Skip to main content

Advertisement

Log in

The cytochrome P450 pathway in angiogenesis and endothelial cell biology

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Long thought to be biologically important only as xenobiotic metabolizing enzymes, it is now clear that extrahepatic cytochrome P450 epoxygenases can utilize endogenous substrates such as arachidonic acid, linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid to generate bioactive lipid mediators. The epoxides thus generated can acutely affect vascular tone, and stimulate a spectrum of signaling pathways that affect growth-promoting kinase and transcription factor activity in vascular as well as cancer cells. Endogenous epoxide levels are largely controlled by the activity of the soluble epoxide hydrolase, and specific inhibitors of the enzyme as well as knockout mice are helping to determine the roles of these lipids in physiological and pathological angiogenesis. This review summarizes current knowledge on the aspects of the cytochrome P450/soluble epoxide hydrolase pathway related to vascular homeostasis and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fer, M., Dreano, Y., Lucas, D., Corcos, L., Salaun, J. P., Berthou, F., et al. (2008). Metabolism of eicosapentaenoic and docosahexaenoic acids by recombinant human cytochromes P450. Archives of Biochemistry and Biophysics, 471, 116–125.

    PubMed  CAS  Google Scholar 

  2. VanRollins, M., Baker, R. C., Sprecher, H. W., & Murphy, R. C. (1984). Oxidation of docosahexaenoic acid by rat liver microsomes. Journal of Biological Chemistry, 259, 5776–5783.

    PubMed  CAS  Google Scholar 

  3. Barbosa-Sicard, E., Markovic, M., Honeck, H., Christ, B., Muller, D. N., & Schunck, W. H. (2005). Eicosapentaenoic acid metabolism by cytochrome P450 enzymes of the CYP2C subfamily. Biochemical and Biophysical Research Communications, 329, 1275–1281.

    PubMed  CAS  Google Scholar 

  4. Konkel, A., & Schunck, W. H. (2011). Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics, 1814, 210–222.

    CAS  Google Scholar 

  5. Lauterbach, B., Barbosa-Sicard, E., Wang, M. H., Honeck, H., Kargel, E., Theuer, J., et al. (2002). Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators. Hypertension, 39, 609–613.

    PubMed  CAS  Google Scholar 

  6. Ye, D., Zhang, D., Oltman, C., Dellsperger, K., Lee, H. C., & VanRollins, M. (2002). Cytochrome P450 epoxygenase metabolites of docosahexaenoate potently dilate coronary arterioles by activating large-conductance calcium-activated potassium channels. Journal of Pharmacology and Experimental Therapeutics, 303, 768–776.

    PubMed  CAS  Google Scholar 

  7. Morin, C., Sirois, M., Echave, V., Rizcallah, E., & Rousseau, E. (2009). Relaxing effects of 17(18)-EpETE on arterial and airway smooth muscles in human lung. American Journal of Physiology. Lung Cellular and Molecular Physiology, 296, L130–L139.

    PubMed  CAS  Google Scholar 

  8. Liclican, E. L., & Gronert, K. (2010). Molecular circuits of resolution in the eye. The Scientific World Journal, 10, 1029–1047.

    CAS  Google Scholar 

  9. Tian, H., Lu, Y., Shah, S. P., & Hong, S. (2010). Novel 14S,21-dihydroxy-docosahexaenoic acid rescues wound healing and associated angiogenesis impaired by acute ethanol intoxication/exposure. Journal of Cellular Biochemistry, 111, 266–273.

    PubMed  CAS  Google Scholar 

  10. McLennan, P., Howe, P., Abeywardena, M., Muggli, R., Raederstorff, D., Mano, M., et al. (1996). The cardiovascular protective role of docosahexaenoic acid. European Journal of Pharmacology, 300, 83–89.

    PubMed  CAS  Google Scholar 

  11. Hashimoto, M., Shinozuka, K., Gamoh, S., Tanabe, Y., Hossain, M. S., Kwon, Y. M., et al. (1999). The hypotensive effect of docosahexaenoic acid is associated with the enhanced release of ATP from the caudal artery of aged rats. Journal of Nutrition, 129, 70–76.

    PubMed  CAS  Google Scholar 

  12. Frenoux, J. M., Prost, E. D., Belleville, J. L., & Prost, J. L. (2001). A polyunsaturated fatty acid diet lowers blood pressure and improves antioxidant status in spontaneously hypertensive rats. Journal of Nutrition, 131, 39–45.

    PubMed  CAS  Google Scholar 

  13. Oliw, E. H., Bylund, J., & Herman, C. (1996). Bisallylic hydroxylation and epoxidation of polyunsaturated fatty acids by cytochrome P450. Lipids, 31, 1003–1021.

    PubMed  CAS  Google Scholar 

  14. Bylund, J., Kunz, T., Valmsen, K., & Oliw, E. H. (1998). Cytochromes P450 with bisallylic hydroxylation activity on arachidonic and linoleic acids studied with human recombinant enzymes and with human and rat liver microsomes. Journal of Pharmacology and Experimental Therapeutics, 284, 51–60.

    PubMed  CAS  Google Scholar 

  15. Bylund, J., Ericsson, J., & Oliw, E. H. (1998). Analysis of cytochrome P450 metabolites of arachidonic and linoleic acids by liquid chromatography–mass spectrometry with ion trap MS. Analytical Biochemistry, 265, 55–68.

    PubMed  CAS  Google Scholar 

  16. Campbell, W. B., & Fleming, I. (2010). Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflügers Archiv - European Journal of Pharmacology, 459, 881–895.

    CAS  Google Scholar 

  17. Beetham, J. K., Tian, T., & Hammock, B. D. (1993). cDNA cloning and expression of a soluble epoxide hydrolase from human liver. Archives of Biochemistry and Biophysics, 305, 197–201.

    PubMed  CAS  Google Scholar 

  18. Newman, J. W., Morisseau, C., Harris, T. R., & Hammock, B. D. (2003). The soluble epoxide hydrolase encoded by EPXH2 is a bifunctional enzyme with novel lipid phosphate phosphatase activity. Proceedings of the National Academy of Sciences of the United States of America, 100, 1558–1563.

