Skip to main content

Advertisement

Log in

Eicosanoids and other lipid mediators and the tumor hypoxic microenvironment

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Hypoxia is a pathological hallmark feature of solid tumors. Though hypoxia is an adverse physiological state, tumors have evolved to utilize this unsuitable environment to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival, and metastasis. Several studies have emphasized the importance of lipid mediators in regulating key biomolecules in the hypoxic microenvironment, for example hypoxia inducible factor-1 (HIF-1), the master regulator of hypoxia. Lipid mediators have been reported to enhance the levels and activity of HIF-1, which subsequently signal to stimulate angiogenesis and tumor cell survival under hypoxic conditions. There are also reports of hypoxia and HIF-1 enhancing the levels of some lipid mediators mostly by upregulating the levels of the enzymes responsible for their biosynthesis. This review gives a brief overview of these two mechanisms and the role played by bioactive lipid mediators in the regulation of tumor progression and survival under hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris, A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nature Reviews Cancer, 2(1), 38–47.

    Article  PubMed  CAS  Google Scholar 

  2. Brahimi-Horn, M. C., Chiche, J., & Pouyssegur, J. (2007). Hypoxia and cancer. Journal of Molecular Medicine, 85(12), 1301–1307.

    Article  PubMed  Google Scholar 

  3. Moeller, B. J., Richardson, R. A., & Dewhirst, M. W. (2007). Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Reviews, 26(2), 241–248.

    Article  PubMed  CAS  Google Scholar 

  4. Semenza, G. L. (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 29(5), 625–634.

    Article  PubMed  CAS  Google Scholar 

  5. Wang, G. L., & Semenza, G. L. (1995). Purification and characterization of hypoxia-inducible factor 1. Journal of Biological Chemistry, 270(3), 1230–1237.

    Article  PubMed  CAS  Google Scholar 

  6. Forsythe, J. A., Jiang, B. H., Iyer, N. V., Agani, F., Leung, S. W., Koos, R. D., et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and Cellular Biology, 16(9), 4604–4613.

    PubMed  CAS  Google Scholar 

  7. Behrooz, A., & Ismail-Beigi, F. (1997). Dual control of glut1 glucose transporter gene expression by hypoxia and by inhibition of oxidative phosphorylation. Journal of Biological Chemistry, 272(9), 5555–5562.

    Article  PubMed  CAS  Google Scholar 

  8. Funk, C. D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science, 294(5548), 1871–1875.

    Article  PubMed  CAS  Google Scholar 

  9. Serhan, C. N. (2007). Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annual Review of Immunology, 25, 101–137.

    Article  PubMed  CAS  Google Scholar 

  10. Smith, W. L., DeWitt, D. L., & Garavito, R. M. (2000). Cyclooxygenases: structural, cellular, and molecular biology. Annual Review of Biochemistry, 69, 145–182.

    Article  PubMed  CAS  Google Scholar 

  11. Menter, D. G., Schilsky, R. L., & DuBois, R. N. (2010). Cyclooxygenase-2 and cancer treatment: understanding the risk should be worth the reward. Clinical Cancer Research, 16(5), 1384–1390.

    Article  PubMed  CAS  Google Scholar 

  12. Rigas, B., Goldman, I. S., & Levine, L. (1993). Altered eicosanoid levels in human colon cancer. The Journal of Laboratory and Clinical Medicine, 122(5), 518–523.

    PubMed  CAS  Google Scholar 

  13. Greenhough, A., Smartt, H. J., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C., et al. (2009). The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis, 30(3), 377–386.

    Article  PubMed  CAS  Google Scholar 

  14. Backlund, M. G., Mann, J. R., Holla, V. R., Shi, Q., Daikoku, T., Dey, S. K., et al. (2008). Repression of 15-hydroxyprostaglandin dehydrogenase involves histone deacetylase 2 and snail in colorectal cancer. Cancer Research, 68(22), 9331–9337.

    Article  PubMed  CAS  Google Scholar 

  15. Schmedtje, J. F., Jr., Ji, Y. S., Liu, W. L., DuBois, R. N., & Runge, M. S. (1997). Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. Journal of Biological Chemistry, 272(1), 601–608.

    Article  PubMed  CAS  Google Scholar 

  16. Bonazzi, A., Mastyugin, V., Mieyal, P. A., Dunn, M. W., & Laniado-Schwartzman, M. (2000). Regulation of cyclooxygenase-2 by hypoxia and peroxisome proliferators in the corneal epithelium. Journal of Biological Chemistry, 275(4), 2837–2844.

