Skip to main content

Advertisement

Log in

Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

This article reviews the current knowledge and experimental research about the mechanisms by which fatty acids and their derivatives control specific gene expression involved during carcinogenesis. Changes in dietary fatty acids, specifically the polyunsaturated fatty acids of the ω-3 and ω-6 families and some derived eicosanoids from lipoxygenases, cyclooxygenases, and cytochrome P-450, seem to control the activity of transcription factor families involved in cancer cell proliferation or cell death. Their regulation may be carried out either through direct binding to DNA as peroxisome proliferator-activated receptors or via modulation in an indirect manner of signaling pathway molecules (e.g., protein kinase C) and other transcription factors (nuclear factor kappa B and sterol regulatory element binding protein). Knowledge of the mechanisms by which fatty acids control specific gene expression may identify important risk factors for cancer and provide insight into the development of new therapeutic strategies for a better management of whole body lipid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Calderón, R. O., & Eynard, A. R. (2000). Fatty acids specifically related to the anisotropic properties of plasma membrane from rat urothelium. Biochimica et Biophysica Acta, 1483(1), 174–184.

    PubMed  Google Scholar 

  2. Abumrad, N., Coburn, C., & Ibrahimi, A. (1999). Membrane proteins implicated in long-chain fatty acid uptake by mammalian cells: CD36, FATP and FABPm. Biochimica et Biophys ica Acta, 1441(1), 4–13.

    CAS  Google Scholar 

  3. Ehehalt, R., Sparla, R., Hasan Kulaksiz, H., Herrmann, T., Füllekrug, J., & Stremmel, W. (2008). Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts). BMC Cell Biology, 9, 45.

    PubMed  Google Scholar 

  4. Calder, P. C., & Budge, G. C. (2004). Fatty acids. In A. Nicolaou & G. Kokotos (Eds.), Bioactive lipids (pp. 1–36). England: The Oil Press.

    Google Scholar 

  5. Das, U. N. (2006). Essential fatty acids: biochemistry, physiology and pathology. Biotechnology Journal, 4, 420–439.

    Google Scholar 

  6. Eynard, A. R. (1996). Role of dietary polyunsaturated fatty acids (PUFA) on tumorigenesis. Cancer Journal, 9(3), 142–144.

    CAS  Google Scholar 

  7. Qiu, X. (2003). Biosynthesis of docosahexaenoic acid (DHA, 22:6–4, 7,10,13,16,19): two distinct pathways. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68(2), 181–186.

    PubMed  CAS  Google Scholar 

  8. Martinez, M., Ichaso, N., Setien, F., Durany, N., Qiu, X., & Roesler, W. (2010). The Δ4-desaturation pathway for DHA biosynthesis is operative in the human species: differences between normal controls and children with the Zellweger syndrome. Lipids in Health and Disease, 9, 98.

    PubMed  Google Scholar 

  9. Li, Y., Monroig, O., Zhang, L., Wang, S., Zheng, X., Dick, J. R., et al. (2010). Vertebrate fatty acyl desaturase with Δ4 activity. Proceedings of the National Academy of Sciences of the United States of America, 107(39), 16840–16845.

    PubMed  CAS  Google Scholar 

  10. Das, U. N. (2008). Can essential fatty acids reduce the burden of disease(s)? Lipids in Health and Disease, 7, 19.

    PubMed  Google Scholar 

  11. Lundbæk, J. A., Collingwood, S. A., Ingolfsson, H. I., Kapoor, R., & Andersen, O. S. (2010). Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. Journal of the Royal Society, Interface, 7(44), 373–395.

    PubMed  Google Scholar 

  12. Das, U. N. (2010). Essential fatty acids: biochemistry and physiology. In U. N. DAs (Ed.), Metabolic syndrome pathophysiology: the role of essential fatty acids (pp. 181–200). California: Wiley-Blackwell.

    Google Scholar 

  13. Calder, P. C. (2006). Polyunsaturated fatty acids and inflammation. Prostaglandins Leukotrienes and Essential Fatty Acids, 75(3), 197–202.

    CAS  Google Scholar 

  14. Arnold, C., Konkel, A., Fisher, R., & Schunck, W.-H. (2010). Cytochrome p450-dependent metabolism of ω-6 and ω-3 long-chain polyunsaturated fatty acids. Pharmacological Reports, 62(3), 536–547.

    PubMed  CAS  Google Scholar 

  15. Weaver, K. L., Ivester, P., Seeds, M., Case, L. D., Arm, J. P., & Chilton, F. H. (2009). Effect of dietary fatty acids on inflammatory gene expression in healthy humans. Journal of Biological Chemistry, 284(23), 15400–15407.

    PubMed  CAS  Google Scholar 

  16. Murphy, M. G. (1990). Dietary fatty acids and membrane protein function. The Journal of Nutritional Biochemistry, 1(2), 68–79.

    PubMed  CAS  Google Scholar 

  17. Gurr, M. I., Harwood, J. L., & Frayn, K. N. (2002). Lipid biochemistry: an introduction. Oxford: Blackwell Science.

    Google Scholar 

  18. Calder, P. C., & Yaqoob, P. (2007). Lipid rafts composition, characterization and controversies. Journal of Nutrition, 137(3), 545–547.

