Skip to main content

Advertisement

Log in

Role of lipoxins, resolvins, and other bioactive lipids in colon and pancreatic cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Unresolved inflammation, due to insufficient production of proresolving anti-inflammatory lipid mediators, can lead to an increased risk of tumorigenesis and tumor cell invasiveness. Various bioactive lipids, particularly those formed by cyclooxygenase (COX) and lipoxygenase (LOX) enzymes, have been well established as therapeutic targets for many epithelial cancers. Emerging studies suggest that there is a role for anti-inflammatory bioactive lipids and their mediators during the resolution phase of inflammation. These proresolving bioactive lipids, including lipoxins (LXs) and resolvins (RVs), have potent anti-inflammatory and anti-carcinogenic properties. The molecular signaling pathways controlling generation and degradation of the proresolving mediators LXs and RVs are now being elucidated, and the component molecules may serve as new targets for regulation of inflammation and inflammation-associated cancers like colon and pancreatic cancers. This review will highlight the recent advances in our understanding of how these bioactive lipids and proresolving mediators may function with various immune cells and cytokines in inhibiting tumor cell proliferation and progression and invasiveness of colon and pancreatic cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tenesa, A., & Dunlop, M. G. (2009). New insights into the etiology of colorectal cancer from genome-wide association studies. Nature Reviews Genetics, 10, 353–358.

    PubMed  CAS  Google Scholar 

  2. Jemal, A., Center, M. M., Ward, E., & Thun, M. J. (2009). Cancer occurrence. Methods in Molecular Biology, 471, 3–29.

    PubMed  Google Scholar 

  3. Jemal, A., Siegel, R., Ward, E., et al. (2008). Cancer statistics. CA: A Cancer Journal for Clinicians, 58, 71–96.

    Google Scholar 

  4. Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357, 539–545.

    PubMed  CAS  Google Scholar 

  5. Algül, H., Treiber, M., Lesina, M., & Schmid, R. M. (2007). Mechanisms of disease: chronic inflammation and cancer in the pancreas—a potential role for pancreatic stellate cells? Nature Clinical Practice. Gastroenterology & Hepatology, 4, 454–462.

    Google Scholar 

  6. Whitcomb, D. C., Gorry, M. C., Preston, R. A., Furey, W., Sossenheimer, M. J., Ulrich, C. D., et al. (1996). Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nature Genetics, 14, 141–145.

    PubMed  CAS  Google Scholar 

  7. Hruban, R. H., Wilentz, R. E., & Kern, S. E. (2000). Genetic progression in the pancreatic ducts. American Journal of Pathology, 156, 1821–1825.

    PubMed  CAS  Google Scholar 

  8. Raimondi, S., Maisonneuve, P., & Lowenfels, A. B. (2009). Epidemiology of pancreatic cancer: an overview. Nature Reviews. Gastroenterology & Hepatology, 6, 699–708.

    Google Scholar 

  9. Greer, J. B., & Whitcomb, D. C. (2009). Inflammation and pancreatic cancer: an evidence-based review. Current Opinion in Pharmacology, 9, 411–418.

    PubMed  CAS  Google Scholar 

  10. Serhan, C. N. (1997). Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL). Prostaglandins, 53, 107–137.

    PubMed  CAS  Google Scholar 

  11. Maitra, A., Ashfaq, R., Gunn, C. R., Rahman, A., Yeo, C. J., Sohn, T. A., et al. (2002). Cyclooxygenase-2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imaging. American Journal of Clinical Pathology, 118, 194–201.

    PubMed  CAS  Google Scholar 

  12. Rao, C. V., & Reddy, B. S. (2004). NSAIDs and chemoprevention. Current Cancer Drug Targets, 4, 29–42.

    PubMed  CAS  Google Scholar 

  13. Castellone, M. D., Teramoto, H., & Gutkind, J. S. (2006). Cyclooxygenase-2 and colorectal cancer chemoprevention: the beta-catenin connection. Cancer Research, 66, 11085–11088.

    PubMed  CAS  Google Scholar 

  14. Dorsam, R. T., & Gutkind, J. S. (2007). G-protein-coupled receptors and cancer. Nature Reviews. Cancer, 7, 79–94.

    PubMed  CAS  Google Scholar 

  15. Cherukuri, D. P., Chen, X. B. O., Goulet, A., et al. (2007). The EP4 receptor antagonist, L-161,982, blocks prostaglandin E2-induced signal transduction and cell proliferation in HCA-7 colon cancer cells. Experimental Cell Research, 313, 2969–2979.

    PubMed  CAS  Google Scholar 

  16. Murata, T., Lin, M. I., Aritake, K., et al. (2008). Role of prostaglandin D2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. Proceedings of the National Academy of Sciences, 105(50), 20009–20014.

    CAS  Google Scholar 

  17. Backlund, M. G., Mann, J. R., Holla, V. R., et al. (2005). 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. Journal of Biological Chemistry, 280(5), 3217–3223.

    PubMed  CAS  Google Scholar 

  18. Molina, M. A., Sitja-Amau, M., Lemoine, M. G., Frazier, M., & Sinicrope, F. A. (1999). Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer Research, 59, 4356–4362.

