Cancer and Metastasis Reviews

, Volume 29, Issue 3, pp 553–568 | Cite as

Tomato-based food products for prostate cancer prevention: what have we learned?

  • Hsueh-Li Tan
  • Jennifer M. Thomas-Ahner
  • Elizabeth M. Grainger
  • Lei Wan
  • David M. Francis
  • Steven J. Schwartz
  • John W. ErdmanJr.
  • Steven K. Clinton


Evidence derived from a vast array of laboratory studies and epidemiological investigations have implicated diets rich in fruits and vegetables with a reduced risk of certain cancers. However, these approaches cannot demonstrate causal relationships and there is a paucity of randomized, controlled trials due to the difficulties involved with executing studies of food and behavioral change. Rather than pursuing the definitive intervention trials that are necessary, the thrust of research in recent decades has been driven by a reductionist approach focusing upon the identification of bioactive components in fruits and vegetables with the subsequent development of single agents using a pharmacologic approach. At this point in time, there are no chemopreventive strategies that are standard of care in medical practice that have resulted from this approach. This review describes an alternative approach focusing upon development of tomato-based food products for human clinical trials targeting cancer prevention and as an adjunct to therapy. Tomatoes are a source of bioactive phytochemicals and are widely consumed. The phytochemical pattern of tomato products can be manipulated to optimize anticancer activity through genetics, horticultural techniques, and food processing. The opportunity to develop a highly consistent tomato-based food product rich in anticancer phytochemicals for clinical trials targeting specific cancers, particularly the prostate, necessitates the interactive transdisciplinary research efforts of horticulturalists, food technologists, cancer biologists, and clinical translational investigators.


Tomato Food science Cancer Horticulture Prevention Clinical trials 


  1. 1.
    Parkin, D. M., Ferlay, J., Curado, M. P., Bray, F., Edwards, B., Shin, H. R., et al. (2010). Fifty years of cancer incidence: Ci5 i-ix. International Journal of Cancer. doi:10.1002/ijc.25517.Google Scholar
  2. 2.
    Guinee, V. F., Smart, C. R., Waterhouse, J., Muir, C. S., Parkin, D. M., Zippin, C., et al. (1985). Cancer data systems. Current Problems in Cancer, 9(3), 1–77.PubMedGoogle Scholar
  3. 3.
    Doll, R., & Peto, R. (1981). The causes of cancer (Quantitative estimates of avoidable risks of cancer in the United States today). Oxford: Oxford University Press.Google Scholar
  4. 4.
    McCredie, M. (1998). Cancer epidemiology in migrant populations. Recent Results in Cancer Research, 154, 298–305.PubMedGoogle Scholar
  5. 5.
    Parkin, D. M. (1993). Studies of cancer in migrant populations. IARC Scientific Publications, 123, 1–10.PubMedGoogle Scholar
  6. 6.
    Willett, W. (1990). Nutritional epidemiology (Vol. 15, Monographs in epidemiology and biostatistics). New York: Oxford University Press.Google Scholar
  7. 7.
    Block, G., Patterson, B., & Subar, A. (1992). Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence. Nutrition and Cancer, 18(1), 1–29.PubMedCrossRefGoogle Scholar
  8. 8.
    World Cancer Research Fund. (1997). Food, nutrition and the prevention of cancer: A global perspective. Washington, D.C.: American Institute for Cancer Research.Google Scholar
  9. 9.
    World Cancer Research Fund. (2007). Food, nutrition and the prevention of cancer: A global perspective. Washington, DC: American Institute for Cancer Research.Google Scholar
  10. 10.
    National Academy of Science. (1982). Diet, nutrition, and cancer. Washington DC: National Academy Press.Google Scholar
  11. 11.
    Melnik, T. A., Rhoades, S. J., Wales, K. R., Cowell, C., & Wolfe, W. S. (1998). Food consumption patterns of elementary schoolchildren in New York City. Journal of the American Dietetic Association, 98(2), 159–164.PubMedCrossRefGoogle Scholar
  12. 12.
    MacDonald, L., Foster, B. C., & Akhtar, H. (2009). Food and therapeutic product interactions—A therapeutic perspective. Journal of Pharmacy & Pharmaceutical Sciences, 12(3), 367–377.Google Scholar
  13. 13.
    Peralta, I. E., & Spooner, D. M. (2007). History, origin and early cultivation of tomato (Solanaceae). In M. K. Razdan & A. K. Mattoo (Eds.), Genetic improvement of solanaceous crops, Vol. 2 (pp. 1–27).Google Scholar
  14. 14.
    Smith, A. F., Peralta, I. E., & Spooner, D. M. (2001). Early history, culture, and cookery, Vol. 5. University of Illinois Press.Google Scholar
  15. 15.
    Gould, W. (1974). Tomato production, processing and quality evaluation. Westport: Aviation Publishers Company, Limited.Google Scholar
  16. 16.
    Faostat (2010). Available at Accessed on June–July.
  17. 17.
    United States Department of Agriculture. (2010). Economic research service. Available at Accessed on 2010.
  18. 18.
    Boileau, T. W., Liao, Z., Kim, S., Lemeshow, S., Erdman, J. W., Jr., & Clinton, S. K. (2003). Prostate carcinogenesis in n-methyl-n-nitrosourea (nmu)-testosterone-treated rats fed tomato powder, lycopene, or energy-restricted diets. Journal of the National Cancer Institute, 95(21), 1578–1586.PubMedGoogle Scholar
  19. 19.
    Canene-Adams, K., Lindshield, B. L., Wang, S., Jeffery, E. H., Clinton, S. K., & Erdman, J. W., Jr. (2007). Combinations of tomato and broccoli enhance antitumor activity in dunning r3327-h prostate adenocarcinomas. Cancer Research, 67(2), 836–843.PubMedCrossRefGoogle Scholar
  20. 20.
    Beecher, G. R. (1998). Nutrient content of tomatoes and tomato products. Proceedings of the Society for Experimental Biology and Medicine, 218(2), 98–100.PubMedGoogle Scholar
  21. 21.
    Clinton, S. K. (1998). Lycopene: chemistry, biology, and implications for human health and disease. Nutrition Reviews, 56(2 Pt 1), 35–51.PubMedGoogle Scholar
  22. 22.
    Giovannucci, E., Ascherio, A., Rimm, E. B., Stampfer, M. J., Colditz, G. A., & Willett, W. C. (1995). Intake of carotenoids and retinol in relation to risk of prostate cancer. Journal of the National Cancer Institute, 87(23), 1767–1776.PubMedCrossRefGoogle Scholar
  23. 23.