    PubMed  Google Scholar 

  19. Pike, L. J. (2003). Lipid rafts: bringing order to chaos. Journal of Lipid Research, 44(4), 655–667.

    PubMed  CAS  Google Scholar 

  20. Brash, A. R. (2001). Arachidonic acid as bioactive molecule. The Journal of Clinical Investigation, 107(11), 1339–1345.

    PubMed  CAS  Google Scholar 

  21. Lands, W. E. (2000). Stories about acyl chains. Biochimica et Biohysica Acta, 1483(1), 1–14.

    CAS  Google Scholar 

  22. Chilton, F. H., Fontech, A. N., Surette, M. E., Triggiani, M., & Winkler, J. D. (1996). Control of arachidonic levels within inflammatory cells. Biochim Biophys Acta, 1299(1), 1–15.

    PubMed  Google Scholar 

  23. Nebert, D. W., & Russell, D. W. (2002). Clinical importance of the cytochromes P450. Lancet, 360(9340), 1155–1162.

    PubMed  CAS  Google Scholar 

  24. Murakami, M. (2011). Mediators in life sciences. Experimental Animals, 60, 7–20.

    PubMed  CAS  Google Scholar 

  25. Wang, D., & Du Bois, R. N. (2010). Eicosanoids and cancer. Nature Reviews Cancer, 10, 181–193.

    PubMed  CAS  Google Scholar 

  26. Panigrahy, D., Kaipainen, A., Greene, E. R., & Huang, S. (2010). Cytochrome P450-derived eicosanoids: the neglected pathway in cancer. Cancer Metastasis Reviews, 29(4), 723–735.

    PubMed  CAS  Google Scholar 

  27. Serhan, C. N., Chiang, N., & Van Dyke, T. E. (2008). Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nature Reviews Immunology, 8(5), 349–361.

    PubMed  CAS  Google Scholar 

  28. Serhan, C. N., Gotlinger, K., Hong, S., & Arita, M. (2004). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: an overview of their protective roles in catabasis. Prostaglandins and Other Lipid Mediators, 73(3–4), 155–172.

    PubMed  CAS  Google Scholar 

  29. Di Marzo, V. (2009). The endocannabinoid system: its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation. Pharmacological Research, 60(2), 77–84.

    PubMed  Google Scholar 

  30. Liu, J., Wang, L., Harvey-White, J., Osei-Hyiaman, D., et al. (2006). A biosynthetic pathway for anandamide. Proceedings of the National Academy of Sciences of the United States of America, 103(36), 13345–13350.

    PubMed  CAS  Google Scholar 

  31. Pasqualini, M. E., Berra, M. A., Yurawecz, M. P., Repossi, G., & Eynard, A. R. (2008). Dietary manipulation of precursor PUFAs modulates eicosanoid and endocanabinoid synthesis: a potential tool to control tumor development. Current Nutrition and Food Science, 4, 161–175.

    CAS  Google Scholar 

  32. Das, U. N., Repossi, G., Dain, A., & Eynard, A. R. (2011). Is insulin resistance a disorder of the brain? Frontiers in Biosciences: A Journal and Virtual Library, 1(16), 1–12.

    Google Scholar 

  33. Hwang, D. H. (1982). Characteristics of the formation of the platelet lipoxygenase product from endogenous arachidonic acid. Lipids, 17(12), 845–847.

    PubMed  CAS  Google Scholar 

  34. Eynard, A. R., Galli, G., Tremoli, E., Maderna, P., Magni, F., & Paoletti, R. (1986). Aspirin inhibits platelet 12-hydroxy-eicosatetraenoic acid formation. The Journal of Laboratory and Clinical Medicine, 107(1), 73–78.

    PubMed  CAS  Google Scholar 

  35. Brash, A. R., & Ingram, C. D. (1986). Lipoxygenase metabolism of endogenous arachidonate in leukocytes: GC-MS analyses of incubations in H2180 Buffers. Prostaglandins, Leukotrienes, and Medicine, 23(2–3), 149–154.

    PubMed  CAS  Google Scholar 

  36. Gottlicher, M., Widmark, E., Li, Q., & Gustafsson, J. A. (1992). Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America, 89(10), 4653–4657.

    PubMed  CAS  Google Scholar 

  37. Issemann, I., & Green, S. (1990). Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature, 347(6294), 645–650.

    PubMed  CAS  Google Scholar 

  38. Keller, H., Dreyer, C., Medin, J., Mahfoudi, A., Ozato, K., & Wahli, W. (1993). Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 90(6), 2160–2164.

    PubMed  CAS  Google Scholar 

  39. Kliewer, S. A., Sundseth, S. S., Jones, S. A., Brown, P. J., Wisely, G. B., Koble, C. S., et al. (1997). Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proceedings of the National Academy of Sciences of the United States of America, 94(9), 4318–4323.

    PubMed  CAS  Google Scholar 

  40. Xu, H. E., Lambert, M. H., Montana, V. G., Parks, D. J., Blanchard, S. G., Brown, P. J., et al. (1999). Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Molecular Cell, 3(3), 397–403.