    Article  PubMed  CAS  Google Scholar 

  17. Liu, X. H., Kirschenbaum, A., Yao, S., Stearns, M. E., Holland, J. F., Claffey, K., et al. (1999). Upregulation of vascular endothelial growth factor by cobalt chloride-simulated hypoxia is mediated by persistent induction of cyclooxygenase-2 in a metastatic human prostate cancer cell line. Clinical & Experimental Metastasis, 17(8), 687–694.

    Article  CAS  Google Scholar 

  18. Liu, X. H., Kirschenbaum, A., Lu, M., Yao, S., Dosoretz, A., Holland, J. F., et al. (2002). Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line. Journal of Biological Chemistry, 277(51), 50081–50086.

    Article  PubMed  CAS  Google Scholar 

  19. Fukuda, R., Kelly, B., & Semenza, G. L. (2003). Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Research, 63(9), 2330–2334.

    PubMed  CAS  Google Scholar 

  20. Huang, S. P., Wu, M. S., Shun, C. T., Wang, H. P., Hsieh, C. Y., Kuo, M. L., et al. (2005). Cyclooxygenase-2 increases hypoxia-inducible factor-1 and vascular endothelial growth factor to promote angiogenesis in gastric carcinoma. Journal of Biomedical Science, 12(1), 229–241.

    Article  PubMed  CAS  Google Scholar 

  21. Csiki, I., Yanagisawa, K., Haruki, N., Nadaf, S., Morrow, J. D., Johnson, D. H., et al. (2006). Thioredoxin-1 modulates transcription of cyclooxygenase-2 via hypoxia-inducible factor-1alpha in non-small cell lung cancer. Cancer Research, 66(1), 143–150.

    Article  PubMed  CAS  Google Scholar 

  22. Kaidi, A., Qualtrough, D., Williams, A. C., & Paraskeva, C. (2006). Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Research, 66(13), 6683–6691.

    Article  PubMed  CAS  Google Scholar 

  23. Moore, A. E., Greenhough, A., Roberts, H. R., Hicks, D. J., Patsos, H. A., Williams, A. C., et al. (2009). HGF/Met signalling promotes PGE(2) biogenesis via regulation of COX-2 and 15-PGDH expression in colorectal cancer cells. Carcinogenesis, 30(10), 1796–1804.

    Article  PubMed  CAS  Google Scholar 

  24. Ji, R., Chou, C. L., Xu, W., Chen, X. B., Woodward, D. F., & Regan, J. W. (2010). EP1 prostanoid receptor coupling to G i/o up-regulates the expression of hypoxia-inducible factor-1 alpha through activation of a phosphoinositide-3 kinase signaling pathway. Molecular Pharmacology, 77(6), 1025–1036.

    Article  PubMed  CAS  Google Scholar 

  25. Lee, J. J., Natsuizaka, M., Ohashi, S., Wong, G. S., Takaoka, M., Michaylira, C. Z., et al. (2010). Hypoxia activates the cyclooxygenase-2-prostaglandin E synthase axis. Carcinogenesis, 31(3), 427–434.

    Article  PubMed  CAS  Google Scholar 

  26. Samuelsson, B., Dahlen, S. E., Lindgren, J. A., Rouzer, C. A., & Serhan, C. N. (1987). Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science, 237(4819), 1171–1176.

    Article  PubMed  CAS  Google Scholar 

  27. Marks, F., & Fürstenberger, G. (1999). Prostaglandins, leukotrienes, and other eicosanoids: from biogenesis to clinical applications. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  28. Guo, Y., Zhang, W., Giroux, C., Cai, Y., Ekambaram, P., Dilly, A. K., et al. (2011). Identification of the orphan G protein coupled receptor GPR31 as a receptor for 12(S)hydroxyeicosatetraenoic acid. Journal of Biological Chemistry, 286, 33832–33840.

    Article  PubMed  CAS  Google Scholar 

  29. Krishnamoorthy, S., & Honn, K. V. (2008). Eicosanoids in tumor progression and metastasis. Subcellular Biochemistry, 49, 145–168.

    Article  PubMed  Google Scholar 

  30. Bernaudin, M., Tang, Y., Reilly, M., Petit, E., & Sharp, F. R. (2002). Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. The Journal of Biological Chemistry, 277(42), 39728–39738.

    Article  PubMed  CAS  Google Scholar 

  31. Preston, I. R., Hill, N. S., Warburton, R. R., & Fanburg, B. L. (2006). Role of 12-lipoxygenase in hypoxia-induced rat pulmonary artery smooth muscle cell proliferation. American Journal of Physiology. Lung Cellular and Molecular Physiology, 290(2), L367–L374.

    Article  PubMed  CAS  Google Scholar 

  32. Gonsalves, C. S., & Kalra, V. K. (2010). Hypoxia-mediated expression of 5-lipoxygenase-activating protein involves HIF-1α and NF-kB and microRNAs 135a and 199a-5p. Journal of Immunology, 184(7), 3878–3888.