    PubMed  CAS  Google Scholar 

  19. Okami, J., Yamamoto, H., Fujiwara, Y., Tsujie, M., Kondo, K., Noura, S., et al. (1999). Overexpression of cyclooxygenase-2 in carcinoma of the pancreas. Clinical Cancer Research, 5, 2018–2024.

    PubMed  CAS  Google Scholar 

  20. Tucker, O. N., Dannenberg, A. J., Yang, E. K., Zhang, F., Teng, L., Daly, J. M., et al. (1999). Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Research, 59, 987–990.

    PubMed  CAS  Google Scholar 

  21. Niijima, M., Yamaguchi, T., Ishihara, T., et al. (2002). Immunohistochemical analysis and in situ hybridization of cyclooxygenase-2 expression in intraductal papillary-mucinous tumors of the pancreas. Cancer, 94, 1565–1573.

    PubMed  CAS  Google Scholar 

  22. Bergmann, F., Breinig, M., Hopfner, M., et al. (2009). Expression pattern and functional relevance of epidermal growth factor receptor and cyclooxygenase-2: novel chemotherapeutic targets in pancreatic endocrine tumors? American Journal of Gastroenterology, 104, 171–181.

    PubMed  CAS  Google Scholar 

  23. Hermanova, M., Karasek, P., Nenutil, R., et al. (2009). Clinicopathological correlations of cyclooxygenase-2, MDM2, and p53 expressions in surgically resectable pancreatic invasive ductal adenocarcinoma. Pancreas, 38, 565–571.

    PubMed  CAS  Google Scholar 

  24. Levitt, R. J., & Pollak, M. (2002). Insulin-like growth factor-I antagonizes the antiproliferative effects of cyclooxygenase-2 inhibitors on BxPC-3 pancreatic cancer cells. Cancer Research, 62, 7372–7376.

    PubMed  CAS  Google Scholar 

  25. Pold, M., Krysan, K., Pold, A., Dohadwala, M., Heuze-Vourc’h, N., Mao, J. T., et al. (2004). Cyclooxygenase-2 modulates the insulin-like growth factor axis in non-small-cell lung cancer. Cancer Research, 64, 6549–6555.

    PubMed  CAS  Google Scholar 

  26. Stoeltzing, O., Liu, W., Fan, F., Wagner, C., Stengel, K., Somcio, J. R., et al. (2007). Regulation of cyclooxygenase-2 (COX-2) expression in human pancreatic carcinoma cells by the insulin-like growth factor-I receptor (IGF-IR) system. Cancer Letters, 258(2), 291–300.

    PubMed  CAS  Google Scholar 

  27. Rao, C.V., Mohammed, A., Janakiram, N., Qian, L., Choi, C., Zhang, Y., Lightfoot, Stan., Steele, V.E. (2009). Delayed progression of pancreatic carcinoma in a conditional K-rasG12D mice by nitric oxide (NO)-releasing aspirin. In 100 th AACR annual meeting, Apr; #2062.

  28. Tong, W. G., Ding, X. Z., Hennig, R., Witt, R. C., Standop, J., Pour, P. M., et al. (2002). Leukotriene B4 receptor antagonist LY293111 inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Clinical Cancer Research, 8, 3232–3242.

    PubMed  CAS  Google Scholar 

  29. Ohd, J. F., Nielsen, C. K., Campbell, J., Landberg, G., Lofberg, H., & Sjolander, A. (2003). Expression of the leukotriene D4 receptor CysLT1, COX-2, and other cell survival factors in colorectal adenocarcinomas. Gastroenterology, 124, 57–70.

    PubMed  CAS  Google Scholar 

  30. Hayashi, T., Nishiyama, K., & Shirahama, T. (2006). Inhibition of 5-lipoxygenase pathway suppresses the growth of bladder cancer cells. International Journal of Urology, 13, 1086–1091.

    PubMed  CAS  Google Scholar 

  31. Zhi, H., Zhang, J., Hu, G., Lu, J., Wang, X., Zhou, C., et al. (2003). The deregulation of arachidonic acid metabolism-related genes in human esophageal squamous cell carcinoma. International Journal of Cancer, 106, 327–333.

    CAS  Google Scholar 

  32. Yoshimura, R., Matsuyama, M., Tsuchida, K., Kawahito, Y., Sano, H., & Nakatani, T. (2003). Expression of lipoxygenase in human bladder carcinoma and growth inhibition by its inhibitors. Journal of Urology, 170, 1994–1999.

    PubMed  CAS  Google Scholar 

  33. Qiao, L., Kozoni, V., Tsioulias, G. J., Koutsos, M. I., Hanif, R., Shiff, S. J., et al. (1995). Selected eicosanoids increase the proliferation rate of human colon carcinoma cell lines and mouse colonocytes in vivo. Biochimica et Biophysical Acta, 1258, 215–223.

    Google Scholar 

  34. Bortuzzo, C., Hanif, R., Kashfi, K., Staiano-Coico, L., Shiff, S. J., Rigas, B., et al. (1996). The effect of leukotrienes B and selected HETEs on the proliferation of colon cancer cells. Biochimica et Biophysical Acta, 1300, 240–246.