    PubMed  CAS  Google Scholar 

  19. Cronin, A., Mowbray, S., Durk, H., Homburg, S., Fleming, I., Fisslthaler, B., et al. (2003). The N-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 100, 1552–1557.

    PubMed  CAS  Google Scholar 

  20. Enayetallah, A. E., Luria, A., Luo, B., Tsai, H. J., Sura, P., Hammock, B. D., et al. (2008). Opposite regulation of cholesterol levels by the phosphatase and hydrolase domains of soluble epoxide hydrolase. Journal of Biological Chemistry, 283, 36592–36598.

    PubMed  CAS  Google Scholar 

  21. Sinal, C. J., Miyata, M., Tohkin, M., Nagata, K., Bend, J. R., & Gonzalez, F. J. (2000). Targeted disruption of soluble epoxide hydrolase reveals a role in blood pressure regulation. Journal of Biological Chemistry, 275, 40504–40510.

    PubMed  CAS  Google Scholar 

  22. Luria, A., Morisseau, C., Tsai, H. J., Yang, J., Inceoglu, B., De Taeye, B., et al. (2009). Alteration in plasma testosterone levels in male mice lacking soluble epoxide hydrolase. American Journal of Physiology, Endocrinology and Metabolism, 297, E375–E383.

    CAS  Google Scholar 

  23. Enayetallah, A. E., & Grant, D. F. (2006). Effects of human soluble epoxide hydrolase polymorphisms on isoprenoid phosphate hydrolysis. Biochemical and Biophysical Research Communications, 341, 254–260.

    PubMed  CAS  Google Scholar 

  24. Tran, K. L., Aronov, P. A., Tanaka, H., Newman, J. W., Hammock, B. D., & Morisseau, C. (2005). Lipid sulfates and sulfonates are allosteric competitive inhibitors of the N-terminal phosphatase activity of the Mammalian soluble epoxide hydrolase. Biochemistry, 44, 12179–12187.

    PubMed  CAS  Google Scholar 

  25. Kovacs, W. J., Olivier, L. M., & Krisans, S. K. (2002). Central role of peroxisomes in isoprenoid biosynthesis. Progress in Lipid Research, 41, 369–391.

    PubMed  CAS  Google Scholar 

  26. Przybyla-Zawislak, B. D., Srivastava, P. K., Vazquez-Matias, J., Mohrenweiser, H. W., Maxwell, J. E., Hammock, B. D., et al. (2003). Polymorphisms in human soluble epoxide hydrolase. Molecular Pharmacology, 64, 482–490.

    PubMed  CAS  Google Scholar 

  27. Keserü, B., Barbosa-Sicard, E., Schermuly, R. T., Tanaka, H., Hammock, B. D., Weissmann, N., et al. (2010). Hypoxia-induced pulmonary hypertension: Comparison of soluble epoxide hydrolase deletion vs. inhibition. Cardiovascular Research, 85, 232–240.

    PubMed  Google Scholar 

  28. Campbell, W. B., Gebremedhin, D., Pratt, P. F., & Harder, D. R. (1996). Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circulation Research, 78, 415–423.

    PubMed  CAS  Google Scholar 

  29. Fisslthaler, B., Popp, R., Kiss, L., Potente, M., Harder, D. R., Fleming, I., et al. (1999). Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature, 401, 493–497.

    PubMed  CAS  Google Scholar 

  30. Bauersachs, J., Popp, R., Hecker, M., Sauer, E., Fleming, I., & Busse, R. (1996). Nitric oxide attenuates the release of endothelium-derived hyperpolarizing factor. Circulation, 94, 3341–3347.

    PubMed  CAS  Google Scholar 

  31. Khojasteh, S., Prabhu, S., Kenny, J., Halladay, J., & Lu, A. (2011). Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: A re-evaluation of P450 isoform selectivity. European Journal of Drug Metabolism and Pharmacokinetics, 36, 1–16.

    PubMed  CAS  Google Scholar 

  32. Passauer, J., Büssemaker, E., Lassig, G., Pistrosch, F., Fauler, J., Gross, P., et al. (2003). Baseline blood flow and bradykinin-induced vasodilator responses in the human forearm are insensitive to the CYP 2C9 inhibitor sulfaphenazole. Clinical Science (London, England), 105, 513–518.

    CAS  Google Scholar 

  33. Passauer, J., Pistrosch, F., Lässig, G., Herbrig, K., Büssemaker, E., Gross, P., et al. (2005). Nitric oxide- and EDHF-mediated arteriolar tone in uremia is unaffected by selective inhibition of vascular cytochrome P450 2C9. Kidney International, 67, 1907–1912.

    PubMed  CAS  Google Scholar 

  34. Fichtlscherer, S., Dimmeler, S., Breuer, S., Busse, R., Zeiher, A. M., & Fleming, I. (2004). Inhibition of cytochrome P450 2C9 improves endothelium-dependent, nitric oxide-mediated vasodilatation in patients with coronary artery disease. Circulation, 109, 178–183.

    PubMed  CAS  Google Scholar 

  35. Hillig, T., Krustrup, P., Fleming, I., Osada, T., Saltin, B., & Hellsten, Y. (2003). Cytochrome P450 2C9 plays an important role in the regulation of exercise-induced skeletal muscle blood flow and oxygen uptake in humans. Journal of Physiology (London), 546, 307–314.

    CAS  Google Scholar 

  36. Bellien, J., Iacob, M., Gutierrez, L., Isabelle, M., Lahary, A., Thuillez, C., et al. (2006). Crucial role of NO and endothelium-derived hyperpolarizing factor in human sustained conduit artery flow-mediated dilatation. Hypertension, 48, 1088–1094.

    PubMed  CAS  Google Scholar 

  37. Bellien, J., Joannides, R., Iacob, M., Arnaud, P., & Thuillez, C. (2006). Evidence for a basal release of a cytochrome-related endothelium-derived hyperpolarizing factor in the radial artery in humans. American Journal of Physiology—Heart and Circulatory Physiology, 290, H1347–H1352.

    PubMed  CAS  Google Scholar 

  38. Fischer, D., Landmesser, U., Spiekermann, S., Hilfiker-Kleiner, D., Hospely, M., Muller, M., et al. (2007). Cytochrome P450 2C9 is involved in flow-dependent vasodilation of peripheral conduit arteries in healthy subjects and in patients with chronic heart failure. European Journal of Heart Failure, 9, 770–775.