    Bowen, P., Chen, L., Stacewicz-Sapuntzakis, M., Duncan, C., Sharifi, R., Ghosh, L., et al. (2002). Tomato sauce supplementation and prostate cancer: lycopene accumulation and modulation of biomarkers of carcinogenesis. Experimental Biology and Medicine, 227(10), 886–893.PubMedGoogle Scholar
  24. 24.
    Gann, P. H., Ma, J., Giovannucci, E., Willett, W., Sacks, F. M., Hennekens, C. H., et al. (1999). Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. Cancer Research, 59, 1225–1230.PubMedGoogle Scholar
  25. 25.
    Grant, W. B. (1999). An ecologic study of dietary links to prostate cancer. Alternative Medicine Review, 4(3), 162–169.PubMedGoogle Scholar
  26. 26.
    Hodge, A. M., English, D. R., McCredie, M. R., Severi, G., Boyle, P., Hopper, J. L., et al. (2004). Foods, nutrients and prostate cancer. Cancer Causes & Control, 15(1), 11–20.CrossRefGoogle Scholar
  27. 27.
    Hsing, A. W., Comstock, G. W., Abbey, H., & Polk, B. F. (1990). Serologic precursors of cancer-retinol, carotenoids, and tocopherol and risk of prostate-cancer. Journal of the National Cancer Institute, 82(11), 941–946.PubMedCrossRefGoogle Scholar
  28. 28.
    Lagiou, A., Trichopoulos, D., Tzonou, A., Lagiou, P., & Mucci, L. (2001). Are there age-dependent effects of diet on prostate cancer risk? Sozial- und Praventivmedizin, 46(5), 329–334.PubMedCrossRefGoogle Scholar
  29. 29.
    Lu, Q. Y., Hung, J. C., Heber, D., Go, V. L., Reuter, V. E., Cordon-Cardo, C., et al. (2001). Inverse associations between plasma lycopene and other carotenoids and prostate cancer. Cancer Epidemiology, Biomarkers & Prevention, 10(7), 749–756.Google Scholar
  30. 30.
    McCann, S. E., Ambrosone, C. B., Moysich, K. B., Brasure, J., Marshall, J. R., Freudenheim, J. L., et al. (2005). Intakes of selected nutrients, foods, and phytochemicals and prostate cancer risk in Western New York. Nutrition and Cancer, 53(1), 33–41.PubMedCrossRefGoogle Scholar
  31. 31.
    Mills, P. K., Beeson, W. L., Phillips, R. L., & Fraser, G. E. (1989). Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer, 64(3), 598–604.PubMedCrossRefGoogle Scholar
  32. 32.
    Norrish, A. E., Jackson, R. T., Sharpe, S. J., & Skeaff, C. M. (2000). Prostate cancer and dietary carotenoids. American Journal of Epidemiology, 151(2), 119–123.PubMedGoogle Scholar
  33. 33.
    Rao, A. V., Fleshner, N., & Agarwal, S. (1999). Serum and tissue lycopene and biomarkers of oxidation in prostate cancer patients: A case–control study. Nutrition and Cancer, 33(2), 159–164.PubMedCrossRefGoogle Scholar
  34. 34.
    Tzonou, A., Singorello, L. B., Lagiou, P., Wuu, J., Trichopoulos, D., & Trichopoulou, A. (1999). Diet and cancer of the prostate: A case–control study in Greece. International Journal of Cancer, 80, 704–708.CrossRefGoogle Scholar
  35. 35.
    Vogt, T. M., Mayne, S. T., Graubard, B. I., Swanson, C. A., Sowell, A. L., Schoenberg, J. B., et al. (2002). Serum lycopene, other serum carotenoids, and risk of prostate cancer in US blacks and whites. American Journal of Epidemiology, 155(11), 1023–1032.PubMedCrossRefGoogle Scholar
  36. 36.
    Wu, K., Erdman, J. W., Jr., Schwartz, S. J., Platz, E. A., Leitzmann, M., Clinton, S. K., et al. (2004). Plasma and dietary carotenoids, and the risk of prostate cancer: A nested case–control study. Cancer Epidemiology, Biomarkers & Prevention, 13(2), 260–269.CrossRefGoogle Scholar
  37. 37.
    Nomura, A. M., Stemmermann, G. N., Lee, J., & Craft, N. E. (1997). Serum micronutrients and prostate cancer in Japanese Americans in Hawaii. Cancer Epidemiology, Biomarkers & Prevention, 6(7), 487–491.Google Scholar
  38. 38.
    Sakr, W., Grignon, D., Haas, G., Schomer, K., Heilburn, L., Cassin, B., et al. (1995). Epidemiology of high-grade prostatic intraepithelial neoplasia. Pathology, Research and Practice, 191, 838–841.PubMedGoogle Scholar
  39. 39.
    Sakr, W. A., Haas, G. P., Cassin, B. F., Pontes, J. E., & Crissman, J. D. (1993). The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. Journal d’Urologie, 150(2 Pt 1), 379–385.Google Scholar
  40. 40.
    Giovannucci, E. (1999). Tomatoes, tomato-based products, lycopene, and cancer: Review of the epidemiologic literature. Journal of the National Cancer Institute, 91(4), 317–331.PubMedCrossRefGoogle Scholar
  41. 41.
    Giovannucci, E. (2005). Tomato products, lycopene, and prostate cancer: A review of the epidemiological literature. The Journal of Nutrition, 135(8), 2030S–2031S.PubMedGoogle Scholar
  42. 42.
    Clinton, S. K., Emenhiser, C., Schwartz, S. J., Bostwick, D. G., Williams, A. W., Moore, B. J., et al. (1996). Cis-trans lycopene isomers, carotenoids, and retinol in the human prostate. Cancer Epidemiology, Biomarkers & Prevention, 5(10), 823–833.Google Scholar
  43. 43.
    Allen, C. M., Schwartz, S. J., Craft, N. E., Giovannucci, E. L., De Groff, V. L., & Clinton, S. K. (2003). Changes in plasma and oral mucosal lycopene isomer concentrations in healthy adults consuming standard servings of processed tomato products. Nutrition and Cancer, 47(1), 48–56.PubMedCrossRefGoogle Scholar
  44. 44.
    Kucuk, O., Sarkar, F. H., Djuric, Z., Sakr, W., Pollak, M. N., Khachik, F., et al. (2002). Effects of lycopene supplementation in patients with localized prostate cancer. Experimental Biology and Medicine, 227(10), 881–885.PubMedGoogle Scholar
  45. 45.