    Google Scholar 

  35. Avis, I., Hong, S. H., Martinez, A., Moody, T., Choi, Y. H., Trepel, J., et al. (2001). Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. Journal of the Federation of American Societies for Experimental Biology, 15, 2007–2009.

    CAS  Google Scholar 

  36. Ding, X. Z., Tong, W. G., & Adrian, T. E. (2003). Multiple signal pathways are involved in the mitogenic effect of 5(S)-HETE in human pancreatic cancer. Oncology, 65, 285–294.

    PubMed  CAS  Google Scholar 

  37. Tong, W. G., Ding, X. Z., Talamonti, M. S., Bell, R. H., & Adrian, T. E. (2005). LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways. Biochemical Biophysical Research Communication, 335, 949–956.

    CAS  Google Scholar 

  38. Hong, S. H., Avis, I., Vos, M. D., Martinez, A., Treston, A. M., & Mulshine, J. L. (1999). Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. Cancer Research, 59, 2223–2228.

    PubMed  CAS  Google Scholar 

  39. Hennig, R., Ding, X. Z., Tong, W. G., Schneider, M. B., Standop, J., Friess, H., et al. (2002). 5-Lipoxygenase and leukotriene B(4) receptor are expressed in human pancreatic cancers but not in pancreatic ducts in normal tissue. American Journal of Pathology, 161, 421–428.

    PubMed  CAS  Google Scholar 

  40. Ding, X. Z., Talamonti, M. S., Bell, R. H., Jr., & Adrian, T. E. (2005). A novel anti-pancreatic cancer agent, LY293111. Anti-Cancer Drugs, 16, 467–473.

    PubMed  CAS  Google Scholar 

  41. Tong, W. G., Ding, X. Z., Talamonti, M. S., Bell, R. H., & Adrian, T. E. (2007). Leukotriene B4 receptor antagonist LY293111 induces S-phase cell cycle arrest and apoptosis in human pancreatic cancer cells. Anti-Cancer Drugs, 18, 535–541.

    PubMed  CAS  Google Scholar 

  42. Edderkaoui, M., Hong, P., Vaquero, E. C., Lee, J. K., Fischer, L., Friess, H., et al. (2005). Extracellular matrix stimulates reactive oxygen species production and increases pancreatic cancer cell survival through 5-lipoxygenase and NADPH oxidase. American Journal of Physiology—Gastrointestinal and Liver Physiology, 289, G1137–G1147.

    PubMed  CAS  Google Scholar 

  43. Melstrom, L. G., Bentrem, D. J., Salabat, M. R., Kennedy, T. J., Ding, X. Z., Strouch, M., et al. (2008). Overexpression of 5-lipoxygenase in colon polyps and cancer and the effect of 5-LOX inhibitors in vitro and in a murine model. Clinical Cancer Research, 14, 6525–6530.

    PubMed  CAS  Google Scholar 

  44. Saif, M. W., Oettle, H., Vervenne, W. L., Thomas, J. P., Spitzer, G., Visseren-Grul, C., et al. (2009). Randomized double-blind phase II trial comparing gemcitabine plus LY293111 versus gemcitabine plus placebo in advanced adenocarcinoma of the pancreas. Cancer Journal of Clinicians, 15, 339–343.

    CAS  Google Scholar 

  45. Romano, M., & Claria, J. (2003). Cyclooxygenase-2 and 5-lipoxygenase converging functions on cell proliferation and tumor angiogenesis: implications for cancer therapy. Federation of American Society for Experimental Biology, 17, 1986–1995.

    CAS  Google Scholar 

  46. Byrum, R. S., Goulet, J. L., Griffiths, R. J., & Koller, B. H. (1997). Role of the 5-lipoxygenase-activating protein (FLAP) in murine acute inflammatory responses. The Journal of Experimental Medicine, 185, 1065–1075.

    PubMed  CAS  Google Scholar 

  47. Griffiths, R. J., Smith, M. A., Roach, M. L., Stock, J. L., Stam, E. J., Milici, A. J., et al. (1997). Collagen-induced arthritis is reduced in 5-lipoxygenase-activating protein-deficient mice. The Journal of Experimental Medicine, 185, 1123–1129.

    PubMed  CAS  Google Scholar 

  48. Goulet, J. L., Snouwaert, J. N., Latour, A. M., Coffman, T. M., & Koller, B. H. (1994). Altered inflammatory responses in leukotriene-deficient mice. Proceedings of the National Academy of Sciences, 91, 12852–12856.

    CAS  Google Scholar 

  49. Peters-Golden, M., Bailie, M., Marshall, T., Wilke, C., Phan, S. H., Toews, G. B., et al. (2002). Protection from pulmonary fibrosis in leukotriene-deficient mice. American Journal of Respiratory and Critical Care Medicine, 165, 229–235.

    PubMed  Google Scholar 

  50. Gavett, S. H., Madison, S. L., Chulada, P. C., Scarborough, P. E., Qu, W., Boyle, J. E., et al. (1999). Allergic lung responses are increased in prostaglandin H synthase-deficient mice. Journal of Clinical Investigation, 104, 721–732.

    PubMed  CAS  Google Scholar 

  51. Celotti, F., & Durand, T. (2003). The metabolic effects of inhibitors of 5-lipoxygenase and of cyclooxygenase 1 and 2 are an advancement in the efficacy and safety of anti-inflammatory therapy. Prostaglandins & Other Lipid Mediators, 71, 147–162.

