Cancer and Metastasis Reviews

, Volume 29, Issue 3, pp 447–463 | Cite as

Antimetastatic efficacy of silibinin: molecular mechanisms and therapeutic potential against cancer

  • Gagan Deep
  • Rajesh AgarwalEmail author


Cancer is a major health problem around the world. Research efforts in the last few decades have been successful in providing better and effective treatments against both early stage and localized cancer, but clinical options against advanced metastatic stage/s of cancer remain limited. The high morbidity and mortality in most of the cancers are attributed to their metastatic spread to distant organs. Due to its extreme clinical relevance, metastasis has been extensively studied and is now understood as a highly complex biological event that involves multiple steps including acquisition of invasiveness by cancer cells, intravasation into circulatory system, survival in the circulation, arrest in microvasculature, extravasation, and growth at distant organs. The increasing understanding of molecular underpinnings of these events has provided excellent opportunity to target metastasis especially through nontoxic and biologically effective nutraceuticals. Silibinin, a popular dietary supplement isolated from milk thistle seed extracts, is one such natural agent that has shown biological efficacy through pleiotropic mechanisms against a variety of cancers and is currently in clinical trials. Recent preclinical studies have also shown strong efficacy of silibinin to target cancer cell’s migratory and invasive characteristics as well as their ability to metastasize to distant organs. Detailed mechanistic analyses revealed that silibinin targets signaling molecules involved in the regulation of epithelial-to-mesenchymal transition, proteases activation, adhesion, motility, invasiveness as well as the supportive tumor-microenvironment components, thereby inhibiting metastasis. Overall, the long history of human use, remarkable nontoxicity, and preclinical efficacy strongly favor the clinical use of silibinin against advanced metastatic cancers.


Metastasis Silibinin EMT Tumor microenvironment Proteases 



This work was supported by NCI RO1 grant CA102514.


  1. 1.
    Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., & Thun, M. J. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59(4), 225–249.CrossRefGoogle Scholar
  2. 2.
    Kingsley, L. A., Fournier, P. G., Chirgwin, J. M., & Guise, T. A. (2007). Molecular biology of bone metastasis. Molecular Cancer Therapeutics, 6(10), 2609–2617.PubMedCrossRefGoogle Scholar
  3. 3.
    Tantivejkul, K., Kalikin, L. M., & Pienta, K. J. (2004). Dynamic process of prostate cancer metastasis to bone. Journal of Cellular Biochemistry, 91(4), 706–717.PubMedCrossRefGoogle Scholar
  4. 4.
    Hadaschik, B. A., & Gleave, M. E. (2007). Therapeutic options for hormone-refractory prostate cancer in 2007. Urologic Oncology, 25(5), 413–419.PubMedGoogle Scholar
  5. 5.
    Mehlen, P., & Puisieux, A. (2006). Metastasis: A question of life or death. Nature Reviews. Cancer, 6(6), 449–458. doi: 10.1038/nrc1886.PubMedCrossRefGoogle Scholar
  6. 6.
    Nguyen, D. X., & Massague, J. (2007). Genetic determinants of cancer metastasis. Nature Reviews. Genetics, 8(5), 341–352. doi: 10.1038/nrg2101.PubMedCrossRefGoogle Scholar
  7. 7.
    Monteiro, J., & Fodde, R. (2010). Cancer stemness and metastasis: Therapeutic consequences and perspectives. European Journal of Cancer, 46(7), 1198–1203. doi: 10.1016/j.ejca.2010.02.030/S0959-8049(10)00157-7.PubMedCrossRefGoogle Scholar
  8. 8.
    Polyak, K., & Weinberg, R. A. (2009). Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nature Reviews. Cancer, 9(4), 265–273.PubMedCrossRefGoogle Scholar
  9. 9.
    Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews. Cancer, 9(4), 239–252. doi: 10.1038/nrc2618.PubMedCrossRefGoogle Scholar
  10. 10.
    Yang, J., & Weinberg, R. A. (2008). Epithelial–mesenchymal transition: At the crossroads of development and tumor metastasis. Developmental Cell, 14(6), 818–829. doi: 10.1016/j.devcel.2008.05.009/S1534-5807(08)00209-8.PubMedCrossRefGoogle Scholar
  11. 11.