    Grainger, E. M., Schwartz, S. J., Wang, S., Unlu, N. Z., Boileau, T. W., Ferketich, A. K., et al. (2008). A combination of tomato and soy products for men with recurring prostate cancer and rising prostate specific antigen. Nutrition and Cancer, 60(2), 145–154.PubMedCrossRefGoogle Scholar
  46. 46.
    Astorg, P. (2004). Dietary n-6 and n-3 polyunsaturated fatty acids and prostate cancer risk: A review of epidemiological and experimental evidence. Cancer Causes & Control, 15(4), 367–386.CrossRefGoogle Scholar
  47. 47.
    Campbell, J. K., Engelmann, N. J., Lila, M. A., & Erdman, J. W. (2007). Phytoene, phytofluene, and lycopene from tomato powder differentially accumulate in tissues of male fisher 344 rats. Nutrition Research, 27(12), 794–801.PubMedCrossRefGoogle Scholar
  48. 48.
    Cohen, L. A., Zhao, Z., Pittman, B., & Khachik, F. (1999). Effect of dietary lycopene on n-methylnitrosourea-induced mammary tumorigenesis. Nutrition and Cancer, 34(2), 153–159.PubMedCrossRefGoogle Scholar
  49. 49.
    Guttenplan, J. B., Chen, M., Kosinska, W., Thompson, S., Zhao, Z., & Cohen, L. A. (2001). Effects of a lycopene-rich diet on spontaneous and benzo[a]pyrene-induced mutagenesis in prostate, colon and lungs of the lacz mouse. Cancer Letters, 164(1), 1–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim, D. J., Takasuka, N., Kim, J. M., Sekine, K., Ota, T., Asamoto, M., et al. (1997). Chemoprevention by lycopene of mouse lung neoplasia after combined initiation treatment with den, mnu and dmh. Cancer Letters, 120(1), 15–22.PubMedCrossRefGoogle Scholar
  51. 51.
    Limpens, J., Schroder, F. H., de Ridder, C. M., Bolder, C. A., Wildhagen, M. F., Obermuller-Jevic, U. C., et al. (2006). Combined lycopene and vitamin e treatment suppresses the growth of pc-346c human prostate cancer cells in nude mice. The Journal of Nutrition, 136(5), 1287–1293.PubMedGoogle Scholar
  52. 52.
    Narisawa, T., Fukaura, Y., Hasebe, M., Ito, M., Aizawa, R., Murakoshi, M., et al. (1996). Inhibitory effects of natural carotenoids, alpha-carotene, beta-carotene, lycopene and lutein, on colonic aberrant crypt foci formation in rats. Cancer Letters, 107(1), 137–142.PubMedCrossRefGoogle Scholar
  53. 53.
    Narisawa, T., Fukaura, Y., Hasebe, M., Nomura, S., Oshima, S., Sakamoto, H., et al. (1998). Prevention of n-methylnitrosourea-induced colon carcinogenesis in f344 rats by lycopene and tomato juice rich in lycopene. Japanese Journal of Cancer Research, 89(10), 1003–1008.PubMedGoogle Scholar
  54. 54.
    Siler, U., Barella, L., Spitzer, V., Schnorr, J., Lein, M., Goralczyk, R., et al. (2004). Lycopene and vitamin e interfere with autocrine/paracrine loops in the dunning prostate cancer model. The FASEB Journal, 18(9), 1019–1021.PubMedGoogle Scholar
  55. 55.
    Tang, L., Jin, T., Zeng, X., & Wang, J. S. (2005). Lycopene inhibits the growth of human androgen-independent prostate cancer cells in vitro and in balb/c nude mice. The Journal of Nutrition, 135(2), 287–290.PubMedGoogle Scholar
  56. 56.
    Nagasawa, H., Mitamura, T., Sakamoto, S., & Yamamoto, K. (1995). Effects of lycopene on spontaneous mammary tumour development in shn virgin mice. Anticancer Research, 15(4), 1173–1178.PubMedGoogle Scholar
  57. 57.
    Sharoni, Y., Giron, E., Rise, M., & Levy, J. (1997). Effects of lycopene-enriched tomato oleoresin on 7, 12-dimethyl-benz[a]anthracene-induced rat mammary tumors. Cancer Detection and Prevention, 21(2), 118–123.PubMedGoogle Scholar
  58. 58.
    Wang, Y., Ausman, L. M., Greenberg, A. S., Russell, R. M., & Wang, X. D. (2010). Dietary lycopene and tomato extract supplementations inhibit nonalcoholic steatohepatitis-promoted hepatocarcinogenesis in rats. International Journal of Cancer, 126(8), 1788–1796.Google Scholar
  59. 59.
    Imaida, K., Tamano, S., Kato, K., Ikeda, Y., Asamoto, M., Takahashi, S., et al. (2001). Lack of chemopreventive effects of lycopene and curcumin on experimental rat prostate carcinogenesis. Carcinogenesis, 22(3), 467–472.PubMedCrossRefGoogle Scholar
  60. 60.
    Venkateswaran, V., Fleshner, N. E., & Klotz, L. H. (2004). Synergistic effect of vitamin e and selenium in human prostate cancer cell lines. Prostate Cancer and Prostatic Diseases, 7(1), 54–56.PubMedCrossRefGoogle Scholar
  61. 61.
    Venkateswaran, V., Klotz, L. H., Ramani, M., Sugar, L. M., Jacob, L. E., Nam, R. K., et al. (2009). A combination of micronutrients is beneficial in reducing the incidence of prostate cancer and increasing survival in the lady transgenic model. Cancer Prevention Research Journal (Philadelphia, PA), 2(5), 473–483.Google Scholar
  62. 62.
    Mossine, V. V., Chopra, P., & Mawhinney, T. P. (2008). Interaction of tomato lycopene and ketosamine against rat prostate tumorigenesis. Cancer Research, 68(11), 4384–4391.PubMedCrossRefGoogle Scholar
  63. 63.
    Mein, J. R., Lian, F., & Wang, X. D. (2008). Biological activity of lycopene metabolites: Implications for cancer prevention. Nutrition Reviews, 66(12), 667–683.PubMedCrossRefGoogle Scholar
  64. 64.
    Nara, E., Hayashi, H., Kotake, M., Miyashita, K., & Nagao, A. (2001). Acyclic carotenoids and their oxidation mixtures inhibit the growth of hl-60 human promyelocytic leukemia cells. Nutrition and Cancer, 39(2), 273–283.PubMedCrossRefGoogle Scholar
  65. 65.