    CAS  Google Scholar 

  52. Fiorucci, S., Meli, R., Bucci, M., & Cirino, G. (2001). Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? Biochemical Pharmacology, 62, 1433–1438.

    PubMed  CAS  Google Scholar 

  53. Ding, X. Z., Iversen, P., Cluck, M. W., Knezetic, J. A., & Adrian, T. E. (1999). Lipoxygenase inhibitors abolish proliferation of human pancreatic cancer cells. Biochemical and Biophysical Research Communications, 261, 218–223.

    PubMed  CAS  Google Scholar 

  54. Ding, X. Z., Tong, W. G., & Adrian, T. E. (2001). 12-Lipoxygenase metabolite 12(S)-HETE stimulates human pancreatic cancer cell proliferation via protein tyrosine phosphorylation and ERK activation. International Journal of Cancer, 94, 630–636.

    CAS  Google Scholar 

  55. Mohammed, A., Qian, L., Janakiram, N., Choi, C., Zhang, Y., Steele, V.E. Rao, C.V., (2009). Chemoprevention of colon and small intestinal tumorigenesis in ApcMin/+ mice by licofelone, a novel dual 5-LOX/COX inhibitor. In 100 th AACR annual meeting, Apr; #4781.

  56. Mohammed, A., Janakiram, N., Ely, M., Lightfoot, Stan., Steele, V.E. Rao, C.V., (2011). Licofelone, a novel dual COX–LOX inhibitor prevents progression of panIN lesions to pancreatic carcinoma by targeting miRNAs and cancer stem cells in p48 Cre/+-LSL-Kras G12D transgenic mice. In 102 nd AACR annual meeting, Apr 2–6; #2839.

  57. Alvaro-Gracia, J. M. (2004). Licofelone—clinical update on a novel LOX/COX inhibitor for the treatment of osteoarthritis. Rheumatology (Oxford, England), 43(Suppl 1), i21–i25.

    CAS  Google Scholar 

  58. Chiang, N., Arita, M., & Serhan, C. N. (2005). Anti-inflammatory circuitry: lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73, 163–177.

    PubMed  CAS  Google Scholar 

  59. Brezinski, M. E., & Serhan, C. N. (1990). Selective incorporation of (15S)-hydroxyeicosatetraenoic acid in phosphatidylinositol of human neutrophils: agonist-induced deacylation and transformation of stored hydroxyeicosanoids. Proceedings of the National Academy of Sciences, 87, 6248–6252.

    CAS  Google Scholar 

  60. Claria, J., & Serhan, C. N. (1995). Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell–leukocyte interactions. Proceedings of the National Academy of Sciences, 92, 9475–9479.

    CAS  Google Scholar 

  61. Kieran, N. E., Maderna, P., & Godson, C. (2004). Lipoxins: potential anti-inflammatory, proresolution, and antifibrotic mediators in renal disease. Kidney International, 65, 1145–1154.

    PubMed  CAS  Google Scholar 

  62. Serhan, C. N. (2002). Lipoxins and aspirin-triggered 15-epi-lipoxin biosynthesis: an update and role in anti-inflammation and pro-resolution. Prostaglandins Other Lipid mediators, 68–69, 4333–4455.

    Google Scholar 

  63. Canny, G., Levy, O., Furuta, G. T., Narravula-Alipati, S., Sisson, R. B., Serhan, C. N., et al. (2002). Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proceedings of the National Academy of Sciences, 99, 3902–3907.

    CAS  Google Scholar 

  64. Serhan, C. N., Maddox, J. F., Petasis, N. A., Akritopoulou-Zanze, I., Papayianni, A., Brady, H. R., et al. (1995). Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry, 34(44), 14609–14615.

    PubMed  CAS  Google Scholar 

  65. Aliberti, J., Hieny, S., Reise, S. C., Serhan, C. N., & Sher, A. (2002). Lipoxin-mediated inhibition of interleukin-12 production by dendritic cells: a mechanism for the regulation of microbial immunity. Nature Immunology, 3, 76–82.

    PubMed  CAS  Google Scholar 

  66. Fierro, I. M., Colgan, S. P., Bernasconi, G., Petasis, N. A., Clish, C. B., Arita, M., et al. (2003). Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit human neutrophil migration: comparisons between synthetic 15 epimers in chemotaxis and transmigration with microvessel endothelial cells and epithelial cells. Journal of Immunology, 170, 2688–2694.

    CAS  Google Scholar 

  67. Zhou, M., Chen, B., Sun, H., Deng, Z., Andersson, R., & Zhang, Q. (2011). The protective effects of lipoxin A4 during the early phase of severe acute pancreatitis in rats. Scandinavian Journal of gasteroenterology, 46(2), 211–219.

    CAS  Google Scholar 

  68. Songjun, L., Ping, W., Duyun, Y., Yinping, H., Xiaoyan, Z., Yongsheng, L., et al. (2009). Effects of lipoxin A4 on CoCl2-induced angiogenesis and its possible mechanisms in human umbilical vein endothelial cells. Pharmacology, 84, 17–23.