    PubMed  CAS  Google Scholar 

  39. Ozkor, M. A., Murrow, J. R., Rahman, A. M., Kavtaradze, N., Lin, J., Manatunga, A., et al. (2011). Endothelium-derived hyperpolarizing factor determines resting and stimulated forearm vasodilator tone in health and in disease. Circulation, 123, 2244–2253.

    PubMed  CAS  Google Scholar 

  40. Snyder, G. D., Krishna, U. M., Falck, J. R., & Spector, A. A. (2002). Evidence for a membrane site of action for 14,15-EET on expression of aromatase in vascular smooth muscle. American Journal of Physiology—Heart and Circulatory Physiology, 283, H1936–H1942.

    PubMed  CAS  Google Scholar 

  41. Wong, P. Y., Lin, K. T., Yan, Y. T., Ahern, D., Iles, J., Shen, S. Y., et al. (1993). 14(R),15(S)-epoxyeicosatrienoic acid (14(R),15(S)-EET) receptor in guinea pig mononuclear cell membranes. Journal of Lipid Mediators, 6, 199–208.

    PubMed  CAS  Google Scholar 

  42. Wong, P. Y., Lai, P. S., & Falck, J. R. (2000). Mechanism and signal transduction of 14(R),15(S)-epoxyeicosatrienoic acid (14,15-EET) binding in guinea pig monocytes. Prostaglandins & Other Lipid Mediators, 62, 321–333.

    CAS  Google Scholar 

  43. Wong, P. Y., Lai, P. S., Shen, S. Y., Belosludtsev, Y. Y., & Falck, J. R. (1997). Post-receptor signal transduction and regulation of 14(R),15(S)-epoxyeicosatrienoic acid (14,15-EET) binding in U-937 cells. Journal of Lipid Mediators and Cell Signalling, 16, 155–169.

    PubMed  CAS  Google Scholar 

  44. Yang, W., Tuniki, V. R., Anjaiah, S., Falck, J. R., Hillard, C. J., & Campbell, W. B. (2008). Characterization of epoxyeicosatrienoic acid binding site in U937 membranes using a novel radiolabeled agonist, 20-125I-14,15-epoxyeicosa-8(Z)-enoic acid. Journal of Pharmacology and Experimental Therapeutics, 324, 1019–1027.

    PubMed  CAS  Google Scholar 

  45. Chen, Y., Falck, J. R., Tuniki, V. R., & Campbell, W. B. (2009). 20-125Iodo-14,15-epoxyeicosa-5Z-enoic acid: A high affinity radioligand used to characterize the epoxyeicosatrienoic acid antagonist binding site. Journal of Pharmacology and Experimental Therapeutics, 331, 1137–1145.

    PubMed  CAS  Google Scholar 

  46. Spector, A. A., & Norris, A. W. (2007). Action of epoxyeicosatrienoic acids on cellular function. American Journal of Physiology. Cell Physiology, 292, C996–C1012.

    PubMed  CAS  Google Scholar 

  47. Abukhashim, M., Wiebe, G., & Seubert, J. (2011). Regulation of forskolin-induced cAMP production by cytochrome P450 epoxygenase metabolites of arachidonic acid in HEK293 cells. Cell Biology and Toxicology, 27, 321–332.

    PubMed  CAS  Google Scholar 

  48. Medhora, M., Daniels, J., Mundey, K., Fisslthaler, B., Busse, R., Jacobs, E. R., et al. (2003). Epoxygenase-driven angiogenesis in human lung microvascular endothelial cells. American Journal of Physiology—Heart and Circulatory Physiology, 284, H215–H224.

    PubMed  CAS  Google Scholar 

  49. Yang, C., Kwan, Y. W., Au, A. L.-S., Poon, C. C.-W., Zhang, Q., Chan, S. W., et al. (2010). 14,15-Epoxyeicosatrienoic acid induces vasorelaxation through the prostaglandin EP2 receptors in rat mesenteric artery. Prostaglandins & Other Lipid Mediators, 93, 44–51.

    CAS  Google Scholar 

  50. Behm, D. J., Ogbonna, A., Wu, C., Burns-Kurtis, C. L., & Douglas, S. A. (2008). Epoxyeicosatrienoic acids function as selective, endogenous antagonists of native thromboxane receptors: Identification of a novel mechanism of vasodilation. Journal of Pharmacology and Experimental Therapeutics, 328, 231–239.

    PubMed  Google Scholar 

  51. Busse, R., Edwards, G., Feletou, M., Fleming, I., Vanhoutte, P. M., & Weston, A. H. (2002). EDHF: Bringing the concepts together. Trends in Pharmacological Sciences, 23, 374–380.

    PubMed  CAS  Google Scholar 

  52. Alonso, M. T., Alvarez, J., Montero, M., Sanchez, A., & Garcia-Sancho, J. (1991). Agonist-induced Ca2+ influx into human platelets is secondary to the emptying of intracellular Ca2+ stores. Biochemistry Journal, 280, 783–789.

    CAS  Google Scholar 

  53. Sargeant, P., Clarkson, W. D., Sage, S. O., & Heemskerk, J. W. M. (1992). Calcium influx evoked by Ca2+ store depletion in human platelets is more susceptible to cytochrome P-450 inhibitors than receptor-mediated calcium entry. Cell Calcium, 13, 553–564.

    PubMed  CAS  Google Scholar 

  54. Michaelis, U. R., & Fleming, I. (2006). From endothelium-derived hyperpolarizing factor (EDHF) to angiogenesis: epoxyeicosatrienoic acids (EETs) and cell signaling. Pharmacology and Therapeutics, 111, 584–595.

    PubMed  CAS  Google Scholar 

  55. Watanabe, H., Vriens, J., Prenen, J., Droogmans, G., Voets, T., & Nilius, B. (2003). Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature, 424, 434–438.

    PubMed  CAS  Google Scholar 

  56. Vriens, J., Owsianik, G., Fisslthaler, B., Suzuki, M., Janssens, A., Voets, T., et al. (2005). Modulation of the Ca2+ permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circulation Research, 97, 908–915.