    Williams, A. W., Boileau, T. W., Clinton, S. K., & Erdman, J. W., Jr. (2000). Beta-carotene stability and uptake by prostate cancer cells are dependent on delivery vehicle. Nutrition and Cancer, 36(2), 185–190.PubMedCrossRefGoogle Scholar
  66. 66.
    Williams, A. W., Boileau, T. W., Zhou, J. R., Clinton, S. K., & Erdman, J. W., Jr. (2000). Beta-carotene modulates human prostate cancer cell growth and may undergo intracellular metabolism to retinol. The Journal of Nutrition, 130(4), 728–732.PubMedGoogle Scholar
  67. 67.
    Kim, S. J., Nara, E., Kobayashi, H., Terao, J., & Nagao, A. (2001). Formation of cleavage products by autoxidation of lycopene. Lipids, 36(2), 191–199.PubMedCrossRefGoogle Scholar
  68. 68.
    Agricultural Research Service (2007). USDA database for the flavenoid content of selected foods. Release 2.1 Available at data. Accessed on 2010.
  69. 69.
    Shi, J., & Le Maguer, M. (2000). Lycopene in tomatoes: Chemical and physical properties affected by food processing. Critical Reviews in Biotechnology, 20(4), 293–334.PubMedCrossRefGoogle Scholar
  70. 70.
    Abushita, A. A., Daood, H. G., & Biacs, P. A. (2000). Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. Journal of Agricultural and Food Chemistry, 48(6), 2075–2081.PubMedCrossRefGoogle Scholar
  71. 71.
    Mayne, S. T., Walter, M., Cartmel, B., Goodwin, W. J., Jr., & Blumberg, J. (2004). Supplemental beta-carotene, smoking, and urinary f2-isoprostane excretion in patients with prior early stage head and neck cancer. Nutrition and Cancer, 49(1), 1–6. doi:10.1207/s15327914nc4901_1.PubMedCrossRefGoogle Scholar
  72. 72.
    Wang, Y., Ausman, L. M., Greenberg, A. S., Russell, R. M., & Wang, X. D. (2009). Dietary lycopene and tomato extract supplementations inhibit nonalcoholic steatohepatitis-promoted hepatocarcinogenesis in rats. International Journal of Cancer, 126(8), 1788–1796.Google Scholar
  73. 73.
    Allen, C. M., Smith, A. M., Clinton, S. K., & Schwartz, S. J. (2002). Tomato consumption increases lycopene isomer concentration in breast milk and plasma of lactating women. Journal of the American Dietetic Association, 102(9), 1257–1262.CrossRefGoogle Scholar
  74. 74.
    Hadley, C. W., Clinton, S. K., & Schwartz, S. J. (2003). The consumption of processed tomato products enhances plasma lycopene concentrations in association with a reduced lipoprotein sensitivity to oxidative damage. The Journal of Nutrition, 133(3), 727–732.PubMedGoogle Scholar
  75. 75.
    Boileau, A. C., Merchen, N. R., Wasson, K., Atkinson, C. A., & Erdman, J. W., Jr. (1999). Cis-lycopene is more bioavailable than trans-lycopene in vitro and in vivo in lymph-cannulated ferrets. The Journal of Nutrition, 129(6), 1176–1181.PubMedGoogle Scholar
  76. 76.
    Boileau, T. W., Boileau, A. C., & Erdman, J. W., Jr. (2002). Bioavailability of all-trans and cis-isomers of lycopene. Experimental Biology and Medicine (Maywood), 227(10), 914–919.Google Scholar
  77. 77.
    Gajic, M., Zaripheh, S., Sun, F., & Erdman, J. W., Jr. (2006). Apo-8′-lycopenal and apo-12′-lycopenal are metabolic products of lycopene in rat liver. The Journal of Nutrition, 136(6), 1552–1557.PubMedGoogle Scholar
  78. 78.
    Kopec, R. E., Riedl, K. M., Harrison, E. H., Curley, R. W., Jr., Hruszkewycz, D. P., Clinton, S. K., et al. (2010). Identification and quantification of apo-lycopenals in fruits, vegetables, and human plasma. Journal of Agricultural and Food Chemistry, 58(6), 3290–3296.PubMedCrossRefGoogle Scholar
  79. 79.
    Boileau, T. W., Clinton, S. K., & Erdman, J. W., Jr. (2000). Tissue lycopene concentrations and isomer patterns are affected by androgen status and dietary lycopene concentration in male f344 rats. The Journal of Nutrition, 130(6), 1613–1618.PubMedGoogle Scholar
  80. 80.
    Lian, F., Smith, D. E., Ernst, H., Russell, R. M., & Wang, X. D. (2007). Apo-10′-lycopenoic acid inhibits lung cancer cell growth in vitro, and suppresses lung tumorigenesis in the a/j mouse model in vivo. Carcinogenesis, 28(7), 1567–1574.PubMedCrossRefGoogle Scholar
  81. 81.
    Lindshield, B. L., Canene-Adams, K., & Erdman, J. W., Jr. (2007). Lycopenoids: Are lycopene metabolites bioactive? Archives of Biochemistry and Biophysics, 458(2), 136–140.PubMedCrossRefGoogle Scholar
  82. 82.
    Lindshield, B. L., King, J. L., Wyss, A., Goralczyk, R., Lu, C. H., Ford, N. A., et al. (2008). Lycopene biodistribution is altered in 15, 15′-carotenoid monooxygenase knockout mice. The Journal of Nutrition, 138(12), 2367–2371. doi:10.3945/jn.108.099663.PubMedCrossRefGoogle Scholar
  83. 83.
    Campbell, J. K., Rogers, R. B., Lila, M. A., & Erdman, J. W., Jr. (2006). Biosynthesis of 14c-phytoene from tomato cell suspension cultures (Lycopersicon esculentum) for utilization in prostate cancer cell culture studies. Journal of Agricultural and Food Chemistry, 54(3), 747–755.PubMedCrossRefGoogle Scholar
  84. 84.
    Zaripheh, S., & Erdman, J. W., Jr. (2005). The biodistribution of a single oral dose of [14c]-lycopene in rats prefed either a control or lycopene-enriched diet. The Journal of Nutrition, 135(9), 2212–2218.PubMedGoogle Scholar
  85. 85.