    Gupta, G. P., Minn, A. J., Kang, Y., Siegel, P. M., Serganova, I., Cordon-Cardo, C., et al. (2005). Identifying site-specific metastasis genes and functions. Cold Spring Harbor Symposia on Quantitative Biology, 70, 149–158. doi: 10.1101/sqb.2005.70.018.PubMedCrossRefGoogle Scholar
  12. 12.
    Clarke, N. W., Hart, C. A., & Brown, M. D. (2009). Molecular mechanisms of metastasis in prostate cancer. Asian Journal of Andrology, 11(1), 57–67. doi: 10.1038/aja.2008.29.PubMedCrossRefGoogle Scholar
  13. 13.
    Buijs, J. T., & van der Pluijm, G. (2009). Osteotropic cancers: From primary tumor to bone. Cancer Letters, 273(2), 177–193. doi: 10.1016/j.canlet.2008.05.044/S0304-3835(08)00450-3.PubMedCrossRefGoogle Scholar
  14. 14.
    Guarino, M., Rubino, B., & Ballabio, G. (2007). The role of epithelial–mesenchymal transition in cancer pathology. Pathology, 39(3), 305–318.PubMedCrossRefGoogle Scholar
  15. 15.
    Christiansen, J. J., & Rajasekaran, A. K. (2006). Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Research, 66(17), 8319–8326.PubMedCrossRefGoogle Scholar
  16. 16.
    Nieswandt, B., Hafner, M., Echtenacher, B., & Mannel, D. N. (1999). Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Research, 59(6), 1295–1300.PubMedGoogle Scholar
  17. 17.
    Palumbo, J. S., Talmage, K. E., Massari, J. V., La Jeunesse, C. M., Flick, M. J., Kombrinck, K. W., et al. (2007). Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and -independent mechanisms. Blood, 110(1), 133–141. doi: 10.1182/blood-2007-01-065995.PubMedCrossRefGoogle Scholar
  18. 18.
    Karpatkin, S., Pearlstein, E., Salk, P. L., & Yogeeswaran, G. (1981). Role of platelets in tumor cell metastases. Annals of the New York Academy of Sciences, 370, 101–118.PubMedCrossRefGoogle Scholar
  19. 19.
    Fidler, I. J. (2003). The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nature Reviews. Cancer, 3(6), 453–458. doi: 10.1038/nrc1098.PubMedCrossRefGoogle Scholar
  20. 20.
    Weiss, L. (2000). Metastasis of cancer: A conceptual history from antiquity to the 1990s. Cancer and Metastasis Reviews, 19(3–4, I–XI), 193–383.CrossRefGoogle Scholar
  21. 21.
    Sugarbaker, E. V. (1979). Cancer metastasis: A product of tumor–host interactions. Current Problems in Cancer, 3(7), 1–59.PubMedCrossRefGoogle Scholar
  22. 22.
    Batson, O. V. (1940). The function of the vertebral veins and their role in the spread of metastases. Annals of Surgery, 112(1), 138–149.PubMedCrossRefGoogle Scholar
  23. 23.
    Coman, D. R., & de Long, R. P. (1951). The role of the vertebral venous system in the metastasis of cancer to the spinal column; experiments with tumor-cell suspensions in rats and rabbits. Cancer, 4(3), 610–618.PubMedCrossRefGoogle Scholar
  24. 24.
    Klarmann, G. J., Hurt, E. M., Mathews, L. A., Zhang, X., Duhagon, M. A., Mistree, T., et al. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clinical & Experimental Metastasis, 26(5), 433–446.CrossRefGoogle Scholar
  25. 25.
    Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., Thomas, S. B., & Farrar, W. L. (2008). CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. British Journal of Cancer, 98(4), 756–765.PubMedCrossRefGoogle Scholar
  26. 26.
    Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549. doi: S1535610803001326.PubMedCrossRefGoogle Scholar
  27. 27.
    Langley, R. R., & Fidler, I. J. (2007). Tumor cell–organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocrine Reviews, 28(3), 297–321. doi: 10.1210/er.2006-0027.PubMedCrossRefGoogle Scholar
  28. 28.
    Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827. doi: 10.1038/nature04186.PubMedCrossRefGoogle Scholar
  29. 29.