    PubMed  CAS  Google Scholar 

  57. Loot, A. E., Popp, R., Fisslthaler, B., Vriens, J., Nilius, B., & Fleming, I. (2008). Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovascular Research, 80, 445–452.

    PubMed  CAS  Google Scholar 

  58. Fleming, I., Rueben, A., Popp, R., Fisslthaler, B., Schrodt, S., Sander, A., et al. (2007). Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 2612–2618.

    PubMed  CAS  Google Scholar 

  59. Inoue, R., Jensen, L. J., Jian, Z., Shi, J., Hai, L., Lurie, A. I., et al. (2009). Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/w-hydroxylase/20-HETE pathways. Circulation Research, 104, 1399–1409.

    PubMed  CAS  Google Scholar 

  60. Earley, S., Heppner, T. J., Nelson, M. T., & Brayden, J. E. (2005). TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circulation Research, 97, 1270–1279.

    PubMed  CAS  Google Scholar 

  61. Nilius, B., Vriens, J., Prenen, J., Droogmans, G., & Voets, T. (2004). TRPV4 calcium entry channel: A paradigm for gating diversity. American Journal of Physiology. Cell Physiology, 286, C195–C205.

    PubMed  CAS  Google Scholar 

  62. Spector, A. A., Fang, X., Snyder, G. D., & Weintraub, N. L. (2004). Epoxyeicosatrienoic acids (EETs): Metabolism and biochemical function. Progress in Lipid Research, 43, 55–90.

    PubMed  CAS  Google Scholar 

  63. Widstrom, R. L., Norris, A. W., Van Der Veer, J., & Spector, A. A. (2003). Fatty acid-binding proteins inhibit hydration of epoxyeicosatrienoic acids by soluble epoxide hydrolase. Biochemistry, 42, 11762–11767.

    PubMed  CAS  Google Scholar 

  64. Liu, Y., Zhang, Y., Schmelzer, K., Lee, T. S., Fang, X., Zhu, Y., et al. (2005). The antiinflammatory effect of laminar flow: The role of PPARg, epoxyeicosatrienoic acids, and soluble epoxide hydrolase. Proceedings of the National Academy of Sciences of the United States of America, 102, 16747–16752.

    PubMed  CAS  Google Scholar 

  65. Cowart, L. A., Wei, S., Hsu, M. H., Johnson, E. F., Krishna, M. U., Falck, J. R., et al. (2002). The CYP4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands. Journal of Biological Chemistry, 277, 35105–35112.

    PubMed  CAS  Google Scholar 

  66. Fang, X., Hu, S., Watanabe, T., Weintraub, N. L., Snyder, G. D., Yao, J., et al. (2005). Activation of peroxisome proliferator-activated receptor a by substituted urea-derived soluble epoxide hydrolase inhibitors. Journal of Pharmacology and Experimental Therapeutics, 314, 260–270.

    PubMed  CAS  Google Scholar 

  67. Fang, X., Hu, S., Xu, B., Snyder, G., Harmon, S., Yao, J., et al. (2006). 14,15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator activated receptor alpha. American Journal of Physiology—Heart and Circulatory Physiology, 290, 55–63.

    Google Scholar 

  68. Potente, M., Fisslthaler, B., Busse, R., & Fleming, I. (2003). 11,12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27Kip1. Journal of Biological Chemistry, 278, 29619–29625.

    PubMed  CAS  Google Scholar 

  69. Wang, D., Hirase, T., Nitto, T., Soma, M., & Node, K. (2009). Eicosapentaenoic acid increases cytochrome P-450 2J2 gene expression and epoxyeicosatrienoic acid production via peroxisome proliferator-activated receptor g in endothelial cells. Journal of Cardiology, 54, 368–374.

    PubMed  Google Scholar 

  70. Hoebel, B. G., & Graier, W. F. (1998). 11,12-Epoxyeicosatrienoic acid stimulates tyrosine kinase activity in porcine aortic endothelial cells. European Journal of Pharmacology, 346, 115–117.

    PubMed  CAS  Google Scholar 

  71. Fleming, I., Fisslthaler, B., Michaelis, U. R., Kiss, L., Popp, R., & Busse, R. (2001). The coronary endothelium-derived hyperpolarizing factor (EDHF) stimulates multiple signalling pathways and proliferation in vascular cells. Pflügers Archiv - European Journal of Physiology, 442, 511–518.

    PubMed  CAS  Google Scholar 

  72. Potente, M., Michaelis, U. R., Fisslthaler, B., Busse, R., & Fleming, I. (2002). Cytochrome P450 2C9-induced endothelial cell proliferation involves induction of mitogen-activated protein (MAP) kinase phosphatase-1, inhibition of the c-Jun N-terminal kinase, and up-regulation of cyclin D1. Journal of Biological Chemistry, 277, 15671–15676.

    PubMed  CAS  Google Scholar 

  73. Node, K., Huo, Y., Ruan, X., Yang, B., Spiecker, M., Ley, K., et al. (1999). Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science, 285, 1276–1279.

    PubMed  CAS  Google Scholar 

  74. Deng, Y., Edin, M. L., Theken, K. N., Schuck, R. N., Flake, G. P., Kannon, M. A., et al. (2011). Endothelial CYP epoxygenase overexpression and soluble epoxide hydrolase disruption attenuate acute vascular inflammatory responses in mice. The FASEB Journal, 25, 703–713.

    PubMed  CAS  Google Scholar 

  75. Fleming, I., Michaelis, U. R., Bredenkötter, D., Fisslthaler, B., Dehghani, F., Brandes, R. P., et al. (2001). Endothelium-derived hyperpolarizing factor synthase (cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circulation Research, 88, 44–51.

    PubMed  CAS  Google Scholar 

  76. Wu, S., Moomaw, C. R., Tomer, K. B., Falck, J. R., & Zeldin, D. C. (1996). Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. Journal of Biological Chemistry, 271, 3460–3468.

    PubMed  CAS  Google Scholar 

  77. Seubert, J., Yang, B., Bradbury, J. A., Graves, J., Degraff, L. M., Gabel, S., et al. (2004). Enhanced postischemic functional recovery in CYP2J2 transgenic hearts involves mitochondrial ATP-sensitive K+ channels and p42/p44 MAPK pathway. Circulation Research, 95, 506–514.