    Google Scholar 

  69. Bellenger, J., Bellenger, S., Bataille, A., Massey, K. A., Nicolaou, A., Rialland, M., et al. (2010). High pancreatic n-3 fatty acids prevent STZ-induced diabetes in fat-1 mice: inflammatory pathway inhibition. Diabetes, 60, 1090–1099.

    Google Scholar 

  70. Cezar-de-Mello, P. F. T., Vieira, A. M., Nascimento-Silva, V., Villela, C. G., Barja-Fidalgo, C., & Fierro, I. M. (2008). ATL-1, an analogue of aspirin-triggered lipoxin A4, is a potent inhibitor of several steps in angiogenesis induced by vascular endothelial growth factor. British Journal of Pharmacology, 153(5), 956–965.

    PubMed  CAS  Google Scholar 

  71. Kantarci, A., Blackwood, A., Hasturk, H., Serhan, C.N., Van, T.E. Dyke. (2008). Resolvin-E1 and lipoxin-A4 control pro-inflammatory PMN functions in diabetes. In IDAR 86 th Periodontal Research-Pathogenesis. Poster # 2736.

  72. Gewirtz, A. T., Collier-Hyams, L. S., Young, A. N., Kucharzik, T., Guilford, W. J., Parkinson, J. F., et al. (2002). Lipoxin A4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. Journal of Immunology, 168(10), 5260–5267.

    CAS  Google Scholar 

  73. Chiang, N., Serhan, C. N., Dahle’n, S. E., Drazen, J. M., Hay, D. W., Rovati, G. E., et al. (2006). The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacology Reviews, 58, 463–487.

    CAS  Google Scholar 

  74. Ye, R. D., Boulay, F., Wang, J. M., Dahlgren, C., Gerard, C., Parmentier, M., et al. (2009). International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacology Reviews, 61, 119–161.

    CAS  Google Scholar 

  75. Hachicha, M., Pouliot, M., Petasis, N. A., & Serhan, C. N. (1999). Lipoxin (LX) A4 and aspirin-triggered 15-epi-LXA4 inhibit tumor necrosis factor 1_-inhibited neutrophil responses and trafficking: regulators of a cytokine-chemokine axis. The Journal of Experimental Medicine, 189, 1923–1930.

    PubMed  CAS  Google Scholar 

  76. Wu, S. H., Liao, P. Y., Don, L., & Chen, Z. Q. (2008). Signal pathway involved in inhibition by lipoxin A4 of production of interleukins induced in endothelial cells by lipopolysaccharide. Inflammation Research, 57, 430–437.

    PubMed  CAS  Google Scholar 

  77. Levy, B. D., Bonnans, C., Silverman, E. S., Palmer, L. J., Marigowda, G., & Israel, E. (2005). Severe Asthma Research Program, National Heart, Lung, and Blood Institute Diminished lipoxin biosynthesis in severe asthma. American Journal of Respiratory and Critical Care Medicine, 172, 824–830.

    PubMed  Google Scholar 

  78. Levy, B. D., Lukacs, N. W., Berlin, A. A., Schmidt, B., Guilford, W. J., Serhan, C. N., et al. (2007). Lipoxin A4 stable analogs reduce allergic airway responses via mechanisms distinct from CysLT1 receptor antagonism. Journal of the Federation of American Societies for Experimental Biology, 21, 3877–3884.

    CAS  Google Scholar 

  79. Fiorucci, S., Wallace, J. L., Mencarelli, A., Distrutti, E., Rizzo, G., Farneti, S., et al. (2004). A-oxidation-resistant lipoxin A4 analog treats hapten-induced colitis by attenuating inflammation and immune dysfunction. Proceedings of National Academy of Sciences, 101, 15736–15741.

    CAS  Google Scholar 

  80. Gronert, K., Gewirt, Z. A., Madara, J. L., & Serhan, C. N. (1998). Identification of a human enterocyte lipoxin A4 receptor that is regulated by interleukin (IL)-13 and interferon and inhibits tumor necrosis factor -induced IL-8 release. The Journal of Experimental Medicine, 187, 1285–1294.

    PubMed  CAS  Google Scholar 

  81. Kure, I., Nishiumi, S., Nishitani, Y., Tanoue, T., Ishida, T., Mizuno, M., et al. (2010). Lipoxin A4 reduces lipopolysaccharide-induced inflammation in macrophages and intestinal epithelial cells through inhibition of nuclear factor-_B activation. The Journal of Pharmacology and Experimental Therapeutics, 332, 541–548.

    PubMed  CAS  Google Scholar 

  82. Ohkawara, T., Mitsuyama, K., Takeda, H., Asaka, M., Fujiyama, Y., & Nishihira, J. (2008). Lack of macrophage migration inhibitory factor suppresses innate immune response in murine dextran sulfate sodium-induced colitis. Scandinavian Journal of Gastroenterology, 43, 1497–1504.

    PubMed  CAS  Google Scholar 

  83. Andrew, T., McCormick, B. G., Neish, S. A., Petasis, A. N., Gronert, K., Serhan, C. N., et al. (1998). Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs. Journal of Clinical Investigations, 101, 1860–1869.

    Google Scholar 

  84. Serhan, C. N., et al. (2002). Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. The Journal of Experimental Medicine, 196, 1025–1037.