    Erler, J. T., Bennewith, K. L., Cox, T. R., Lang, G., Bird, D., Koong, A., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1), 35–44. doi: 10.1016/j.ccr.2008.11.012/S1535-6108(08)00378-4.PubMedCrossRefGoogle Scholar
  30. 30.
    Demicheli, R., Retsky, M. W., Hrushesky, W. J., & Baum, M. (2007). Tumor dormancy and surgery-driven interruption of dormancy in breast cancer: Learning from failures. Nature Clinical Practice. Oncology, 4(12), 699–710. doi: 10.1038/ncponc0999.PubMedCrossRefGoogle Scholar
  31. 31.
    Demicheli, R., Retsky, M. W., Swartzendruber, D. E., & Bonadonna, G. (1997). Proposal for a new model of breast cancer metastatic development. Annals of Oncology, 8(11), 1075–1080.PubMedCrossRefGoogle Scholar
  32. 32.
    Lawson, D. A., Zong, Y., Memarzadeh, S., Xin, L., Huang, J., & Witte, O. N. (2010). Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proceedings of the National Academy of Sciences of the United States of America, 107(6), 2610–2615. doi: 0913873107.PubMedCrossRefGoogle Scholar
  33. 33.
    Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768. doi: 10.1038/nrc2499.PubMedCrossRefGoogle Scholar
  34. 34.
    Hurt, E. M., & Farrar, W. L. (2008). Cancer stem cells: The seeds of metastasis? Molecular Interventions, 8(3), 140–142.PubMedCrossRefGoogle Scholar
  35. 35.
    Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2(8), 563–572.PubMedCrossRefGoogle Scholar
  36. 36.
    Fidler, I. J. (1970). Metastasis: Quantitative analysis of distribution and fate of tumor embolilabeled with 125I-5-iodo-2′-deoxyuridine. Journal of the National Cancer Institute, 45(4), 773–782.PubMedGoogle Scholar
  37. 37.
    Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715. doi: 10.1016/j.cell.2008.03.027/S0092-8674(08)00444-3.PubMedCrossRefGoogle Scholar
  38. 38.
    Elvin, P., & Garner, A. P. (2005). Tumour invasion and metastasis: Challenges facing drug discovery. Current Opinion in Pharmacology, 5(4), 374–381. doi: 10.1016/j.coph.2005.02.008/S1471-4892(05)00074-3.PubMedCrossRefGoogle Scholar
  39. 39.
    Nguyen, N. P., Bishop, M., Borok, T. J., Welsh, J., Hamilton, R., Cohen, D., et al. (2010). Pattern of failure following chemoradiation for locally advanced non-small cell lung cancer: Potential role for stereotactic body radiotherapy. Anticancer Research, 30(3), 953–961. doi: 30/3/953.PubMedGoogle Scholar
  40. 40.
    Gimbel, M. I., & Paty, P. B. (2004). A current perspective on local excision of rectal cancer. Clinical Colorectal Cancer, 4(1), 26–35. discussion 36–27.PubMedCrossRefGoogle Scholar
  41. 41.
    Wilson, C. M., Tobin, S., & Young, R. C. (2004). The exploding worldwide cancer burden: The impact of cancer on women. International Journal of Gynecological Cancer, 14(1), 1–11. doi: 14178.PubMedCrossRefGoogle Scholar
  42. 42.
    Magrath, I., & Litvak, J. (1993). Cancer in developing countries: Opportunity and challenge. Journal of the National Cancer Institute, 85(11), 862–874.PubMedCrossRefGoogle Scholar
  43. 43.
    Aggarwal, B. B., Van Kuiken, M. E., Iyer, L. H., Harikumar, K. B., & Sung, B. (2009). Molecular targets of nutraceuticals derived from dietary spices: Potential role in suppression of inflammation and tumorigenesis. Experimental Biology and Medicine (Maywood), 234(8), 825–849. doi: 10.3181/0902-MR-78.CrossRefGoogle Scholar
  44. 44.
    Trottier, G., Bostrom, P. J., Lawrentschuk, N., & Fleshner, N. E. (2010). Nutraceuticals and prostate cancer prevention: A current review. Nature Reviews Urology, 7(1), 21–30. doi: 10.1038/nrurol.2009.234.PubMedCrossRefGoogle Scholar
  45. 45.