    PubMed  CAS  Google Scholar 

  78. Yang, B., Graham, L., Dikalov, S., Mason, R. P., Falck, J. R., Liao, J. K., et al. (2001). Overexpression of cytochrome P450 CYP2J2 protects against hypoxia–reoxygenation injury in cultured bovine aortic endothelial cells. Molecular Pharmacology, 60, 310–320.

    PubMed  CAS  Google Scholar 

  79. Zeldin, D. C., Foley, J., Ma, J., Boyle, J. E., Pascual, J. M., Moomaw, C. R., et al. (1996). CYP2J subfamily P450s in the lung: Expression, localization, and potential functional significance. Molecular Pharmacology, 50, 1111–1117.

    PubMed  CAS  Google Scholar 

  80. Keserü, B., Barbosa-Sicard, E., Popp, R., Fisslthaler, B., Dietrich, A., Gudermann, T., et al. (2008). Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. The FASEB Journal, 22, 4306–4315.

    PubMed  Google Scholar 

  81. Bonnet, S., & Archer, S. L. (2007). Potassium channel diversity in the pulmonary arteries and pulmonary veins: Implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension. Pharmacology and Therapeutics, 115, 56–69.

    PubMed  CAS  Google Scholar 

  82. Zhu, D., Zhang, C., Medhora, M., & Jacobs, E. R. (2002). CYP4A mRNA, protein, and product in rat lungs: Novel localization in vascular endothelium. Journal of Applied Physiology, 93, 330–337.

    PubMed  CAS  Google Scholar 

  83. Bodiga, S., Gruenloh, S. K., Gao, Y., Manthati, V. L., Dubasi, N., Falck, J. R., et al. (2010). 20-HETE-induced nitric oxide production in pulmonary artery endothelial cells is mediated by NADPH oxidase, H2O2, and PI3-kinase/Akt. American Journal of Physiology. Lung Cellular and Molecular Physiology, 298, L564–L574.

    PubMed  CAS  Google Scholar 

  84. Zhu, D., Birks, E. K., Dawson, C. A., Patel, M., Falck, J. R., Presberg, K., et al. (2000). Hypoxic pulmonary vasoconstriction is modified by P-450 metabolites. American Journal of Physiology—Heart and Circulatory Physiology, 279, H1526–H1533.

    PubMed  CAS  Google Scholar 

  85. Kiss, L., Roder, Y., Bier, J., Weissmann, N., Seeger, W., & Grimminger, F. (2008). Direct eicosanoid profiling of the hypoxic lung by comprehensive analysis via capillary liquid chromatography with dual online photodiode-array and tandem mass-spectrometric detection. Analytical and Bioanalytical Chemistry, 390, 697–714.

    PubMed  CAS  Google Scholar 

  86. Stephenson, A. H., Sprague, R. S., & Lonigro, A. J. (1998). 5,6-Epoxyeicosatrienoic acid reduces increases in pulmonary vascular resistance in the dog. American Journal of Physiology, 275, H100–H109.

    PubMed  CAS  Google Scholar 

  87. Stephenson, A. H., Sprague, R. S., Losapio, J. L., & Lonigro, A. J. (2003). Differential effects of 5,6-EET on segmental pulmonary vasoactivity in the rabbit. American Journal of Physiology—Heart and Circulatory Physiology, 284, H2153–H2161.

    PubMed  CAS  Google Scholar 

  88. Miller, M. A., & Hales, C. A. (1979). Role of cytochrome P-450 in alveolar hypoxic pulmonary vasoconstriction in dogs. The Journal of Clinical Investigation, 64, 666–673.

    PubMed  CAS  Google Scholar 

  89. Pokreisz, P., Fleming, I., Kiss, L., Barbosa-Sicard, E., Fisslthaler, B., Falck, J. R., et al. (2006). Cytochrome P450 epoxygenase gene function in hypoxic pulmonary vasoconstriction and pulmonary vascular remodeling. Hypertension, 47, 762–770.

    PubMed  CAS  Google Scholar 

  90. Zhu, D., Bousamra, M., Zeldin, D. C., Falck, J. R., Townsley, M., Harder, D. R., et al. (2000). Epoxyeicosatrienoic acids constrict isolated pressurized rabbit pulmonary arteries. American Journal of Physiology. Lung Cellular and Molecular Physiology, 278, L335–L343.

    PubMed  CAS  Google Scholar 

  91. Weissmann, N., Dietrich, A., Fuchs, B., Kalwa, H., Ay, M., Dumitrascu, R., et al. (2006). Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proceedings of the National Academy of Sciences of the United States of America, 103, 19093–19098.

    PubMed  CAS  Google Scholar 

  92. Fagan, K. A., Oka, M., Bauer, N. R., Gebb, S. A., Ivy, D. D., Morris, K. G., et al. (2004). Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. American Journal of Physiology. Lung Cellular and Molecular Physiology, 287, L656–L664.

    PubMed  CAS  Google Scholar 

  93. Singh, I., Knezevic, N., Ahmmed, G. U., Kini, V., Malik, A. B., & Mehta, D. (2007). Gaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. Journal of Biological Chemistry, 282, 7833–7843.

    PubMed  CAS  Google Scholar 

  94. Chen, J. K., Falck, J. R., Reddy, K. M., Capdevila, J., & Harris, R. C. (1998). Epoxyeicosatrienoic acids and their sulfonimide derivatives stimulate tyrosine phosphorylation and induce mitogenesis in renal epithelial cells. Journal of Biological Chemistry, 273, 29254–29261.

    PubMed  CAS  Google Scholar 

  95. Chen, J. K., Wang, D.-W., Falck, J. R., Capdevila, J., & Harris, R. C. (1999). Transfection of an active cytochrome P450 arachidonic acid epoxygenase indicates that 14,15-epoxyeicosatrienoic acid functions as an intracellular messenger in response to epidermal growth factor. Journal of Biological Chemistry, 274, 4764–4769.

    PubMed  CAS  Google Scholar 

  96. Munzenmaier, D. H., & Harder, D. R. (2000). Cerebral microvascular endothelial cell tube formation: Role of astrocytic epoxyeicosatrienoic acid release. American Journal of Physiology—Heart and Circulatory Physiology, 278, H1163–H1167.