    Article  CAS  Google Scholar 

  33. Zhu, D., Medhora, M., Campbell, W. B., Spitzbarth, N., Baker, J. E., & Jacobs, E. R. (2003). Chronic hypoxia activates lung 15-lipoxygenase, which catalyzes production of 15-HETE and enhances constriction in neonatal rabbit pulmonary arteries. Circulation Research, 92(9), 992–1000.

    Article  PubMed  CAS  Google Scholar 

  34. Rydberg, E. K., Krettek, A., Ullstrom, C., Ekstrom, K., Svensson, P. A., Carlsson, L. M., et al. (2004). Hypoxia increases LDL oxidation and expression of 15-lipoxygenase-2 in human macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(11), 2040–2045.

    Article  PubMed  CAS  Google Scholar 

  35. Krishnamoorthy, S., Jin, R., Cai, Y., Maddipati, K. R., Nie, D., Pages, G., et al. (2010). 12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer cells. Experimental Cell Research, 316(10), 1706–1715.

    Article  PubMed  CAS  Google Scholar 

  36. Fyrst, H., & Saba, J. D. (2010). An update on sphingosine-1-phosphate and other sphingolipid mediators. Nature Chemical Biology, 6(7), 489–497.

    Article  PubMed  CAS  Google Scholar 

  37. Yoshida, Y., Nakada, M., Harada, T., Tanaka, S., Furuta, T., Hayashi, Y., et al. (2010). The expression level of sphingosine-1-phosphate receptor type 1 is related to MIB-1 labeling index and predicts survival of glioblastoma patients. Journal of Neuro-Oncology, 98(1), 41–47.

    Article  PubMed  CAS  Google Scholar 

  38. Jin, Z. Q., Goetzl, E. J., & Karliner, J. S. (2004). Sphingosine kinase activation mediates ischemic preconditioning in murine heart. Circulation, 110(14), 1980–1989.

    Article  PubMed  CAS  Google Scholar 

  39. Jin, Z. Q., Zhou, H. Z., Zhu, P., Honbo, N., Mochly-Rosen, D., Messing, R. O., et al. (2002). Cardioprotection mediated by sphingosine-1-phosphate and ganglioside GM-1 in wild-type and PKC epsilon knockout mouse hearts. American Journal of Physiology. Heart and Circulatory Physiology, 282(6), H1970–H1977.

    PubMed  CAS  Google Scholar 

  40. Tao, R., Zhang, J., Vessey, D. A., Honbo, N., & Karliner, J. S. (2007). Deletion of the sphingosine kinase-1 gene influences cell fate during hypoxia and glucose deprivation in adult mouse cardiomyocytes. Cardiovascular Research, 74(1), 56–63.

    Article  PubMed  CAS  Google Scholar 

  41. Yun, J. K., & Kester, M. (2002). Regulatory role of sphingomyelin metabolites in hypoxia-induced vascular smooth muscle cell proliferation. Archives of Biochemistry and Biophysics, 408(1), 78–86.

    Article  PubMed  CAS  Google Scholar 

  42. Ahmad, M., Long, J. S., Pyne, N. J., & Pyne, S. (2006). The effect of hypoxia on lipid phosphate receptor and sphingosine kinase expression and mitogen-activated protein kinase signaling in human pulmonary smooth muscle cells. Prostaglandins & Other Lipid Mediators, 79(3–4), 278–286.

    Article  CAS  Google Scholar 

  43. Ader, I., Brizuela, L., Bouquerel, P., Malavaud, B., & Cuvillier, O. (2008). Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells. Cancer Research, 68(20), 8635–8642.

    Article  PubMed  CAS  Google Scholar 

  44. Ader, I., Malavaud, B., & Cuvillier, O. (2009). When the sphingosine kinase 1/sphingosine 1-phosphate pathway meets hypoxia signaling: new targets for cancer therapy. Cancer Research, 69(9), 3723–3726.

    Article  PubMed  CAS  Google Scholar 

  45. Anelli, V., Gault, C. R., Cheng, A. B., & Obeid, L. M. (2008). Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. Journal of Biological Chemistry, 283(6), 3365–3375.

    Article  PubMed  CAS  Google Scholar 

  46. Michaud, M. D., Robitaille, G. A., Gratton, J. P., & Richard, D. E. (2009). Sphingosine-1-phosphate: a novel nonhypoxic activator of hypoxia-inducible factor-1 in vascular cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(6), 902–908.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth V. Honn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamoorthy, S., Honn, K.V. Eicosanoids and other lipid mediators and the tumor hypoxic microenvironment. Cancer Metastasis Rev 30, 613–618 (2011). https://doi.org/10.1007/s10555-011-9309-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9309-9

Keywords

Navigation