    Agarwal, R., & Deep, G. (2008). Kava, a tonic for relieving the irrational development of natural preventive agents. Cancer Prevention Research (Philadelphia, PA), 1(6), 409–412.Google Scholar
  46. 46.
    Dennis, T., Fanous, M., & Mousa, S. (2009). Natural products for chemopreventive and adjunctive therapy in oncologic disease. Nutrition and Cancer, 61(5), 587–597. doi: 10.1080/01635580902825530/914447574.PubMedCrossRefGoogle Scholar
  47. 47.
    Aggarwal, B. B., Kunnumakkara, A. B., Harikumar, K. B., Tharakan, S. T., Sung, B., & Anand, P. (2008). Potential of spice-derived phytochemicals for cancer prevention. Planta Medica, 74(13), 1560–1569.PubMedCrossRefGoogle Scholar
  48. 48.
    Agarwal, R., Agarwal, C., Ichikawa, H., Singh, R. P., & Aggarwal, B. B. (2006). Anticancer potential of silymarin: From bench to bed side. Anticancer Research, 26(6B), 4457–4498.PubMedGoogle Scholar
  49. 49.
    Anand, P., Sundaram, C., Jhurani, S., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin and cancer: An “Old-age” disease with an “Age-old” solution. Cancer Letters, 267(1), 133–164. doi: 10.1016/j.canlet.2008.03.025/S0304-3835(08)00231-0.PubMedCrossRefGoogle Scholar
  50. 50.
    Basu, A., & Imrhan, V. (2007). Tomatoes versus lycopene in oxidative stress and carcinogenesis: Conclusions from clinical trials. European Journal of Clinical Nutrition, 61(3), 295–303. doi: 10.1038/sj.ejcn.1602510.PubMedCrossRefGoogle Scholar
  51. 51.
    Longo, V. D., & Fontana, L. (2010). Calorie restriction and cancer prevention: Metabolic and molecular mechanisms. Trends in Pharmacological Sciences, 31(2), 89–98. doi: 10.1016/ Scholar
  52. 52.
    Bemis, D. L., Katz, A. E., & Buttyan, R. (2006). Clinical trials of natural products as chemopreventive agents for prostate cancer. Expert Opinion on Investigational Drugs, 15(10), 1191–1200.PubMedCrossRefGoogle Scholar
  53. 53.
    Chambers, A. F. (2009). Influence of diet on metastasis and tumor dormancy. Clinical & Experimental Metastasis, 26(1), 61–66. doi: 10.1007/s10585-008-9164-4.CrossRefGoogle Scholar
  54. 54.
    Hsu, C. H., & Cheng, A. L. (2007). Clinical studies with curcumin. Advances in Experimental Medicine and Biology, 595, 471–480. doi: 10.1007/978-0-387-46401-5_21.PubMedCrossRefGoogle Scholar
  55. 55.
    Flaig, T. W., Glode, M., Gustafson, D., van Bokhoven, A., Tao, Y., Wilson, S., et al. (2010). A study of high-dose oral silybin–phytosome followed by prostatectomy in patients with localized prostate cancer. Prostate, 70(8), 848–855. doi: 10.1002/pros.21118.PubMedGoogle Scholar
  56. 56.
    Flaig, T. W., Gustafson, D. L., Su, L. J., Zirrolli, J. A., Crighton, F., Harrison, G. S., et al. (2007). A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Investigational New Drugs, 25(2), 139–146.PubMedCrossRefGoogle Scholar
  57. 57.
    Pradhan, S. C., & Girish, C. (2006). Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. The Indian Journal of Medical Research, 124(5), 491–504.PubMedGoogle Scholar
  58. 58.
    Rainone, F. (2005). Milk thistle. American Family Physician, 72(7), 1285–1288.PubMedGoogle Scholar
  59. 59.
    Post-White, J., Ladas, E. J., & Kelly, K. M. (2007). Advances in the use of milk thistle (Silybum marianum). Integrative Cancer Therapies, 6(2), 104–109. doi: 10.1177/1534735407301632/6/2/104.PubMedCrossRefGoogle Scholar
  60. 60.