    Unlu, N. Z., Bohn, T., Francis, D. M., Nagaraja, H. N., Clinton, S. K., & Schwartz, S. J. (2007). Lycopene from heat-induced cis-isomer-rich tomato sauce is more bioavailable than from all-trans-rich tomato sauce in human subjects. The British Journal of Nutrition, 98(1), 140–146. doi:10.1017/S0007114507685201.PubMedCrossRefGoogle Scholar
  86. 86.
    Erdman, J. W., Jr. (2005). How do nutritional and hormonal status modify the bioavailability, uptake, and distribution of different isomers of lycopene? The Journal of Nutrition, 135(8), 2046S–2047S.PubMedGoogle Scholar
  87. 87.
    Johnson, E. J., Qin, J., Krinsky, N. I., & Russell, R. M. (1997). Ingestion by men of a combined dose of beta-carotene and lycopene does not affect the absorption of beta-carotene but improves that of lycopene. The Journal of Nutrition, 127(9), 1833–1837.PubMedGoogle Scholar
  88. 88.
    Micozzi, M. S., Brown, E. D., Edwards, B. K., Bieri, J. G., Taylor, P. R., Khachik, F., et al. (1992). Plasma carotenoid response to chronic intake of selected foods and beta-carotene supplements in men. The American Journal of Clinical Nutrition, 55(6), 1120–1125.PubMedGoogle Scholar
  89. 89.
    Bohm, V., & Bitsch, R. (1999). Intestinal absorption of lycopene from different matrices and interactions to other carotenoids, the lipid status, and the antioxidant capacity of human plasma. European Journal of Nutrition, 38(3), 118–125.PubMedCrossRefGoogle Scholar
  90. 90.
    Ryan, L., O’Connell, O., O’Sullivan, L., Aherne, S. A., & O’Brien, N. M. (2008). Micellarisation of carotenoids from raw and cooked vegetables. Plant Foods for Human Nutrition, 63(3), 127–133.PubMedCrossRefGoogle Scholar
  91. 91.
    Fielding, J. M., Rowley, K. G., Cooper, P., & K, O. D. (2005). Increases in plasma lycopene concentration after consumption of tomatoes cooked with olive oil. Asia Pacific Journal of Clinical Nutrition, 14(2), 131–136.PubMedGoogle Scholar
  92. 92.
    Unlu, N. Z., Bohn, T., Clinton, S. K., & Schwartz, S. J. (2005). Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. The Journal of Nutrition, 135(3), 431–436.PubMedGoogle Scholar
  93. 93.
    Brown, M. J., Ferruzzi, M. G., Nguyen, M. L., Cooper, D. A., Eldridge, A. L., Schwartz, S. J., et al. (2004). Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. The American Journal of Clinical Nutrition, 80(2), 396–403.PubMedGoogle Scholar
  94. 94.
    Ahuja, K. D., Ashton, E. L., & Ball, M. J. (2003). Effects of a high monounsaturated fat, tomato-rich diet on serum levels of lycopene. European Journal of Clinical Nutrition, 57(7), 832–841.PubMedCrossRefGoogle Scholar
  95. 95.
    Cardinault, N., Tyssandier, V., Grolier, P., Winklhofer-Roob, B. M., Ribalta, J., Bouteloup-Demange, C., et al. (2003). Comparison of the postprandial chylomicron carotenoid responses in young and older subjects. European Journal of Nutrition, 42(6), 315–323.PubMedCrossRefGoogle Scholar
  96. 96.
    Agarwal, S., & Rao, A. V. (2000). Tomato lycopene and its role in human health and chronic diseases. Cmaj, 163(6), 739–744.PubMedGoogle Scholar
  97. 97.
    Ripple, M. O., Henry, W. F., Rago, R. P., & Wilding, G. (1997). Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells. Journal of the National Cancer Institute, 89(1), 40–48.PubMedCrossRefGoogle Scholar
  98. 98.
    Di Mascio, P., Kaiser, S., & Sies, H. (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Archives of Biochemistry and Biophysics, 274(2), 532–538.PubMedCrossRefGoogle Scholar
  99. 99.
    Miller, N. J., Sampson, J., Candeias, L. P., Bramley, P. M., & Rice-Evans, C. A. (1996). Antioxidant activities of carotenes and xanthophylls. FEBS Letters, 384(3), 240–242.PubMedCrossRefGoogle Scholar
  100. 100.
    Jamshidzadeh, A., Baghban, M., Azarpira, N., Bardbori, A. M., & Niknahad, H. (2008). Effects of tomato extract on oxidative stress induced toxicity in different organs of rats. Food and Chemical Toxicology, 46(12), 3612–3615.PubMedCrossRefGoogle Scholar
  101. 101.
    Matos, H. R., Marques, S. A., Gomes, O. F., Silva, A. A., Heimann, J. C., Di Mascio, P., et al. (2006). Lycopene and beta-carotene protect in vivo iron-induced oxidative stress damage in rat prostate. Brazilian Journal of Medical and Biological Research, 39(2), 203–210.PubMedCrossRefGoogle Scholar
  102. 102.
    Astley, S. B., Hughes, D. A., Wright, A. J., Elliott, R. M., & Southon, S. (2004). DNA damage and susceptibility to oxidative damage in lymphocytes: Effects of carotenoids in vitro and in vivo. The British Journal of Nutrition, 91(1), 53–61.PubMedCrossRefGoogle Scholar
  103. 103.
    Misra, R., Mangi, S., Joshi, S., Mittal, S., Gupta, S. K., & Pandey, R. M. (2006). Lycored as an alternative to hormone replacement therapy in lowering serum lipids and oxidative stress markers: A randomized controlled clinical trial. The Journal of Obstetrics and Gynaecology Research, 32(3), 299–304.PubMedCrossRefGoogle Scholar
  104. 104.
    Porrini, M., & Riso, P. (2000). Lymphocyte lycopene concentration and DNA protection from oxidative damage is increased in women after a short period of tomato consumption. The Journal of Nutrition, 130(2), 189–192.PubMedGoogle Scholar
  105. 105.
    Rao, A., & Agarwal, S. (1999). Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutrition Research, 19(2), 305–323.CrossRefGoogle Scholar
  106. 106.
    Riso, P., Pinder, A., Santangelo, A., & Porrini, M. (1999). Does tomato consumption effectively increase the resistance of lymphocyte DNA to oxidative damage? The American Journal of Clinical Nutrition, 69(4), 712–718.PubMedGoogle Scholar
  107. 107.
    Chalabi, N., Delort, L., Le Corre, L., Satih, S., Bignon, Y. J., & Bernard-Gallon, D. (2006). Gene signature of breast cancer cell lines treated with lycopene. Pharmacogenomics, 7(5), 663–672.PubMedCrossRefGoogle Scholar
  108. 108.