    PubMed  CAS  Google Scholar 

  41. Zoete, V., Grosdidier, A., & Michielin, O. (2007). Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators. Biochimica et Biophysica Acta, 1771(8), 915–925.

    PubMed  CAS  Google Scholar 

  42. Nielsen, R., Pedersen, T. A., Hagenbeek, D., Moulos, P., Siersbaek, R., Megens, E., et al. (2008). Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes & Development, 22, 2953–2967.

    CAS  Google Scholar 

  43. Ijpenberg, A., Jeannin, E., Wahli, W., & Desvergne, B. (1997). Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. The Journal of Biological Chemistry, 272, 20108–20117.

    PubMed  CAS  Google Scholar 

  44. Willson, T. M., Brown, P. J., Sternbach, D. D., & Henke, B. R. (2000). The PPARs: from orphan receptors to drug discovery. Journal of Medicinal Chemistry, 43, 527–550.

    PubMed  CAS  Google Scholar 

  45. Nagy, L., & Schwabe, J. W. (2004). Mechanism of the nuclear receptor molecular switch. Trends in Biochemical Sciences, 29, 317–324.

    PubMed  CAS  Google Scholar 

  46. Chawla, A., Barak, Y., Nagy, L., Liao, D., Tontonoz, P., & Evans, R. M. (2001). PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Medicine, 7, 48–52.

    PubMed  CAS  Google Scholar 

  47. Yin, Y., Russell, R. G., Dettin, L. E., Bai, R., Wei, Z. L., Kozikowski, A. P., et al. (2005). Peroxisome proliferator-activated receptor delta and gamma agonists differentially alter tumor differentiation and progression during mammary carcinogenesis. Cancer Research, 65, 3950–3957.

    PubMed  CAS  Google Scholar 

  48. Stephen, R. L., Gustafsson, M. C., Jarvis, M., Tatoud, R., Marshall, B. R., Knight, D., et al. (2004). Activation of peroxisome proliferator-activated receptor delta stimulates the proliferation of human breast and prostate cancer cell lines. Cancer Research, 64, 3162–3170.

    PubMed  CAS  Google Scholar 

  49. Glinghammar, B., Skogsberg, J., Hamsten, A., & Ehrenborg, E. (2003). PPARdelta activation induces COX-2 gene expression and cell proliferation in human hepatocellular carcinoma cells. Biochemica et Biophysica Research Communication, 308, 361–368.

    CAS  Google Scholar 

  50. Zhai, J. J., Liu, Z. L., Li, J. M., Chen, J. P., Jiang, L., Wang, D. M., et al. (2010). Different mechanisms of cis-9, trans-11- and trans-10, cis-12- conjugated linoleic acid affecting lipid metabolism in 3T3–L1 cells. The Journal of Nutrition Biochemistry, 21(11), 1099–1105.

    CAS  Google Scholar 

  51. Le May, C., Pineau, T., Bigot, K., Kohl, C., Girard, J., & Pegorier, J. P. (2002). Reduced hepatic fatty acid oxidation in fasting PPAR alpha-null mice is due to impaired mitochondrial hydroxymethylglutaryl-CoA synthase gene expression. FEBS Letters, 475(3), 163–166.

    Google Scholar 

  52. Ide, T., Kobayashi, H., Ashakumary, L., et al. (2000). Comparative effects of perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochimia et Biophysica Acta, 1485(1), 23–35.

    CAS  Google Scholar 

  53. Grommes, C., Landreth, G. E., & Heneka, M. T. (2004). Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. The Lancet Oncology, 5(7), 119–129.

    Google Scholar 

  54. Chu, R., Lin, Y., Rao, M. S., & Reddy, J. K. (1996). Cloning and identification of rat deoxyuridine triphosphatase as an inhibitor of peroxisome proliferator-activated receptor alpha. Journal of Biolical Chemistry, 271, 27670–27676.

    CAS  Google Scholar 

  55. Reddy, J. K., & Hashimoto, T. (2001). Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annual Review of Nutrition, 21, 193–230.

    PubMed  CAS  Google Scholar 

  56. Peters, J. M., Cheung, C., & Gonzalez, F. J. (2005). Peroxisome proliferator-activated receptor-alpha and liver cancer: where do we stand? Journal of Molecular Medicine, 83, 774–785.

    PubMed  CAS  Google Scholar 

  57. Narala, V. R., Adapala, R. K., Suresh, M. V., Brock, T. G., Peters-Golden, M., & Reddy, R. C. (2010). Leukotriene B4 is physiologically relevant endogenous peroxisome proliferators activated receptor-alpha agonist. The Journal of Biological Chemistry, 285(29), 22067–22074.

    PubMed  CAS  Google Scholar 

  58. Eynard, A. R., Tremoli, E., Caruso, D., Magni, F., Sirtori, C. R., & Galli, G. (1986). Platelet formation of 12-hydroxyeicosatetraenoic acid and thromboxane B2 is increased in type IIA hypercholesterolemic subjects. Atherosclerosis, 60(1), 61–66.

    PubMed  CAS  Google Scholar 

  59. Fields, A. P., & Murray, N. R. (2008). Protein kinase C isozymes as therapeuthic targets for treatment of human cancers. Advance in Enzyme Regulation, 48, 166–178.

