regulates expressions of Bax and Bcl-2 protein in human gastric carcinoma MGC-803 cells. Biological and Pharmaceutical Bulletin, 27(7), 998–1003.

    Article  PubMed  CAS  Google Scholar 

  81. Kasibhatla, S., Jessen, K. A., Maliartchouk, S., Wang, J. Y., English, N. M., Drewe, J., et al. (2005). A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid. Proceedings of the National Academic of Science of the USA, 102(34), 12095–12100.

    Article  CAS  Google Scholar 

  82. Oh, H. M., Kwon, B. M., Baek, N. I., Kim, S. H., Lee, J. H., Eun, J. S., et al. (2006). Inhibitory activity of 6-O-angeloylprenolin from Centipeda minima on farnesyl protein transferase. Archives of Pharmacal Research, 29(1), 64–66.

    Article  PubMed  CAS  Google Scholar 

  83. Taylor, R. S., & Towers, G. H. (1998). Antibacterial constituents of the Nepalese medicinal herb, Centipeda minima. Phytochemistry, 47(4), 631–634.

    Article  PubMed  CAS  Google Scholar 

  84. Xu, X., Liu, Y., Wang, L., He, J., Zhang, H., Chen, X., et al. (2009). Gambogic acid induces apoptosis by regulating the expression of Bax and Bcl-2 and enhancing caspase-3 activity in human malignant melanoma A375 cells. International Journal of Dermatology, 48(2), 186–192.

    Article  PubMed  CAS  Google Scholar 

  85. Yan, F., Wang, M., Chen, H., Su, J., Wang, X., Wang, F., et al. (2011). Gambogenic acid mediated apoptosis through the mitochondrial oxidative stress and inactivation of Akt signaling pathway in human nasopharyngeal carcinoma CNE-1 cells. European Journal of Pharmacology, 652(1–3), 23–32.

    Article  PubMed  CAS  Google Scholar 

  86. Ding, L. F., Liu, Y., Liang, H. X., Liu, D. P., Zhou, G. B., & Cheng, Y. X. (2009). Two new terpene glucosides and antitumour agents from Centipeda minima. Journal of Asian Natural Products Research, 11(8), 732–736.

    Article  PubMed  Google Scholar 

  87. Changlong, L., Hezhen, W., Yongping, H., Yanfang, Y., Yanwen, L., & Jianwen, L. (2008). 6-O-Angeloylenolin induces apoptosis through a mitochondrial/caspase and NF-kappaB pathway in human leukemia HL60 cells. Biomedicine and Pharmacotherapy, 62(6), 401–409.

    Article  Google Scholar 

  88. Liu, Y., Chen, X. Q., Liang, H. X., Zhang, F. X., Zhang, B., Jin, J., et al. (2011). Small compound 6-O-Angeloylplenolin induces mitotic arrest and exhibits therapeutic potentials in multiple myeloma. PLoS One, 6(7), e21930.

    Article  PubMed  CAS  Google Scholar 

  89. Ziober, B. L., Mauk, M. G., Falls, E. M., Chen, Z., Ziober, A. F., & Bau, H. H. (2008). Lab-on-a-chip for oral cancer screening and diagnosis. Head & Neck, 30(1), 111–121.

    Article  Google Scholar 

  90. Santini, D., Galluzzo, S., Zoccoli, A., Pantano, F., Fratto, M. E., Vincenzi, B., et al. (2010). New molecular targets in bone metastases. Cancer Treatment Reviews, 36(Suppl 3), S6–S10.

    Article  PubMed  CAS  Google Scholar 

  91. Lee, R. J., Saylor, P. J., & Smith, M. R. (2011). Treatment and prevention of bone complications from prostate cancer. Bone, 48(1), 88–95.

    Article  PubMed  CAS  Google Scholar 

  92. Castellano, D., Sepulveda, J. M., García-Escobar, I., Rodriguez-Antolín, A., Sundlöv, A., & Cortes-Funes, H. (2011). The role of RANK-ligand inhibition in cancer: the story of denosumab. The Oncologist, 16(2), 136–145.

    Article  PubMed  CAS  Google Scholar 

  93. Body, J. J., Greipp, P., Coleman, R. E., Facon, T., Geurs, F., Fermand, J. P., et al. (2003). A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer, 97(3 Suppl), 887–892.

    Article  PubMed  Google Scholar 

  94. Shin, M., Matsuo, K., Tada, T., Fukushima, H., Furuta, H., Ozeki, S., et al. (2011). The inhibition of RANKL/RANK signaling by osteoprotegerin suppresses bone invasion by oral squamous cell carcinoma cells. Carcinogenesis (in press)

Download references

Acknowledgements

We thank Professors Glenn Francis and Jane Dahlstrom for supplying tissue sections from oral cancer patients with bone invasion. This study was supported by funds from China Scholarship Council, Griffith University International Postgraduate Research Scholarship and Australian Dental Research Foundation.

Conflict of interest

All authors declare to have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan, J., Johnson, N.W., Zhou, G. et al. Potential molecular targets for inhibiting bone invasion by oral squamous cell carcinoma: a review of mechanisms. Cancer Metastasis Rev 31, 209–219 (2012). https://doi.org/10.1007/s10555-011-9335-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9335-7

Keywords

Navigation