    Chalabi, N., Delort, L., Satih, S., Dechelotte, P., Bignon, Y. J., & Bernard-Gallon, D. J. (2007). Immunohistochemical expression of raralpha, rarbeta, and cx43 in breast tumor cell lines after treatment with lycopene and correlation with rt-qpcr. The Journal of Histochemistry and Cytochemistry, 55(9), 877–883.PubMedCrossRefGoogle Scholar
  109. 109.
    Tang, F. Y., Cho, H. J., Pai, M. H., & Chen, Y. H. (2009). Concomitant supplementation of lycopene and eicosapentaenoic acid inhibits the proliferation of human colon cancer cells. The Journal of Nutritional Biochemistry, 20(6), 426–434.PubMedCrossRefGoogle Scholar
  110. 110.
    Obermuller-Jevic, U. C., Olano-Martin, E., Corbacho, A. M., Eiserich, J. P., van der Vliet, A., Valacchi, G., et al. (2003). Lycopene inhibits the growth of normal human prostate epithelial cells in vitro. The Journal of Nutrition, 133(11), 3356–3360.PubMedGoogle Scholar
  111. 111.
    Haase, I., Evans, R., Pofahl, R., & Watt, F. M. (2003). Regulation of keratinocyte shape, migration and wound epithelialization by igf-1- and egf-dependent signalling pathways. Journal of Cell Science, 116(Pt 15), 3227–3238.PubMedCrossRefGoogle Scholar
  112. 112.
    Hwang, E. S., & Bowen, P. E. (2004). Cell cycle arrest and induction of apoptosis by lycopene in lncap human prostate cancer cells. Journal of Medicinal Food, 7(3), 284–289.PubMedCrossRefGoogle Scholar
  113. 113.
    Ivanov, N. I., Cowell, S. P., Brown, P., Rennie, P. S., Guns, E. S., & Cox, M. E. (2007). Lycopene differentially induces quiescence and apoptosis in androgen-responsive and -independent prostate cancer cell lines. Clinical Nutrition, 26(2), 252–263.PubMedCrossRefGoogle Scholar
  114. 114.
    Kanagaraj, P., Vijayababu, M. R., Ravisankar, B., Anbalagan, J., Aruldhas, M. M., & Arunakaran, J. (2007). Effect of lycopene on insulin-like growth factor-i, igf binding protein-3 and igf type-i receptor in prostate cancer cells. Journal of Cancer Research and Clinical Oncology, 133(6), 351–359.PubMedCrossRefGoogle Scholar
  115. 115.
    Kulik, G., Klippel, A., & Weber, M. J. (1997). Antiapoptotic signalling by the insulin-like growth factor i receptor, phosphatidylinositol 3-kinase, and akt. Molecular and Cellular Biology, 17(3), 1595–1606.PubMedGoogle Scholar
  116. 116.
    Levy, J., Bosin, E., Feldman, B., Giat, Y., Miinster, A., Danilenko, M., et al. (1995). Lycopene is a more potent inhibitor of human cancer cell proliferation than either alpha-carotene or beta-carotene. Nutrition and Cancer, 24(3), 257–266.PubMedCrossRefGoogle Scholar
  117. 117.
    Liu, X., Allen, J. D., Arnold, J. T., & Blackman, M. R. (2008). Lycopene inhibits igf-i signal transduction and growth in normal prostate epithelial cells by decreasing dht-modulated igf-i production in co-cultured reactive stromal cells. Carcinogenesis, 29(4), 816–823.PubMedCrossRefGoogle Scholar
  118. 118.
    Peternac, D., Klima, I., Cecchini, M. G., Schwaninger, R., Studer, U. E., & Thalmann, G. N. (2008). Agents used for chemoprevention of prostate cancer may influence psa secretion independently of cell growth in the lncap model of human prostate cancer progression. The Prostate, 68(12), 1307–1318.PubMedCrossRefGoogle Scholar
  119. 119.
    Wang, S., DeGroff, V. L., & Clinton, S. K. (2003). Tomato and soy polyphenols reduce insulin-like growth factor-i-stimulated rat prostate cancer cell proliferation and apoptotic resistance in vitro via inhibition of intracellular signaling pathways involving tyrosine kinase. The Journal of Nutrition, 133(7), 2367–2376.PubMedGoogle Scholar
  120. 120.
    Yu, H., & Rohan, T. (2000). Role of the insulin-like growth factor family in cancer development and progression. Journal of the National Cancer Institute, 92(18), 1472–1489.PubMedCrossRefGoogle Scholar
  121. 121.
    Klippel, A., Kavanaugh, W. M., Pot, D., & Williams, L. T. (1997). A specific product of phosphatidylinositol 3-kinase directly activates the protein kinase akt through its pleckstrin homology domain. Molecular and Cellular Biology, 17(1), 338–344.PubMedGoogle Scholar
  122. 122.
    Sharoni, Y., Danilenko, M., Walfisch, S., Amir, H., Nahum, A., Ben-Dor, A., et al. (2002). Role of gene regulation in the anticancer activity of carotenoids. Pure and Applied Chemistry, 74(8), 1469–1477.CrossRefGoogle Scholar
  123. 123.
    Talvas, J., Caris-Veyrat, C., Guy, L., Rambeau, M., Lyan, B., Minet-Quinard, R., et al. (2010). Differential effects of lycopene consumed in tomato paste and lycopene in the form of a purified extract on target genes of cancer prostatic cells. The American Journal of Clinical Nutrition, 91(6), 1716–1724.PubMedCrossRefGoogle Scholar
  124. 124.
    Migita, T., Ruiz, S., Fornari, A., Fiorentino, M., Priolo, C., Zadra, G., et al. (2009). Fatty acid synthase: A metabolic enzyme and candidate oncogene in prostate cancer. Journal of the National Cancer Institute, 101(7), 519–532.PubMedCrossRefGoogle Scholar
  125. 125.
    Chan, J. M., Stampfer, M. J., Giovannucci, E., Gann, P. H., Ma, J., Wilkinson, P., et al. (1998). Plasma insulin-like growth factor-I and prostate cancer risk: A prospective study. Science, 279(5350), 563–566.PubMedCrossRefGoogle Scholar
  126. 126.
    Hankinson, S. E., Willett, W. C., Colditz, G. A., Hunter, D. J., Michaud, D. S., Deroo, B., et al. (1998). Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet, 351(9113), 1393–1396.PubMedCrossRefGoogle Scholar
  127. 127.