    CAS  Google Scholar 

  60. Rozengurt, E. (2011). Protein kinase D signaling: multiple biological functions in health and disease. Physiology (Bethesda), 26(1), 23–33.

    CAS  Google Scholar 

  61. Zhao, Y., Joshi-Barve, S., Barve, S., & Chen, L. H. (2004). Eicosapentaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappaB activation. Journal of the American College of Nutrition, 23, 71–78.

    PubMed  CAS  Google Scholar 

  62. Novak, T. E., Babcock, T. A., Jho, D. H., Helton, W. S., & Espat, N. J. (2003). NF-kappa B inhibition by omega-3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription. America Journal of Physiology: Lung Cellular and Molecular Physiology, 284, L84–L89.

    CAS  Google Scholar 

  63. Lee, J. Y., & Hwang, D. H. (2006). The modulation of inflammatory gene expression by lipids: mediation through toll-like receptors. Molecular Cells, 21, 174–185.

    CAS  Google Scholar 

  64. Munford, R. S., & Hall, C. L. (1986). Detoxification of bacterial lipopolysaccharides (endotoxins) by a human neutrophil enzyme. Science, 234, 203–205.

    PubMed  CAS  Google Scholar 

  65. Lee, J. Y., Sohn, K. H., Rhee, S. H., & Hwang, D. (2001). Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. Journal of Biolical Chemistry, 276, 16683–166689.

    CAS  Google Scholar 

  66. Lee, J. Y., Plakidas, A., Lee, W. H., Heikkinen, A., Chanmugam, P., Bray, G., et al. (2003). Differential modulation of toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. Journal of Lipid Research, 44, 479–486.

    PubMed  CAS  Google Scholar 

  67. Lee, HK., Dunzendorfer, S., Soldau, K., Tobias, PS. Double-stranded RNA-mediated TLR3 activation is enhanced by CD14. Immunity, 24, 153–163.

  68. Nakahira, K., Kim, H. P., Geng, X. H., Nakao, A., Wang, X., Murase, N., et al. (2006). Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. The Journal of Experimental Medicine, 203, 2377–2389.

    PubMed  CAS  Google Scholar 

  69. Wong, S. W., Kwon, M. J., Choi, A. M., Kim, H. P., Nakahira, K., & Hwang, D. H. (2009). Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. The Journal of Biological Chemistry, 284, 27384–27392.

    PubMed  CAS  Google Scholar 

  70. Horton, J. D., Shah, N. A., Warrington, J. A., Anderson, N. N., Park, S. W., Brown, M. S., et al. (2003). Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proceedings of the National Academy of Sciences of the United States of America, 100, 12027–12032.

    PubMed  CAS  Google Scholar 

  71. Hua, X., Wu, J., Goldstein, J. L., Brown, M. S., & Hobbs, H. H. (1995). Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13. Genomics, 25, 667–673.

    PubMed  CAS  Google Scholar 

  72. Yokoyama, C., Wang, X., Briggs, M. R., Admon, A., Wu, J., Hua, X., et al. (1993). SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell, 75, 187–197.

    PubMed  CAS  Google Scholar 

  73. Shimomura, I., Bashmakov, Y., Shimano, H., Horton, J. D., Goldstein, J. L., & Brown, M. S. (1997). Cholesterol feeding reduces nuclear forms of sterol regulatory element binding proteins in hamster liver. Proceedings of the National Academy of Sciences of the United States of America, 94, 12354–12359.

    PubMed  CAS  Google Scholar 

  74. Shimomura, I., Shimano, H., Horton, J. D., Goldstein, J. L., & Brown, M. S. (1997). Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. The Journal of Clinical Investigation, 99, 838–845.

    PubMed  CAS  Google Scholar 

  75. Tontonoz, P., Kim, J. B., Graves, R. A., & Spiegelman, B. M. (1993). ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Molecular Cell Biology, 13, 4753–4759.

    CAS  Google Scholar 

  76. Magana, M. M., & Osborne, T. F. (1996). Two tandem binding sites for sterol regulatory element binding proteins are required for sterol regulation of fatty-acid synthase promoter. The Journal of Biological Chemistry, 271, 32689–32694.

    PubMed  CAS  Google Scholar 

  77. Rawson, R. B., DeBose-Boyd, R., Goldstein, J. L., & Brown, M. S. (1999). Failure to cleave sterol regulatory element-binding proteins (SREBPs) causes cholesterol auxotrophy in Chinese hamster ovary cells with genetic absence of SREBP cleavage-activating protein. The Journal of Biological Chemistry, 274, 28549–28556.

    PubMed  CAS  Google Scholar 

  78. Matsuda, M., Korn, B. S., Hammer, R. E., Moon, Y. A., Komuro, R., Horton, J. D., et al. (2001). SREBP cleavage-activating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes & Development, 15, 1206–1216.

    CAS  Google Scholar 

  79. Espenshade, P. J., Cheng, D., Goldstein, J. L., & Brown, M. S. (1999). Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. The Journal of Biological Chemistry, 274, 22795–22804.