    PubMed  CAS  Google Scholar 

  85. Arita, M., et al. (2005). Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proceedings of the National Academy of Sciences, 102, 7671–7676.

    CAS  Google Scholar 

  86. Hudert, C. A., et al. (2006). Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis. Proceedings of the National Academy of Sciences, 103, 11276–11281.

    CAS  Google Scholar 

  87. Campbell, E. L., Louis, N. A., Tomassetti, S. E., Canny, G. O., Arita, M., Serhan, C. N., et al. (2007). Resolvin E1 promotes mucosal surface clearance of neutrophils: a new paradigm for inflammatory resolution. Federation of American Society for Experimental Biology Journal, 21, 3162–3170.

    CAS  Google Scholar 

  88. Ishida, T., Yoshida, M., Arita, M., Nishitani, Y., Nishiumi, S., Masuda, A., et al. (2010). Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid, prevents dextran sulfate sodium-induced colitis. Inflammatory Bowel Disease, 16, 87–95.

    Google Scholar 

  89. Campbell, L. E., MacManus, F. C., Kominsky, J. D., Keely, S., Glover, E. L., Bowers, E. B., et al. (2010). Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of inflammation through LPS detoxification. Proceedings of the National Academy of Sciences of the United States of America, 107, 14298–14303. doi:10.1073/pnas.0914730107.

    PubMed  CAS  Google Scholar 

  90. Aoki, H., Hisada, T., Ishizuka, T., Utsugi, M., Kawata, T., Shimizu, Y., et al. (2008). Resolvin E1 dampens airway inflammation and hyperresponsiveness in a murine model of asthma. Biochemical and Biophysical Research Communications, 367, 509–515.

    PubMed  CAS  Google Scholar 

  91. Nieto, N., Torres, M. I., Ríos, A., & Gil, A. (2002). Dietary polyunsaturated fatty acids improve histological and biochemical alterations in rats with experimental ulcerative colitis. Journal of Nutrition, 132, 11–19.

    PubMed  CAS  Google Scholar 

  92. Ishida, T., Yoshida, M., Arita, M., Nishitani, Y., Nishiumi, S., Masuda, A., et al. (2009). Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid, prevents dextran sulfate sodium-induced colitis. Inflammation and Bowel Diseases, 16(1), 87–95. doi:10.1002/ibd.21029.

    Google Scholar 

  93. Cheng, Y., Austin, S. C., Rocca, B., Koller, B. H., Coffman, T. M., Grosser, T., et al. (2002). Role of prostacyclin in the cardiovascular response to thromboxane A2. Science, 296, 539–541.

    PubMed  CAS  Google Scholar 

  94. Lund, T., Mangsbo, S. M., Scholz, H., Gjorstrup, P., Tötterman, T. H., Korsgren, O., et al. (2010). Resolvin E1 reduces proinflammatory markers in human pancreatic islets in vitro. Experiments in Clinical Endocrinology and Diabetes., 118(4), 237–244.

    CAS  Google Scholar 

  95. Crawford, M., Galli, C., Visioli, F., Renaud, S., Simopoulos, A. P., & Spector, A. A. (2000). Role of plant-derived omega-3 fatty acids in human nutrition. Annals of Nutrition and Metabolism, 44, 263–265.

    PubMed  CAS  Google Scholar 

  96. Rose, D. P., & Connolly, J. M. (1999). Omega-3 fatty acids as cancer chemopreventive agents. Pharmacology and Therapeutics, 83, 217–244.

    PubMed  CAS  Google Scholar 

  97. Ringbom, T., Huss, U., Stenholm, A., et al. (2001). Cox-2 inhibitory effects of naturally occurring and modified fatty acids. Journal of Natural Products, 64, 745–749.

    PubMed  CAS  Google Scholar 

  98. Singh, J., Hamid, R., & Reddy, B. S. (1997). Dietary fat and colon cancer: modulation of cyclooxygenase-2 by types and amount of dietary fat during the postinitiation stage of colon carcinogenesis. Cancer Research, 57, 3465–3470.

    PubMed  CAS  Google Scholar 

  99. Culp, B. R., Titus, B. G., & Lands, W. E. (1979). Inhibition of prostaglandin biosynthesis by eicosapentaenoic acid. Prostaglandins and Medicine, 3, 269–278.

    PubMed  CAS  Google Scholar 

  100. Marshall, L. A., & Johnston, P. V. (1982). Modulation of tissue prostaglandin synthesizing capacity by increased ratios of dietary alpha-linolenic acid to linoleic acid. Lipids, 17, 905–913.

    PubMed  CAS  Google Scholar 

  101. Corey, E. J., Shih, C., & Cashman, J. R. (1983). Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis. Proceedings of the National Academy of Sciences, 80, 3581–3584.

    CAS  Google Scholar 

  102. Grimm, H., Mayer, K., Mayser, P., & Eigenbrodt, E. (2002). Regulatory poten Yoshimura al of n_3 fatty acids in immunological and inflammatory processes. British Journal of Nutrition, 87(suppl), S59–S67.

    PubMed  CAS  Google Scholar 

  103. Von Schacky, C., Kiefl, R., Marcus, A. J., Broekman, M. J., & Kaminski, W. E. (1993). Dietary n_3 fatty acids accelerate catabolism of leukotriene B4 in human granulocytes. Biochimica et Biophysica Acta, 1166, 20–24.