    PubMed  CAS  Google Scholar 

  97. Wang, Y., Wei, X., Xiao, X., Hui, R., Card, J. W., Carey, M. A., et al. (2005). Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways. Journal of Pharmacology and Experimental Therapeutics, 314, 522–532.

    PubMed  CAS  Google Scholar 

  98. Chen, J.-K., Capdevila, J., & Harris, R. C. (2002). Heparin-binding EGF-like growth factor mediates the biological effects of P450 arachidonate epoxygenase metabolites in epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 6029–6034.

    PubMed  CAS  Google Scholar 

  99. Michaelis, U. R., Fisslthaler, B., Medhora, M., Harder, D., Fleming, I., & Busse, R. (2003). Cytochrome P450 2C9-derived epoxyeicosatrienoic acids induce angiogenesis via cross-talk with the epidermal growth factor receptor (EGFR). The FASEB Journal, 17, 770–772.

    PubMed  CAS  Google Scholar 

  100. Pozzi, A., Macias-Perez, I., Abair, T., Wey, S., Su, Y., Zent, R., et al. (2005). Charaterization of 5,6-and 8,9-epoxyeicosatrienoic acids (5,6- and 8,9-EET) as potent in vivo angiogenic lipids. Journal of Biological Chemistry, 280, 27138–27146.

    PubMed  CAS  Google Scholar 

  101. Park, H. S., Kim, M. S., Huh, S. H., Park, J., Chung, J., Kang, S. S., et al. (2002). Akt (protein kinase B) negatively regulates SEK1 by means of protein phosphorylation. Journal of Biological Chemistry, 277, 2573–2578.

    PubMed  CAS  Google Scholar 

  102. Levy, R. H. (1995). Cytochrome P450 isozymes and antiepileptic drug interactions. Epilepsia, 36(Suppl 5), S8–S13.

    PubMed  Google Scholar 

  103. Michaelis, U. R., Fisslthaler, B., Barbosa-Sicard, E., Falck, J. R., Fleming, I., & Busse, R. (2005). Cytochrome P450 epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogenesis. Journal of Cell Science, 118, 5489–5498.

    PubMed  CAS  Google Scholar 

  104. Webler, A. C., Michaelis, U. R., Popp, R., Barbosa-Sicard, E., Murugan, A., Falck, J. R., et al. (2008). Epoxyeicosatrienoic acids are part of the VEGF-activated signaling cascade leading to angiogenesis. American Journal of Physiology. Cell Physiology, 295, C1292–C1301.

    PubMed  CAS  Google Scholar 

  105. Yang, S., Wei, S., Pozzi, A., & Capdevila, J. H. (2009). The arachidonic acid epoxygenase is a component of the signaling mechanisms responsible for VEGF-stimulated angiogenesis. Archives of Biochemistry and Biophysics, 489, 82–91.

    PubMed  CAS  Google Scholar 

  106. Cheranov, S. Y., Karpurapu, M., Wang, D., Zhang, B., Venema, R. C., & Rao, G. N. (2008). An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. Blood, 111, 5581–5591.

    PubMed  CAS  Google Scholar 

  107. Oguro, A., Sakamoto, K., Suzuki, S., & Imaoka, S. (2009). Contribution of hydrolase and phosphatase domains in soluble epoxide hydrolase to vascular endothelial growth factor expression and cell growth. Biological and Pharmaceutical Bulletin, 32, 1962–1967.

    PubMed  CAS  Google Scholar 

  108. Gerety, S. S., Wang, H. U., Chen, Z. F., & Anderson, D. J. (1999). Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Molecular Cell, 4, 403–414.

    PubMed  CAS  Google Scholar 

  109. Shin, D., Garcia-Cardena, G., Hayashi, S., Gerety, S., Asahara, T., Stavrakis, G., et al. (2001). Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Developmental Biology, 230, 139–150.

    PubMed  CAS  Google Scholar 

  110. Webler, A. C., Popp, R., Korff, T., Michaelis, U. R., Urbich, C., Busse, R., et al. (2008). Cytochrome P450 2C9-induced angiogenesis is dependent on EphB4. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 1123–1129.

    PubMed  CAS  Google Scholar 

  111. Amaral, S. L., Maier, K. G., Schippers, D. N., Roman, R. J., & Greene, A. S. (2003). CYP4A metabolites of arachidonic acid and VEGF are mediators of skeletal muscle angiogenesis. American Journal of Physiology—Heart and Circulatory Physiology, 284, H1528–H1535.

    PubMed  CAS  Google Scholar 

  112. Jiang, M., Mezentsev, A., Kemp, R., Byun, K., Falck, J. R., Miano, J. M., et al. (2004). Smooth muscle-specific expression of CYP4A1 induces endothelial sprouting in renal arterial microvessels. Circulation Research, 94, 167–174.

    PubMed  CAS  Google Scholar 

  113. Chen, P., Guo, M., Wygle, D., Edwards, P. A., Falck, J. R., Roman, R. J., et al. (2005). Inhibitors of cytochrome P450 4A suppress angiogenic responses. American Journal of Pathology, 166, 615–624.

    PubMed  CAS  Google Scholar 

  114. Guo, A. M., Arbab, A. S., Falck, J. R., Chen, P., Edwards, P. A., Roman, R. J., et al. (2007). Activation of vascular endothelial growth factor through reactive oxygen species mediates 20-hydroxyeicosatetraenoic acid-induced endothelial cell proliferation. Journal of Pharmacology and Experimental Therapeutics, 321, 18–27.

    PubMed  CAS  Google Scholar 

  115. Sun, J., Sui, X. X., Bradbury, A., Zeldin, D. C., Conte, M. S., & Liao, J. K. (2002). Inhibition of vascular smooth muscle cell migration by cytochrome P450 epoxygenase-derived eicosanoids. Circulation Research, 90, 1020–1027.

    PubMed  CAS  Google Scholar 

  116. Ng, V. Y., Huang, Y., Reddy, L. M., Falck, J. R., Lin, E. T., & Kroetz, D. L. (2007). Cytochrome P450 eicosanoids are activators of peroxisome proliferator-activated receptor α. Drug Metabolism and Disposition, 35, 1126–1134.