    Davis-Searles, P. R., Nakanishi, Y., Kim, N. C., Graf, T. N., Oberlies, N. H., Wani, M. C., et al. (2005). Milk thistle and prostate cancer: Differential effects of pure flavonolignans from Silybum marianum on antiproliferative end points in human prostate carcinoma cells. Cancer Research, 65(10), 4448–4457.PubMedCrossRefGoogle Scholar
  61. 61.
    Wen, Z., Dumas, T. E., Schrieber, S. J., Hawke, R. L., Fried, M. W., & Smith, P. C. (2008). Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metabolism and Disposition, 36(1), 65–72.PubMedCrossRefGoogle Scholar
  62. 62.
    Venkataramanan, R., Komoroski, B., & Strom, S. (2006). In vitro and in vivo assessment of herb drug interactions. Life Sciences, 78(18), 2105–2115. doi: 10.1016/j.lfs.2005.12.021/S0024-3205(05)01249-X.PubMedCrossRefGoogle Scholar
  63. 63.
    Flora, K., Hahn, M., Rosen, H., & Benner, K. (1998). Milk thistle (Silybum marianum) for the therapy of liver disease. The American Journal of Gastroenterology, 93(2), 139–143.PubMedCrossRefGoogle Scholar
  64. 64.
    (2009). Silybin–phosphatidylcholine complex. Monograph. Alternative Medicine Review, 14(4), 385–390.Google Scholar
  65. 65.
    Kidd, P. M. (2009). Bioavailability and activity of phytosome complexes from botanical polyphenols: The silymarin, curcumin, green tea, and grape seed extracts. Alternative Medicine Review, 14(3), 226–246.PubMedGoogle Scholar
  66. 66.
    Yanyu, X., Yunmei, S., Zhipeng, C., & Qineng, P. (2006). The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats. International Journal of Pharmaceutics, 307(1), 77–82.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang, Y., Zhang, D., Liu, Z., Liu, G., Duan, C., Jia, L., et al. (2010). In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery. Nanotechnology, 21(15), 155104. doi: 10.1088/0957-4484/21/15/155104/S0957-4484(10)41242-8.PubMedCrossRefGoogle Scholar
  68. 68.
    Kidd, P., & Head, K. (2005). A review of the bioavailability and clinical efficacy of milk thistle phytosome: A silybin–phosphatidylcholine complex (Siliphos). Alternative Medicine Review, 10(3), 193–203.PubMedGoogle Scholar
  69. 69.
    Hoh, C., Boocock, D., Marczylo, T., Singh, R., Berry, D. P., Dennison, A. R., et al. (2006). Pilot study of oral silibinin, a putative chemopreventive agent, in colorectal cancer patients: Silibinin levels in plasma, colorectum, and liver and their pharmacodynamic consequences. Clinical Cancer Research, 12(9), 2944–2950.PubMedCrossRefGoogle Scholar
  70. 70.
    Deep, G., Singh, R. P., Agarwal, C., Kroll, D. J., & Agarwal, R. (2006). Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: A comparison of flavanone silibinin with flavanolignan mixture silymarin. Oncogene, 25(7), 1053–1069.PubMedCrossRefGoogle Scholar
  71. 71.
    Mateen, S., Tyagi, A., Agarwal, C., Singh, R. P., & Agarwal, R. (2010). Silibinin inhibits human nonsmall cell lung cancer cell growth through cell-cycle arrest by modulating expression and function of key cell-cycle regulators. Molecular Carcinogenesis, 49(3), 247–258. doi: 10.1002/mc.20595.PubMedGoogle Scholar
  72. 72.
    Zi, X., & Agarwal, R. (1999). Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: Implications for prostate cancer intervention. Proceedings of the National Academy of Sciences of the United States of America, 96(13), 7490–7495.PubMedCrossRefGoogle Scholar
  73. 73.
    Tyagi, A., Agarwal, C., & Agarwal, R. (2002). The cancer preventive flavonoid silibinin causes hypophosphorylation of Rb/p107 and Rb2/p130 via modulation of cell cycle regulators in human prostate carcinoma DU145 cells. Cell Cycle, 1(2), 137–142.PubMedCrossRefGoogle Scholar
  74. 74.