    Ma, J., Pollak, M. N., Giovannucci, E., Chan, J. M., Tao, Y., Hennekens, C. H., et al. (1999). Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. Journal of the National Cancer Institute, 91(7), 620–625.PubMedCrossRefGoogle Scholar
  128. 128.
    Mantzoros, C. S., Tzonou, A., Signorello, L. B., Stampfer, M., Trichopoulos, D., & Adami, H. O. (1997). Insulin-like growth factor 1 in relation to prostate cancer and benign prostatic hyperplasia. British Journal of Cancer, 76(9), 1115–1118.PubMedGoogle Scholar
  129. 129.
    Yu, H., Spitz, M. R., Mistry, J., Gu, J., Hong, W. K., & Wu, X. (1999). Plasma levels of insulin-like growth factor-I and lung cancer risk: A case–control analysis. Journal of the National Cancer Institute, 91(2), 151–156.PubMedCrossRefGoogle Scholar
  130. 130.
    Holmes, M. D., Pollak, M. N., Willett, W. C., & Hankinson, S. E. (2002). Dietary correlates of plasma insulin-like growth factor i and insulin-like growth factor binding protein 3 concentrations. Cancer Epidemiology, Biomarkers & Prevention, 11(9), 852–861.Google Scholar
  131. 131.
    Vrieling, A., Voskuil, D. W., Bonfrer, J. M., Korse, C. M., van Doorn, J., Cats, A., et al. (2007). Lycopene supplementation elevates circulating insulin-like growth factor binding protein-1 and -2 concentrations in persons at greater risk of colorectal cancer. The American Journal of Clinical Nutrition, 86(5), 1456–1462.PubMedGoogle Scholar
  132. 132.
    Mucci, L. A., Tamimi, R., Lagiou, P., Trichopoulou, A., Benetou, V., Spanos, E., et al. (2001). Are dietary influences on the risk of prostate cancer mediated through the insulin-like growth factor system? BJU International, 87(9), 814–820.PubMedCrossRefGoogle Scholar
  133. 133.
    Schwarz, S., Obermuller-Jevic, U. C., Hellmis, E., Koch, W., Jacobi, G., & Biesalski, H. K. (2008). Lycopene inhibits disease progression in patients with benign prostate hyperplasia. The Journal of Nutrition, 138(1), 49–53.PubMedGoogle Scholar
  134. 134.
    Campbell, J. K., Stroud, C. K., Nakamura, M. T., Lila, M. A., & Erdman, J. W., Jr. (2006). Serum testosterone is reduced following short-term phytofluene, lycopene, or tomato powder consumption in f344 rats. The Journal of Nutrition, 136(11), 2813–2819.PubMedGoogle Scholar
  135. 135.
    Herzog, A., Siler, U., Spitzer, V., Seifert, N., Denelavas, A., Hunziker, P. B., et al. (2005). Lycopene reduced gene expression of steroid targets and inflammatory markers in normal rat prostate. The FASEB Journal, 19(2), 272–274.PubMedGoogle Scholar
  136. 136.
    King-Batoon, A., Leszczynska, J. M., & Klein, C. B. (2008). Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environmental and Molecular Mutagenesis, 49(1), 36–45.PubMedCrossRefGoogle Scholar
  137. 137.
    Phe, V., Cussenot, O., & Roupret, M. (2010). Methylated genes as potential biomarkers in prostate cancer. BJU International, 105(10), 1364–1370.PubMedCrossRefGoogle Scholar
  138. 138.
    Xu, C., Li, C. Y., & Kong, A. N. (2005). Induction of phase I, II and III drug metabolism/transport by xenobiotics. Archives of Pharmacal Research, 28(3), 249–268.PubMedCrossRefGoogle Scholar
  139. 139.
    Talalay, P. (2000). Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors, 12(1–4), 5–11.PubMedCrossRefGoogle Scholar
  140. 140.
    Ben-Dor, A., Steiner, M., Gheber, L., Danilenko, M., Dubi, N., Linnewiel, K., et al. (2005). Carotenoids activate the antioxidant response element transcription system. Molecular Cancer Therapeutics, 4(1), 177–186.PubMedGoogle Scholar
  141. 141.
    Giudice, A., & Montella, M. (2006). Activation of the nrf2-are signaling pathway: A promising strategy in cancer prevention. BioEssays, 28(2), 169–181.PubMedCrossRefGoogle Scholar
  142. 142.
    Talalay, P., Dinkova-Kostova, A. T., & Holtzclaw, W. D. (2003). Importance of phase 2 gene regulation in protection against electrophile and reactive oxygen toxicity and carcinogenesis. Advances in Enzyme Regulation, 43, 121–134.PubMedCrossRefGoogle Scholar
  143. 143.
    Lian, F., & Wang, X. D. (2008). Enzymatic metabolites of lycopene induce nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells. International Journal of Cancer, 123(6), 1262–1268.CrossRefGoogle Scholar
  144. 144.
    Aust, O., Ale-Agha, N., Zhang, L., Wollersen, H., Sies, H., & Stahl, W. (2003). Lycopene oxidation product enhances gap junctional communication. Food and Chemical Toxicology, 41(10), 1399–1407.PubMedCrossRefGoogle Scholar
  145. 145.
    Erdman, J. W., Jr., Ford, N. A., & Lindshield, B. L. (2009). Are the health attributes of lycopene related to its antioxidant function? Archives of Biochemistry and Biophysics, 483(2), 229–235.PubMedCrossRefGoogle Scholar
  146. 146.
    Trosko, J. E., Chang, C. C., Upham, B., & Wilson, M. (1998). Epigenetic toxicology as toxicant-induced changes in intracellular signalling leading to altered gap junctional intercellular communication. Toxicology Letters, 102–103, 71–78.PubMedCrossRefGoogle Scholar
  147. 147.
    King, T. J., & Bertram, J. S. (2005). Connexins as targets for cancer chemoprevention and chemotherapy. Biochimica et Biophysica Acta, 1719(1–2), 146–160.PubMedCrossRefGoogle Scholar
  148. 148.
    Hossain, M. Z., Wilkens, L. R., Mehta, P. P., Loewenstein, W., & Bertram, J. S. (1989). Enhancement of gap junctional communication by retinoids correlates with their ability to inhibit neoplastic transformation. Carcinogenesis, 10(9), 1743–1748.PubMedCrossRefGoogle Scholar
  149. 149.
    Zhang, L. X., Cooney, R. V., & Bertram, J. S. (1991). Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in c3h/10t1/2 cells: relationship to their cancer chemopreventive action. Carcinogenesis, 12(11), 2109–2114.PubMedCrossRefGoogle Scholar
  150. 150.