    PubMed  CAS  Google Scholar 

  117. Davis, B. B., Thompson, D. A., Howard, L. L., Morisseau, C., Hammock, B. D., & Weiss, R. H. (2002). Inhibitors of soluble epoxide hydrolase attenuate vascular smooth muscle cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 99, 2222–2227.

    PubMed  CAS  Google Scholar 

  118. Davis, B. B., Morisseau, C., Newman, J. W., Pedersen, T. L., Hammock, B. D., & Weiss, R. H. (2006). Attenuation of vascular smooth muscle cell proliferation by 1-cyclohexyl-3-dodecyl urea is independent of soluble epoxide hydrolase inhibition. Journal of Pharmacology and Experimental Therapeutics, 316, 815–821.

    PubMed  CAS  Google Scholar 

  119. Revermann, M., Schloss, M., Barbosa-Sicard, E., Mieth, A., Liebner, S., Morisseau, C., et al. (2010). Soluble epoxide hydrolase deficiency attenuates neointima formation in the femoral cuff model of hyperlipidemic mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 909–914.

    PubMed  CAS  Google Scholar 

  120. Simpkins, A. N., Rudic, R. D., Roy, S., Tsai, H. J., Hammock, B. D., & Imig, J. D. (2009). Soluble epoxide hydrolase inhibition modulates vascular remodeling. American Journal of Physiology—Heart and Circulatory Physiology, 298, H795–H806.

    PubMed  Google Scholar 

  121. Jung, O., Brandes, R. P., Kim, I. H., Schweda, F., Schmidt, R., Hammock, B. D., et al. (2005). Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. Hypertension, 45, 759–765.

    PubMed  CAS  Google Scholar 

  122. Vafeas, C., Mieyal, P. A., Urbano, F., Falck, J. R., Chauhan, K., Berman, M., et al. (1998). Hypoxia stimulates the synthesis of cytochrome P450-derived inflammatory eicosanoids in rabbit corneal epithelium. Journal of Pharmacology and Experimental Therapeutics, 287, 903–910.

    PubMed  CAS  Google Scholar 

  123. Yamaura, K., Gebremedhin, D., Zhang, C., Narayanan, J., Hoefert, K., Jacobs, E. R., et al. (2006). Contribution of epoxyeicosatrienoic acids to the hypoxia-induced activation of Ca2+-activated K+ channel current in cultured rat hippocampal astrocytes. Neuroscience, 143, 703–716.

    PubMed  CAS  Google Scholar 

  124. Suzuki, H., Kimura, K., Shirai, H., Eguchi, K., Higuchi, S., Hinoki, A., et al. (2009). Endothelial nitric oxide synthase inhibits G12/13 and Rho-kinase activated by the angiotensin II type-1 receptor: Implication in vascular migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 217–224.

    PubMed  CAS  Google Scholar 

  125. Schultze, A. E., & Roth, R. A. (1998). Chronic pulmonary hypertension—The monocrotaline model and involvement of the hemostatic system. Journal of Toxicology and Environmental Health B, 1, 271–346.

    CAS  Google Scholar 

  126. Revermann, M., Barbosa-Sicard, E., Dony, E., Schermuly, R. T., Morisseau, C., Geisslinger, G., et al. (2009). Inhibition of the soluble epoxide hydrolase attenuates monocrotaline-induced pulmonary hypertension in rats. Journal of Hypertension, 27, 322–331.

    PubMed  CAS  Google Scholar 

  127. Zheng, C., Wang, L., Li, R., Ma, B., Tu, L., Xu, X., et al. (2010). Gene delivery of cytochrome P450 epoxygenase ameliorates monocrotaline-induced pulmonary artery hypertension in rats. American Journal of Respiratory Cell and Molecular Biology, 43, 740–749.

    PubMed  CAS  Google Scholar 

  128. Yokose, T., Doy, M., Taniguchi, Y., Shimada, T., Kakiki, M., Horie, T., et al. (1999). Immunohistochemical study of cytochrome P450 2C and 3A in human non-neoplastic and neoplastic tissues. Virchows Archiv, 434, 401–411.

    PubMed  CAS  Google Scholar 

  129. Jiang, J. G., Chen, C. L., Card, J. W., Yang, S., Chen, J. X., Fu, X. N., et al. (2005). Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Research, 65, 4707–4715.

    PubMed  CAS  Google Scholar 

  130. Xu, X., Zhang, X. A., & Wang, D. W. (2011). The roles of CYP450 epoxygenases and metabolites, epoxyeicosatrienoic acids, in cardiovascular and malignant diseases. Advanced Drug Delivery Reviews, 63, 597–609.

    PubMed  CAS  Google Scholar 

  131. Chen, C., Li, G., Liao, W., Wu, J., Liu, L., Ma, D., et al. (2009). Selective inhibitors of CYP2J2 related to terfenadine exhibit strong activity against human cancers in vitro and in vivo. Journal of Pharmacology and Experimental Therapeutics, 329, 908–918.

    PubMed  CAS  Google Scholar 

  132. Enayetallah, A. E., French, R. A., & Grant, D. F. (2006). Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms. Journal of Molecular Histology, 37, 133–141.

    PubMed  CAS  Google Scholar 

  133. Schmelzle, M., Dizdar, L., Matthaei, H., Baldus, S. E., Wolters, J., Lindenlauf, N., et al. (2011). Esophageal cancer proliferation is mediated by cytochrome P450 2C9 (CYP2C9). Prostaglandins & Other Lipid Mediators, 94, 25–33.

    CAS  Google Scholar 

  134. Jiang, J. G., Ning, Y. G., Chen, C., Ma, D., Liu, Z. J., Yang, S., et al. (2007). Cytochrome P450 epoxygenase promotes human cancer metastasis. Cancer Research, 67, 6665–6674.

    PubMed  CAS  Google Scholar 

  135. Chen, C., Wei, X., Rao, X., Wu, J., Yang, S., Chen, F., et al. (2011). Cytochrome P450 2J2 is highly expressed in hematologic malignant diseases and promotes tumor cell growth. Journal of Pharmacology and Experimental Therapeutics, 336, 344–355.

    PubMed  CAS  Google Scholar 

  136. Mitra, R., Guo, Z., Milani, M., Mesaros, C., Rodriguez, M., Nguyen, J., et al. (2011). CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14,15-epoxyeicosatrienoic acid (EET). Journal of Biological Chemistry, 286, 17543–17559.