    PubMed  CAS  Google Scholar 

  80. Yang, T., Espenshade, P. J., Wright, M. E., Yabe, D., Gong, Y., Aebersold, R., et al. (2002). Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell, 110, 489–500.

    PubMed  CAS  Google Scholar 

  81. Radhakrishnan, A., Sun, L. P., Kwon, H. J., Brown, M. S., & Goldstein, J. L. (2004). Direct binding of cholesterol to the purified membrane region of SCAP: mechanism for a sterol-sensing domain. Molecular Cell, 15, 259–268.

    PubMed  CAS  Google Scholar 

  82. Gong, Y., Lee, J. N., Lee, P. C., Goldstein, J. L., Brown, M. S., & Ye, J. (2006). Sterol-regulated ubiquitination and degradation of Insig-1 creates a convergent mechanism for feedback control of cholesterol synthesis and uptake. Cell Metabolism, 3, 15–24.

    PubMed  CAS  Google Scholar 

  83. Gurkan, C., Stagg, S. M., Lapointe, P., & Balch, W. E. (2006). The COPII cage: unifying principles of vesicle coat assembly. Nature Review. Molecular Cell Biology, 7, 727–738.

    Google Scholar 

  84. Nohturfft, A., Yabe, D., Goldstein, J. L., Brown, M. S., & Espenshade, P. J. (2000). Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell, 102, 315–323.

    PubMed  CAS  Google Scholar 

  85. Sato, R., Yang, J., Wang, X., Evans, M. J., Ho, Y. K., Goldstein, J. L., et al. (2004). Assignment of the membrane attachment, DNA binding, and transcriptional activation domains of sterol regulatory element-binding protein-1 (SREBP-1). The Journal of Biological Chemistry, 269, 17267–17273.

    Google Scholar 

  86. Shimano, H., Horton, J. D., Shimomura, I., Hammer, R. E., Brown, M. S., & Goldstein, J. L. (1997). Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. The Journal of Clinical Investigation, 99, 846–854.

    PubMed  CAS  Google Scholar 

  87. Lee, Y. S., Sohn, D. H., Han, D., Lee, H. W., Seong, R. H., & Kim, J. B. (2007). Chromatin remodeling complex interacts with ADD1/SREBP1c to mediate insulin-dependent regulation of gene expression. Molecular Cell Biology, 27, 438–452.

    CAS  Google Scholar 

  88. Moreno, J. J. (2009). New aspects of the role of hydroxyeicosatetraenoic acids in cell growth and cancer development. Biochemical Pharmacological, 77(1), 1–10.

    CAS  Google Scholar 

  89. Tang, D. G., La, E., Kern, J., & Kehrer, J. P. (2002). Fatty acid oxidation and signaling in apoptosis. Biological Chemistry, 383(3–4), 425–442.

    PubMed  CAS  Google Scholar 

  90. Szekeres, C. K., Trikha, M., & Honn, K. V. (2002). 12(S)-HETE, pleiotropic functions, multiple signaling pathways. Advances in Experimental Medicine and Biology, 507, 509–515.

    PubMed  CAS  Google Scholar 

  91. Zeng, Z. Z., Yellaturu, C. R., Neeli, I., & Rao, G. N. (2002). 5 (S)-Hydroxyeicosatetraenoic acid stimulates DNA synthesis in human microvascular endothelial cells via activation of Jak/STAT and phophatidilylinositol 3-kinase/AKT signaling, leading to induction of expression of basic fibroblast growth factor-2. The Journal of Biological Chemistry, 277(43), 41213–41219.

    PubMed  CAS  Google Scholar 

  92. Nieves, D., & Moreno, J. J. (2008). Enantioselective effect of 12 (S)-hydroxyeicosatetraenoic acid on 3T6 fibroblast growth through ERK ½ and p38 MAPK pathways and cyclin D1 activation. Biochemical Pharmacology, 76(5), 654–661.

    PubMed  CAS  Google Scholar 

  93. Muthalif, M. M., Benter, I. F., Karzoun, N., et al. (1998). 20-Hydroxyeicosatetraenoic acid mediates calcium/calmodulin -dependent protein kinase II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America, 95(21), 12701–12706.

    PubMed  CAS  Google Scholar 

  94. Wei, J., Yan, W., Li, X., Chang, W. C., & Tai, H. H. (2007). Activation of thromboxane receptor-α induces expression of cyclooxygenase-2 through multiple signaling pathways in A549 human lung adenocarcinoma cells. Biochemical Pharmacology, 74(5), 787–800.

    PubMed  CAS  Google Scholar 

  95. Nie, D., Guo, Y., Yang, D., Tang, Y., et al. (2008). Thromboxane A2 receptors in prostate carcinoma: expression and its role in regulating cell motility via small GTPase Rho. Cancer Research, 68(1), 115–121.

    PubMed  CAS  Google Scholar 

  96. Liu, J. F., Fong, Y. C., Chang, C. S., Huang, C. Y., Chen, H. T., Yang, W. H., et al. (2010). Cyclooxygenase-2 enhances alpha2beta1 integrin expression and cell migration via EP1 dependent signaling pathway in human chondrosarcoma cells. Molecular Cancer, 9, 43–57.