    Kaur, M., Velmurugan, B., Tyagi, A., Deep, G., Katiyar, S., Agarwal, C., et al. (2009). Silibinin suppresses growth and induces apoptotic death of human colorectal carcinoma LoVo cells in culture and tumor xenograft. Molecular Cancer Therapeutics, 8(8), 2366–2374.PubMedCrossRefGoogle Scholar
  75. 75.
    Agarwal, C., Singh, R. P., Dhanalakshmi, S., Tyagi, A. K., Tecklenburg, M., Sclafani, R. A., et al. (2003). Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells. Oncogene, 22(51), 8271–8282.PubMedCrossRefGoogle Scholar
  76. 76.
    Li, L., Gao, Y., Zhang, L., Zeng, J., He, D., & Sun, Y. (2008). Silibinin inhibits cell growth and induces apoptosis by caspase activation, down-regulating survivin and blocking EGFR–ERK activation in renal cell carcinoma. Cancer Letters, 272(1), 61–69. doi: 10.1016/j.canlet.2008.06.033/S0304-3835(08)00520-X.PubMedCrossRefGoogle Scholar
  77. 77.
    Wang, H. J., Tashiro, S., Onodera, S., & Ikejima, T. (2008). Inhibition of insulin-like growth factor 1 receptor signaling enhanced silibinin-induced activation of death receptor and mitochondrial apoptotic pathways in human breast cancer MCF-7 cells. Journal of Pharmacological Sciences, 107(3), 260–269. doi: JST.JSTAGE/jphs/08054FP.PubMedCrossRefGoogle Scholar
  78. 78.
    Son, Y. G., Kim, E. H., Kim, J. Y., Kim, S. U., Kwon, T. K., Yoon, A. R., et al. (2007). Silibinin sensitizes human glioma cells to TRAIL-mediated apoptosis via DR5 up-regulation and down-regulation of c-FLIP and survivin. Cancer Research, 67(17), 8274–8284.PubMedCrossRefGoogle Scholar
  79. 79.
    Singh, R. P., Dhanalakshmi, S., Agarwal, C., & Agarwal, R. (2005). Silibinin strongly inhibits growth and survival of human endothelial cells via cell cycle arrest and downregulation of survivin, Akt and NF-kappab: Implications for angioprevention and antiangiogenic therapy. Oncogene, 24(7), 1188–1202.PubMedCrossRefGoogle Scholar
  80. 80.
    Raina, K., Rajamanickam, S., Singh, R. P., Deep, G., Chittezhath, M., & Agarwal, R. (2008). Stage-specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Cancer Research, 68(16), 6822–6830.PubMedCrossRefGoogle Scholar
  81. 81.
    Singh, R. P., Deep, G., Chittezhath, M., Kaur, M., Dwyer-Nield, L. D., Malkinson, A. M., et al. (2006). Effect of silibinin on the growth and progression of primary lung tumors in mice. Journal of the National Cancer Institute, 98(12), 846–855.PubMedCrossRefGoogle Scholar
  82. 82.
    Singh, R. P., Sharma, G., Dhanalakshmi, S., Agarwal, C., & Agarwal, R. (2003). Suppression of advanced human prostate tumor growth in athymic mice by silibinin feeding is associated with reduced cell proliferation, increased apoptosis, and inhibition of angiogenesis. Cancer Epidemiology, Biomarkers & Prevention, 12(9), 933–939.Google Scholar
  83. 83.
    Singh, R. P., & Agarwal, R. (2006). Prostate cancer chemoprevention by silibinin: Bench to bedside. Molecular Carcinogenesis, 45(6), 436–442.PubMedCrossRefGoogle Scholar
  84. 84.
    Rajamanickam, S., Velmurugan, B., Kaur, M., Singh, R. P., & Agarwal, R. (2010). Chemoprevention of intestinal tumorigenesis in APCmin/+ mice by silibinin. Cancer Research, 70(6), 2368–2378. doi: 10.1158/0008-5472.CAN-09-3249.PubMedCrossRefGoogle Scholar
  85. 85.
    Singh, R. P., & Agarwal, R. (2004). Prostate cancer prevention by silibinin. Current Cancer Drug Targets, 4(1), 1–11.PubMedCrossRefGoogle Scholar
  86. 86.