    Google Scholar 

  104. Tsunomori, M., Fujimoto, Y., Muta, E., Nishida, H., Sakuma, S., & Fujita, T. (1996). 15-Hydroperoxyeicosapentaenoic acid inhibits arachidonic acid metabolism in rabbit platelets more potently than eicosapentaenoic acid. Biochimica et Biophysica Acta, 1300, 171–176.

    PubMed  Google Scholar 

  105. Collett, E. D., Davidson, L. A., Fan, Y. Y., Lupton, J. R., & Chapkin, R. S. (2001). n_6 And n_3 polyunsaturated fatty acids differentially modulate oncogenic Ras activation in colonocytes. American Journal of Physiology, 280, C1066–C1075.

    PubMed  CAS  Google Scholar 

  106. Chang, W. L., Chapkin, R. S., & Lupton, J. R. (1998). Fish oil blocks azoxymethane induced rat colon tumorigenesis by increasing cell differentiation and apoptosis rather than decreasing cell proliferation. Journal of Nutrition, 128, 491–497.

    PubMed  CAS  Google Scholar 

  107. Murray, N. R., Weems, C., Chen, L., et al. (2002). Protein kinase C betaII and TGFbetaRII in omega-3 fatty acid-mediated inhibition of colon carcinogenesis. The Journal of Cell Biology, 157, 915–920.

    PubMed  CAS  Google Scholar 

  108. Murray, N. R., Davidson, L. A., Chapkin, R. S., Clay Gustafson, W., Schattenberg, D. G., & Fields, A. P. (1999). Overexpression of protein kinase C betaII induces colonic hyperproliferation and increased sensitivity to colon carcinogenesis. The Journal of Cell Biology, 145, 699–711.

    PubMed  CAS  Google Scholar 

  109. Gokmen-Polar, Y., Murray, N. R., Velasco, M. A., Gatalica, Z., & Fields, A. P. (2001). Elevated protein kinase C betaII is an early promotive event in colon carcinogenesis. Cancer Research, 61, 1375–1381.

    PubMed  CAS  Google Scholar 

  110. Roeder, C., Kalthoff, H., Henne-Bruns, D., & Kremer, B. (1995). Expression of the cytokines interleukin-113 and GM-CSF in pancreatic tumor cells is stimulated by tumor necrosis factor-et via different mechanisms. In G. Hierholzer, J. Seifert, & W. Hartel (Eds.), Chirurgisches Forum f. Experim. u. klinische Forschung (pp. 505–508). Berlin: Springer.

    Google Scholar 

  111. Glick, A. B., Sporn, M. B., & Yuspa, S. H. (1991). Altered regulation of TGF-beta 1 and TGF-alpha in primary keratinocytes and papillomas expressing v-Ha-ras. Molecular Carcinogenesis, 4, 210–219.

    PubMed  CAS  Google Scholar 

  112. Kalthoff, H., Roeder, C., & Schmiegel, W. (1993). Cytokine-mediated regulation of growth factor receptors (EGF-R and erb-B2) in pancreatic tumors. In C. Wagener & M. Neumann (Eds.), Molecular diagnostics of cancer (pp. 175–186). Berlin: Springer.

    Google Scholar 

  113. Kleeff, J., Kusama, T., Rossi, D. L., Ishiwata, T., Maruyama, H., Friess, H., et al. (1999). Detection and localization of Mip-3alpha/LARC/Exodus, a macrophage proinflammatory chemokine, and its CCR6 receptor in human pancreatic cancer. International Journal of Cancer, 81, 650–665.

    CAS  Google Scholar 

  114. Farrow, B., Sugiyama, Y., Chen, A., Uffort, E., Nealon, W., & Mark Evers, B. (2004). Inflammatory mechanisms contributing to pancreatic cancer development. Annals of Surgery, 239, 763–769.

    PubMed  Google Scholar 

  115. Kuwada, Y., Sasaki, T., Morinaka, K., Kitadai, Y., Mukaida, N., & Chayama, K. (2003). Potential involvement of IL-8 and its receptors in the invasiveness of pancreatic cancer cells. International Journal of Oncology, 22, 765–771.

    PubMed  CAS  Google Scholar 

  116. Xiong, Q., Shi, Q., Le, X., Wang, B., & Xie, K. (2001). Regulation of interleukin-8 expression by nitric oxide in human pancreatic adenocarcinoma. Journal of Interferon and Cytokine Research, 21, 529–537.

    PubMed  CAS  Google Scholar 

  117. Muerkoster, S., Wegehenkel, K., Arlt, A., Witt, M., Sipos, B., Kruse, M. L., et al. (2004). Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Research, 64, 1331–1337.

    PubMed  Google Scholar 

  118. Marchesi, F., Monti, P., Leone, B. E., Zerbi, A., Vecchi, A., Piemonti, L., et al. (2004). Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Research, 64, 8420–8427.

    PubMed  CAS  Google Scholar 

  119. Greten, F. R., Eckmann, L., Greten, T. F., Park, J. M., Li, Z. W., Egan, L. J., et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 118, 285–296.