    PubMed  CAS  Google Scholar 

  137. Jung, O., Jansen, F., Mieth, A., Barbosa-Sicard, E., Pliquett, R. U., Babelova, A., et al. (2010). Inhibition of the soluble epoxide hydrolase promotes albuminuria in mice with progressive renal disease. PLoS One, 5, e11979.

    PubMed  Google Scholar 

  138. Liu, J. Y., Yang, J., Inceoglu, B., Qiu, H., Ulu, A., Hwang, S. H., et al. (2010). Inhibition of soluble epoxide hydrolase enhances the anti-inflammatory effects of aspirin and 5-lipoxygenase activation protein inhibitor in a murine model. Biochemical Pharmacology, 79, 880–887.

    PubMed  CAS  Google Scholar 

  139. Certikova Chabova, V., Walkowska, A., Kompanowska-Jezierska, E., Sadowski, J., Kujal, P., Vernerova, Z., et al. (2010). Combined inhibition of 20-hydroxyeicosatetraenoic acid formation and of epoxyeicosatrienoic acids degradation attenuates hypertension and hypertensioninduced end-organ damage in Ren-2 transgenic rats. Clinical Science, 118, 617–632.

    PubMed  Google Scholar 

  140. Chun, Y. J., & Kim, S. (2003). Discovery of cytochrome P450 1B1 inhibitors as new promising anti-cancer agents. Medicinal Research Reviews, 23, 657–668.

    PubMed  CAS  Google Scholar 

  141. Stearns, V., Johnson, M. D., Rae, J. M., Morocho, A., Novielli, A., Bhargava, P., et al. (2003). Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. Journal of the National Cancer Institute, 95, 1758–1764.

    PubMed  CAS  Google Scholar 

  142. Coller, J. K. (2003). Oxidative metabolism of tamoxifen to Z-4-hydroxy-tamoxifen by cytochrome P450 isoforms: An appraisal of in vitro studies. Clinical and Experimental Pharmacology and Physiology, 30, 845–848.

    PubMed  CAS  Google Scholar 

  143. Panigrahy, D., Kaipainen, A., Greene, E., & Huang, S. (2010). Cytochrome P450-derived eicosanoids: The neglected pathway in cancer. Cancer and Metastasis Reviews, 29, 723–735.

    PubMed  CAS  Google Scholar 

  144. Park, S. W., Heo, D. S. & Sung, M. W. (2011). The shunting of arachidonic acid metabolism to 5-lipoxygenase and cytochrome p450 epoxygenase antagonizes the anti-cancer effect of cyclooxygenase-2 inhibition in head and neck cancer cells. Cellular Oncology 1–8. doi:10.1007/s13402-011-0051-7.

  145. Serhan, C. N. (2011). The resolution of inflammation: The devil in the flask and in the details. The FASEB Journal, 25, 1441–1448.

    PubMed  CAS  Google Scholar 

  146. Diaz Encarnacion, M. M., Warner, G. M., Cheng, J., Gray, C. E., Nath, K. A., & Grande, J. P. (2011). n-3 Fatty acids block TNF-a-stimulated MCP-1 expression in rat mesangial cells. American Journal of Physiology. Renal Physiology, 300, F1142–F1151.

    PubMed  Google Scholar 

  147. Kitamura, K., Shibata, R., Tsuji, Y., Shimano, M., Inden, Y., & Murohara, T. (2011). Eicosapentaenoic acid prevents atrial fibrillation associated with heart failure in a rabbit model. American Journal of Physiology—Heart and Circulatory Physiology, 300, H1814–H1821.

    PubMed  Google Scholar 

  148. Finzi, A. A., Latini, R., Barlera, S., Rossi, M. G., Ruggeri, A., Mezzani, A., et al. (2011). Effects of n-3 polyunsaturated fatty acids on malignant ventricular arrhythmias in patients with chronic heart failure and implantable cardioverter-defibrillators: A substudy of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Insufficienza Cardiaca (GISSI-HF) trial. American Heart Journal, 161, 338–343.

    PubMed  CAS  Google Scholar 

  149. Arnold, C., Markovic, M., Blossey, K., Wallukat, G., Fischer, R., Dechend, R., et al. (2010). Arachidonic acid-metabolizing cytochrome P450 enzymes are targets of w-3 fatty acids. Journal of Biological Chemistry, 285, 32723–32733.

    Google Scholar 

  150. Egert, S., & Stehle, P. (2011). Impact of n-3 fatty acids on endothelial function: results from human interventions studies. Current Opinion in Clinical Nutrition and Metabolic Care, 14, 121–131.

    PubMed  CAS  Google Scholar 

  151. Madden, J., Williams, C. M., Calder, P. C., Lietz, G., Miles, E. A., Cordell, H., et al. (2011). The impact of common gene variants on the response of biomarkers of cardiovascular disease (CVD) risk to increased fish oil fatty acids intakes. Annual Review of Nutrition, 31, 203–234.

    PubMed  CAS  Google Scholar 

  152. Bazan, H. A., Lu, Y., Thoppil, D., Fitzgerald, T. N., Hong, S., & Dardik, A. (2009). Diminished omega-3 fatty acids are associated with carotid plaques from neurologically symptomatic patients: Implications for carotid interventions. Vascular Pharmacology, 51, 331–336.

    PubMed  CAS  Google Scholar 

  153. Heinze, V. M., & Actis, A. B. (2011). Dietary conjugated linoleic acid and long-chain n-3 fatty acids in mammary and prostate cancer protection: A review. International Journal of Food Sciences and Nutrition. doi:10.3109/09637486.2011.598849.

Download references

Acknowledgments

We apologize to the many scientists whose work could not be cited because of space constraints. The author’s own work was supported by the Deutsche Forschungsgemeinschaft (TR-SFB 23/A6 and Exzellenzcluster 147 “Cardio-Pulmonary Systems”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Fleming.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleming, I. The cytochrome P450 pathway in angiogenesis and endothelial cell biology. Cancer Metastasis Rev 30, 541–555 (2011). https://doi.org/10.1007/s10555-011-9302-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9302-3

Keywords

Navigation