    Stahl, W., von Laar, J., Martin, H. D., Emmerich, T., & Sies, H. (2000). Stimulation of gap junctional communication: comparison of acyclo-retinoic acid and lycopene. Archives of Biochemistry and Biophysics, 373(1), 271–274.PubMedCrossRefGoogle Scholar
  151. 151.
    Gitenay, D., Lyan, B., Talvas, J., Mazur, A., George, S., Caris-Veyrat, C., et al. (2007). Serum from rats fed red or yellow tomatoes induces connexin43 expression independently from lycopene in a prostate cancer cell line. Biochemical and Biophysical Research Communications, 364(3), 578–582.PubMedCrossRefGoogle Scholar
  152. 152.
    Krutovskikh, V., Asamoto, M., Takasuka, N., Murakoshi, M., Nishino, H., & Tsuda, H. (1997). Differential dose-dependent effects of alpha-, beta-carotenes and lycopene on gap-junctional intercellular communication in rat liver in vivo. Japanese Journal of Cancer Research, 88(12), 1121–1124.PubMedGoogle Scholar
  153. 153.
    Shen, Y. C., Chen, S. L., Zhuang, S. R., & Wang, C. K. (2008). Contribution of tomato phenolics to suppression of cox-2 expression in kb cells. Journal of Food Science, 73(1), C1–C10.PubMedCrossRefGoogle Scholar
  154. 154.
    Jacob, K., Periago, M. J., Bohm, V., & Berruezo, G. R. (2008). Influence of lycopene and vitamin c from tomato juice on biomarkers of oxidative stress and inflammation. The British Journal of Nutrition, 99(1), 137–146.PubMedCrossRefGoogle Scholar
  155. 155.
    Riso, P., Visioli, F., Grande, S., Guarnieri, S., Gardana, C., Simonetti, P., et al. (2006). Effect of a tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. Journal of Agricultural and Food Chemistry, 54(7), 2563–2566.PubMedCrossRefGoogle Scholar
  156. 156.
    Blum, A., Monir, M., Khazim, K., Peleg, A., & Blum, N. (2007). Tomato-rich (mediterranean) diet does not modify inflammatory markers. Clinical and Investigative Medicine, 30(2), E70–E74.PubMedGoogle Scholar
  157. 157.
    Miller, E. C., Hadley, C. W., Schwartz, S. J., Erdman, J. W., Jr., Boileau, T. W.-M., & Clinton, S. K. (2002). Lycopene, tomato products, and prostate cancer prevention. Have we established causality? Pure and Applied Chemistry, 74(8), 1435–1441.CrossRefGoogle Scholar
  158. 158.
    Foolad, M. R. (2007). Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics, 2007, 64358.PubMedGoogle Scholar
  159. 159.
    Apel, W., & Bock, R. (2009). Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin a conversion. Plant Physiology, 151(1), 59–66.PubMedCrossRefGoogle Scholar
  160. 160.
    Alba, R., Payton, P., Fei, Z., McQuinn, R., Debbie, P., Martin, G. B., et al. (2005). Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. The Plant Cell, 17(11), 2954–2965.PubMedCrossRefGoogle Scholar
  161. 161.
    Dumas, Y., Dadomo, M., Di Lucca, G., & Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. Journal of the Science of Food and Agriculture, 83, 369–382.CrossRefGoogle Scholar
  162. 162.
    Giuntini, D., Graziani, G., Lercari, B., Fogliano, V., Soldatini, G. F., & Ranieri, A. (2005). Changes in carotenoid and ascorbic acid contents in fruits of different tomato genotypes related to the depletion of UV-b radiation. Journal of Agricultural and Food Chemistry, 53(8), 3174–3181.PubMedCrossRefGoogle Scholar
  163. 163.
    Giuntini, D., Lazzeri, V., Calvenzani, V., Dall’Asta, C., Galaverna, G., Tonelli, C., et al. (2008). Flavonoid profiling and biosynthetic gene expression in flesh and peel of two tomato genotypes grown under UV-b-depleted conditions during ripening. Journal of Agricultural and Food Chemistry, 56(14), 5905–5915.PubMedCrossRefGoogle Scholar
  164. 164.
    Colla, G., Mitchell, J. P., Joyce, B. A., Huyck, L. M., Wallender, W. W., Temple, S. R., et al. (2000). Soil physical properties and tomato yield and quality in alternative cropping systems. Agronomy Journal, 92, 924–932.CrossRefGoogle Scholar
  165. 165.
    Capanoglu, E., Beekwilder, J., Boyacioglu, D., Hall, R., & de Vos, R. (2008). Changes in antioxidant and metabolite profiles during production of tomato paste. Journal of Agricultural and Food Chemistry, 56(3), 964–973.PubMedCrossRefGoogle Scholar
  166. 166.
    Dewanto, V., Wu, X., Adom, K. K., & Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50(10), 3010–3014.PubMedCrossRefGoogle Scholar
  167. 167.
    Garcia-Alonso, F. J., Bravo, S., Casas, J., Perez-Conesa, D., Jacob, K., & Periago, M. J. (2009). Changes in antioxidant compounds during the shelf life of commercial tomato juices in different packaging materials. Journal of Agricultural and Food Chemistry, 57(15), 6815–6822.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hsueh-Li Tan
    • 1
  • Jennifer M. Thomas-Ahner
    • 2
  • Elizabeth M. Grainger
    • 2
  • Lei Wan
    • 1
  • David M. Francis
    • 3
  • Steven J. Schwartz
    • 2
    • 4
  • John W. ErdmanJr.
    • 5
  • Steven K. Clinton
    • 2
    • 6
  1. 1.The Ohio State University Nutrition (OSUN) Graduate ProgramThe Ohio State UniversityColumbusUSA
  2. 2.Comprehensive Cancer CenterThe Ohio State UniversityColumbusUSA
  3. 3.Department of Horticulture and Crop Sciences, Ohio Agricultural Research and Development CenterThe Ohio State UniversityWoosterUSA
  4. 4.Department of Food Science and Technology, College of Food, Agriculture, and Environmental ScienceThe Ohio State UniversityColumbusUSA
  5. 5.Department of Food Science and Human Nutrition and the Division of Nutritional SciencesUniversity of IllinoisUrbanaUSA
  6. 6.Division of Medical Oncology, Department of Internal Medicine, College of MedicineThe Ohio State UniversityColumbusUSA

Personalised recommendations