    PubMed  CAS  Google Scholar 

  120. Becker, C., Fantini, M. C., Wirtz, S., et al. (2005). IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle, 4, 217–220.

    PubMed  CAS  Google Scholar 

  121. Grivennikov, S., Karin, E., Terzic, J., Mucida, D., Yu, G. Y., Vallabhapurapu, S., et al. (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell, 15, 103–113.

    PubMed  CAS  Google Scholar 

  122. Matsumoto, S., Hara, T., Mitsuyama, K., et al. (2010). Essential roles of IL-6 trans-signaling in colonic epithelial cells, induced by the IL-6/soluble-IL-6 receptor derived from lamina propria macrophages, on the development of colitis-associated premalignant cancer in a murine model. Journal of Immunology, 184, 1543–1551.

    CAS  Google Scholar 

  123. Becker, C., Fantini, M. C., Schramm, C., et al. (2004). TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity, 21, 491–501.

    PubMed  CAS  Google Scholar 

  124. Ring, W. L., Riddick, C. A., Baker, J. R., Munafo, D. A., & Bigby, T. D. (1996). Lymphocytes stimulate expression of 5-lipoxygenase and its activating protein in monocytes in vitro via granulocyte–macrophage colony stimulating factor and interleukin-3. Journal of Clinical Investigations, 97, 1293–1301.

    CAS  Google Scholar 

  125. Feltenmark, S., Runarsson, C., Larsson, P., Jakobsson, P-i, Bjorkholm, M., & Claesson, H.-E. (1995). Diverse expression of cytosolic phospholipase A2, 5-lipoxygenase and prostaglandin H synthase 2 in acute pre-B-lymphocytic leukaemia ce1is. British Journal of Haematology, 90, 585–594.

    PubMed  CAS  Google Scholar 

  126. Nassar, C. M., Morrow, J. D., Roberts, L. J., II, Lakkis, F. C., & Badr, K. F. (1994). Induction of l5-lipoxygenase by interleukin-13 in human blood monocytes. Journal of Biological Chemistry, 269(2763), 1–27634.

    Google Scholar 

  127. Stenke, L., Reizenstein, P., & Lindgren, J. A. (1994). Leukotrienes and lipoxins—new potential performers in the regulation of human myelopoiesis. Leukemia Research, 18, 727–732.

    PubMed  CAS  Google Scholar 

  128. Erreni, M., Bianchi, P., Laghi, L., Mirolo, M., Fabbri, M., Locati, M., et al. (2009). Expression of chemokines and chemokine receptors in human colon cancer. Methods in Enzymology, 460, 105–121.

    PubMed  CAS  Google Scholar 

  129. Kollias, G. (2004). Modeling the function of tumor necrosis factor in immune pathophysiology. Autoimmunity Reviews, 3(Suppl 1), S24–S25.

    PubMed  Google Scholar 

  130. Grivennikov, S. I., Tumanov, A. V., Liepinsh, D. J., et al. (2005). Distinct and nonredundant in vivo functions of TNF produced by t cells and macrophages/neutrophils: protective and deleterious effects. Immunity, 22, 93–104.

    PubMed  CAS  Google Scholar 

  131. Popivanova, B. K., Kitamura, K., Wu, Y., Kondo, T., Kagaya, T., Kaneko, S., et al. (2008). Blocking sTNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. Journal of Clinical Investigation, 118, 560–570.

    PubMed  CAS  Google Scholar 

  132. Prescott, S. M., Zimmerman, G. A., Stafforini, D. M., et al. (2000). Platelet-activating factor and related lipid mediators. Annual Reviews in Biochemistry, 69, 419–445.

    CAS  Google Scholar 

  133. Ko, H. M., Jung, H. H., Seo, K. H., et al. (2006). Platelet-activating factor-induced NF-kappaB activation enhances VEGF expression through a decrease in p53 activity. Federation of the Societies of Biochemistry and Molecular Biology- Letters, 580, 3006–3012.

    CAS  Google Scholar 

  134. Biancone, L., Cantaluppi, V., Del Sorbo, L., et al. (2003). Platelet-activating factor inactivation by local expression of platelet-activating factor acetyl-hydrolase modifies tumor vascularization and growth. Clinical Cancer Research, 9, 4214–4220.

    PubMed  CAS  Google Scholar 

  135. Griffiths, R. J. (1999). Prostaglandins and inflammation. In J. I. Gallin & R. Snyderman (Eds.), Inflammation: basic principles and clinical correlates (pp. 249–265). Philadelphia: Lippincott & Wilkins.

    Google Scholar 

  136. Dumont, P., Berton, A., Nagy, N., et al. (2008). Expression of galectin-3 in the tumor immune response in colon cancer. Laboratory Investigations, 88, 896–906.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from NIH/NCI R01CA-102947 and R01CA-94962 and the N01-CN-53300. Also, we want to thank Dr. Julie Sando for editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinthalapally V. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janakiram, N.B., Mohammed, A. & Rao, C.V. Role of lipoxins, resolvins, and other bioactive lipids in colon and pancreatic cancer. Cancer Metastasis Rev 30, 507–523 (2011). https://doi.org/10.1007/s10555-011-9311-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9311-2

Keywords

Navigation