    PubMed  Google Scholar 

  97. Kravchenko, I. V., Furalyov, V. A., Lisitsina, E. S., & Popov, V. O. (2011). Stimulation of mechano-growth factor expression by second messengers. Archives of Biochemistry and Biophysics, 507(2), 323–331.

    PubMed  CAS  Google Scholar 

  98. Fujino, H., Toyomura, K., Chen, X. B., Regan, J. W., & Murayama, T. (2011). Prostaglandin E2 regulates cellular migration via induction of vascular endothelial growth factor receptor-1 in HCA-7 human colon cancer cells. Biochemical Pharmacological, 81(3), 379–387.

    CAS  Google Scholar 

  99. Yang, S. F., Chen, M. K., Hsieh, Y. S., et al. (2010). Prostaglandin E2/EP1 signaling pathway enhances intercellular adhesion molecule 1 (ICAM-1) expression and cell motility in oral cancer cells. The Journal of Biological Chemistry, 285(39), 29808–29816.

    PubMed  CAS  Google Scholar 

  100. Ma, X. M., Yu, H., & Huai, N. (2009). Peroxisome proliferator-activated receptor-gamma is essential in the pathogenesis of gastric carcinoma. World Journal of Gastroenterology, 15(31), 3874–3883.

    PubMed  CAS  Google Scholar 

  101. Konkel, A., & Schunck, W. H. (2011). Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acid. Biochimic et Biophysica Acta, 1814(1), 210–222.

    CAS  Google Scholar 

  102. Ishizuka, T., Cheng, J., Singh, H., Vitto, M. D., Manthati, V. L., et al. (2008). 20-Hydroxyeicosatetraenoic acid stimulates nuclearfactor-kappaB activation and the production of inflammatory cytokines in human endothelial cells. The Journal of Pharmacology and Experimental Therapeutics, 324(1), 103–110.

    PubMed  CAS  Google Scholar 

  103. Yu, W., Chen, L., Yang, Y. Q., et al. (2011). Cytochrome P450 ω-hydroxylase promotes angiogenesis and metastasis by upregulation of VEGF and MMP-9 in non-small cell lung cancer. Cancer Chemotherapy Pharmacology, 68, 619–629.

    CAS  Google Scholar 

  104. Flavin, R., Zadra, G., & Loda, M. (2011). Metabolic alterations and target therapies in prostate cancer. The Journal of Pathology, 223(2), 283–294.

    PubMed  CAS  Google Scholar 

  105. Grammatikos, S., Harvey, M., Subbaiah, P. V., Victor, T., & Miller, W. (1995). Loos of fatty acid Δ-6 desaturating ability in human mammary epithelial cells that express an activated c-Ha-ras-oncogen. International Journal of Oncology, 6(5), 1039–1046.

    PubMed  CAS  Google Scholar 

  106. Sinclair, HM. (1990). In: Horrobin DF (Ed.), And History of essential fatty acids. In Omega-6 essential fatty acids: pathophysiology and roles in clinical medicine: Alan R Liss, Inc.pp, 1–20.

  107. Hilvo, M., Denkert, C., Lehtinen, L., Muller, B., et al. (2011). Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Research., 71, 3236–3245.

    PubMed  CAS  Google Scholar 

  108. Fuereder, T., Hoeflmayer, D., Jaeger-Lansky, A., Rasin-Streden, D., et al. (2011). Sphingosine kinase 1 is a relevant molecular target in gastric cancer. Anticancer Drugs, 22(3), 245–252.

    PubMed  CAS  Google Scholar 

  109. Duplus, E., Glorian, M., & Forest, C. (2000). Fatty acid regulation of gene transcription. The Journal of Biological Chemistry, 275(40), 30749–30752.

    PubMed  CAS  Google Scholar 

  110. Huang, Z. H., Gu, D., & Mazzone, T. (2004). Oleic acid modulates the post-translational glycosylation of macrophage ApoE to increase its secretion. The Journal of Biological Chemistry, 279(28), 29195–29201.

    PubMed  CAS  Google Scholar 

  111. Pegorier, J. P., Le May, C., & Girard, J. (2004). Control of gene expression by fatty acids. The Journal of Nutrition, 1348(9), 24445S–24495S.

    Google Scholar 

  112. Lu, X., Yu, H., Ma, Q., Shen, S., & Das, U. N. (2010). Linoleic acid suppresses colorectal cancer cell growth by inducing oxidant stress and mitochondrial dysfunction. Lipids in Health and Disease, 9, 106–117.

    PubMed  Google Scholar 

  113. Notarnicola, M., Messa, C., Refolo, M. G., Tutito, V., et al. (2011). Polyunsaturated fatty acids reduce fatty acid synthase and hydroxy-methyl-glutaryl CoA-reductase gene expression and promote apoptosis in HepG2 cell line. Lipids in Health and Disease, 10, 10.

    PubMed  CAS  Google Scholar 

  114. Jiang, W. G., Bryce, R. P., & Mansel, R. E. (1997). Gamma linoleic acid regulates gap junction communication in endothelial cells and their interaction with tumor cells. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 56(4), 307–316.

    PubMed  CAS  Google Scholar 

  115. Eynard, A. R., Jiang, W. G., & Mansel, R. E. (1998). Eicosatrienoic acid (20:3 n-9) inhibits the expression of E-cadherin and desmoglein in human squamous cell carcinoma in vitro. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 59(6), 371–377.

    PubMed  CAS  Google Scholar 

  116. Pasqualini, M. E., Heyd, V. L., Manzo, P., & Eynard, A. R. (2003). Association between E-cadherin expression by human colon, bladder and breast cancer cells and the 13-HODE: 15-HETE ratio. A possible role of their metastatic potential. Prostaglandins Leukotrienes and Essential Fatty Acids, 68(1), 9–16.

    CAS  Google Scholar 

  117. Brown, M. D., Hart, C., Gazi, E., Gardner, P., et al. (2009). Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancer. British Journal of Cancer, 102(2), 403–413.

    PubMed  Google Scholar 

  118. Scheim, D. E. (2009). Cytotoxicity of unsaturated fatty acids in fresh human tumor explants: concentration thresholds and implications for clinical efficacy. Lipids in Health and Disease, 8, 54–65.

    PubMed  Google Scholar 

  119. Das, U. N. (2007). γ-linoleic acid therapy of human glioma- a review of in vitro, in vivo and clinical studies. Medical Science Monitor, 13(7), RA119–RA131.

    PubMed  CAS  Google Scholar 

  120. Monjazeb, A. M., High, K. P., Connoy, A., Hart, L. S., Koumenis, C., & Chilton, F. H. (2006). Arachidonic acid-induced gene expression in colon cancer cells. Carcinogenesis, 27(10), 1950–1960.

    PubMed  CAS  Google Scholar 

  121. Pasqualini, M. E., Berra, M. A., Calderón, R. O., et al. (2005). Dietary lipids modulate eicosanoid release and apoptosis of cells of a murine lung alveolar carcinoma. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 72(4), 235–240.

    PubMed  CAS  Google Scholar 

  122. Leaver, H. A., Wharton, S. B., Bell, H. S., Leaver-Yap, I. M., & Whittle, I. R. (2002). Highly unsaturated fatty acid induced tumour regression in glioma pharmacodynamics and bioavailability of gamma linolenic acid in an implantation glioma model: effects on tumour biomass, apoptosis and neuronal tissue histology. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 67(5), 283–292.

    PubMed  CAS  Google Scholar 

  123. Miyake, J. A., Benadiba, M., & Colquhoun, A. (2009). Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression. Lipids in Health and Disease, 17(8), 8.

    Google Scholar 

  124. Naidu, M. R., Das, U. N., & Kishan, A. (1992). Intratumoral gamma-linolenic acid therapy of human gliomas. Prostaglandins Leukotrienes and Essential Fatty Acids, 45(3), 181–184.

    CAS  Google Scholar 

  125. Das, U. N., Prasad, V. V., & Reddy, D. R. (1995). Local application of gamma-linolenic acid in the treatment of human gliomas. Cancer Letters, 94(2), 147–155.

    PubMed  CAS  Google Scholar 

  126. Smith, W. L., & Murphy, R. C. (2002). The eicosanoids: cyclooxygenase, lipoxygenase, and epoxygenase pathways. In D. E. Vance & J. E. Vance (Eds.), Biochemistry of lipids, lipoproteins and membranes (pp. 341–372). New York: Elsevier, Smith and Murphy.

    Google Scholar 

  127. Arnold, C., Markovic, M., Blossey, K., Wallukat, G., et al. (2010). Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of (omega)-3 fatty acids. The Journal of Biological Chemistry, 285(43), 32720–32733.

    PubMed  CAS  Google Scholar 

  128. Terano, T., Salmon, J. A., & Moncada, S. (1984). Biosynthesis and biological activity of leukotriene B5. Prostaglandins, 27(2), 217–232.

    PubMed  CAS  Google Scholar 

  129. Menéndez, J. A., Vázquez-Martín, A., Ropero, S., Colomer, R., & Lupu, R. (2006). HER2 (erbB-2)-targeted effects of the omega-3 polyunsaturated fatty acid, alpha-linolenic acid (ALA; 18:3n-3), in breast cancer cells: The “fat features” of the “Mediterranean diet” as an “anti-HER2 cocktail”. Clinical and Translocation Oncology, 8(11), 812–820.

    Google Scholar 

  130. Habermann, N., Schön, A., Lund, E. K., & Glei, M. (2010). Fish fatty acids alter markers of apoptosis in colorectal adenoma and adenocarcinoma cell lines but fish consumption has no impact on apoptosis-induction ex vivo. Apoptosis, 5(5), 621–630.

    Google Scholar 

  131. Siddiqui, R. A., Jenski, L. J., Neff, K., et al. (2001). Docosahexaenoic acid induces apoptosis in Jurkat cells by protein phosphatase mediated process. Biochimica et Biophysica Acta, 1499(3), 265–275.

    PubMed  CAS  Google Scholar 

  132. Altenburg, J. D., & Siddiqui, R. A. (2008). Omega-3 polyunsaturated fatty acids down-modulate CXCR4 expression and function in MDA-MB-231 breast cancer cells. Molecular Cancer Research, 7(17), 1013–1020.

    Google Scholar 

  133. Xia, S. H., Wang, J., & Kang, J. X. (2005). Decreased n-6/n-3 fatty acid ratio reduces the invasive potential of human lung cancer cells by downregulation of cell adhesion/invasion-related genes. Carcinogenesis, 26(4), 779–784.

    PubMed  CAS  Google Scholar 

  134. Espada, C. E., Berra, M. A., Martinez, M. J., Eynard, A. R., & Pasqualini, M. E. (2007). Effect of chia oil (Salvia hispanica) rich in ω-3 fatty acids on the eicosanoid release, apoptosis and t-lymphocyte tumor infiltration in a murine mammary gland adenocarcinoma. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 77(1), 21–28.

    PubMed  CAS  Google Scholar 

  135. Yam, D., Peled, A., Husza, M., & Shinitzky, M. (1997). Dietary fish oil suppresses tumor growth and metastasis of Lewis lung carcinoma in mice. Nutrition Biochemistry, 8, 619–622.

    CAS  Google Scholar 

  136. Larsson, S. C., Kumlin, M., Ingelman-Sunderg, M., & Wolk, A. (2004). Dietary long-chain n-3 fatty acids for prevention of cancer: a review of potential mechanisms. The American Journal of Clinical Nutrition, 79(6), 935–945.

    PubMed  CAS  Google Scholar 

  137. Bagga, D., Anders, H. J., & Glaspy, J. A. (2002). Long-chain n-3-to-n-6 polyunsaturated fatty acid ratios in breast adipose tissue from women with and without breast cancer. Nutrition and Cancer, 42(2), 180–185.

    PubMed  CAS  Google Scholar 

  138. Liang, B., Wang, S., Ye, Y. J., Yang, X. D., et al. (2008). Impact of postoperative omega-3 fatty acid-supplemented parenteral nutrition on clinical outcomes and immunomodulations in colorectal cancer patients. World Journal of Gastroenterology: WJG, 14(15), 2434–2439.

    PubMed  CAS  Google Scholar 

  139. Heyd, V. L., & Eynard, A. R. (2003). Effects of eicosatrienoic acid (20:3 n-9, Mead’s acid) on some promalignant-related properties of three human cancer cell lines. Prostaglandins & Other Lipids Mediators, 71(3–4), 177–188.

    CAS  Google Scholar 

  140. Eynard, A R., Jiang, W G., Mansel, R E. (1998). Eicosatrienoic acid (20:3 n-9) inhibits the expression of E-cadherin and desmoglein in human squamous cell carcinoma in vitro. Prostaglandins Leukotrienes and Essential Fatty Acids, 59(6), 371–377.

    CAS  Google Scholar 

  141. Soto-Guzman, A., Navarro-Tito, N., Castro-Sanchez, L., et al. (2010). Oleic acid promotes MMP-9 secretion and invasion in breast cancer cells. Clinical & Experimental Metastasis, 27(7), 505–515.

    CAS  Google Scholar 

  142. Navarro-Tito, N., Soto-Guzman, A., Castro-Sanchez, L., et al. (2010). Oleic acid promotes migration on MDA-MB-231 breast cancer cells through an arachidonic acid-dependent pathway. The International Journal of Biochemistry & Cell Biology, 42(2), 306–317.

    CAS  Google Scholar 

  143. Hess, D., Chisholm, J. W., & Igal, R. A. (2010). Inhibition of stearoylCoA desaturase activity blocks cell cycle progression and induces programmed cell death in lung cancer cells. PLoS One, 5(6), e11394.

    PubMed  Google Scholar 

  144. Comba, A., Maestri, D. M., Berra, M. A., et al. (2010). Effect of ω-3 and ω-9 fatty acid rich oils on lipoxygenases and cyclooxygenases enzymes and on the growth of a mammary adenocarcinoma model. Lipids in Health and Disease, 9, 112–119.

    PubMed  Google Scholar 

  145. Muñoz, S. E., Piegari, M., Guzmán, C. A., & Eynard, A. R. (1999). Differential effects of dietary Oenothera, Zizyphus mistol, and corn oils, and essential fatty acid deficiency on the progression of a murine mammary gland adenocarcinoma. Nutrition, 15(3), 208–212.

    PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Dr. Kimberly K. McGhee (PhD) for technical English revision. This work was supported by grants from Consejo Nacional de Investigaciones Cientìficas y Técnicas (CONICET-Argentina), Ministerio de Ciencias y tecnología de Córdoba (MINCYT-CBA) y Secretaria de Ciencia Y Tecnología de la Universidad Nacional de Còrdoba (SECYT-UNC). Also by the Mayo Clinic Pancreatic SPORE P50 CA102701, and Mayo Clinic Center for Cell Signaling in Gastroenterology P30 DK84567 to M.E.F.-Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marìa Eugenia Pasqualini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comba, A., Lin, YH., Eynard, A.R. et al. Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors. Cancer Metastasis Rev 30, 325–342 (2011). https://doi.org/10.1007/s10555-011-9308-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9308-x

Keywords

Navigation