    Singh, R. P., Raina, K., Deep, G., Chan, D., & Agarwal, R. (2009). Silibinin suppresses growth of human prostate carcinoma PC-3 orthotopic xenograft via activation of extracellular signal-regulated kinase 1/2 and inhibition of signal transducers and activators of transcription signaling. Clinical Cancer Research, 15(2), 613–621.PubMedCrossRefGoogle Scholar
  87. 87.
    Li, L., Zeng, J., Gao, Y., & He, D. (2010). Targeting silibinin in the antiproliferative pathway. Expert Opinion on Investigational Drugs, 19(2), 243–255. doi: 10.1517/13543780903533631.PubMedCrossRefGoogle Scholar
  88. 88.
    Tyagi, A., Sharma, Y., Agarwal, C., & Agarwal, R. (2008). Silibinin impairs constitutively active TGFalpha-EGFR autocrine loop in advanced human prostate carcinoma cells. Pharmaceutical Research, 25(9), 2143–2150.PubMedCrossRefGoogle Scholar
  89. 89.
    Jung, H. J., Park, J. W., Lee, J. S., Lee, S. R., Jang, B. C., Suh, S. I., et al. (2009). Silibinin inhibits expression of HIF-1alpha through suppression of protein translation in prostate cancer cells. Biochemical and Biophysical Research Communications, 390(1), 71–76. doi: 10.1016/j.bbrc.2009.09.068/S0006-291X(09)01877-4.PubMedCrossRefGoogle Scholar
  90. 90.
    Singh, R. P., Raina, K., Sharma, G., & Agarwal, R. (2008). Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial–mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clinical Cancer Research, 14(23), 7773–7780. doi: 10.1158/1078-0432.CCR-08-1309/14/23/7773.PubMedCrossRefGoogle Scholar
  91. 91.
    Mokhtari, M. J., Motamed, N., & Shokrgozar, M. A. (2008). Evaluation of silibinin on the viability, migration and adhesion of the human prostate adenocarcinoma (PC-3) cell line. Cell Biology International, 32(8), 888–892.PubMedCrossRefGoogle Scholar
  92. 92.
    Wu, K., Zeng, J., Li, L., Fan, J., Zhang, D., Xue, Y., et al. (2010). Silibinin reverses epithelial-to-mesenchymal transition in metastatic prostate cancer cells by targeting transcription factors. Oncology Reports, 23(6), 1545–1552.PubMedCrossRefGoogle Scholar
  93. 93.
    Wu, K. J., Zeng, J., Zhu, G. D., Zhang, L. L., Zhang, D., Li, L., et al. (2009). Silibinin inhibits prostate cancer invasion, motility and migration by suppressing vimentin and MMP-2 expression. Acta Pharmacologica Sinica, 30(8), 1162–1168. doi: 10.1038/aps.2009.94.PubMedCrossRefGoogle Scholar
  94. 94.
    Deep, G., Gangar, S. C., & Agarwal, R. (2010). Silibinin inhibits epithelial to mesenchymal transition in prostate cancer cells: Role of E-cadherin and beyond. Proceedings of the 101th AACR Annual Meeting, Washington DC, April 2010. Abstract number 5650.Google Scholar
  95. 95.
    Handorean, A. M., Yang, K., Robbins, E. W., Flaig, T. W., & Iczkowski, K. A. (2009). Silibinin suppresses CD44 expression in prostate cancer cells. American Journal of Translational Research, 1(1), 80–86.PubMedGoogle Scholar
  96. 96.
    Msaouel, P., Pissimissis, N., Halapas, A., & Koutsilieris, M. (2008). Mechanisms of bone metastasis in prostate cancer: Clinical implications. Best Practice & Research. Clinical Endocrinology & Metabolism, 22(2), 341–355. doi: 10.1016/j.beem.2008.01.011/S1521-690X(08)00012-2.CrossRefGoogle Scholar
  97. 97.
    Kim, J. H., Kim, K., Jin, H. M., Song, I., Youn, B. U., Lee, J., et al. (2009). Silibinin inhibits osteoclast differentiation mediated by TNF family members. Molecules and Cells. doi: 10.1007/s10059-009-0123-y.Google Scholar
  98. 98.
    Gangar, S. C., Deep, G., & Agarwal, R. (2010). Silibinin inhibits advanced human prostate carcinoma-induced osteoclastogenesis. Proceedings of the 101th AACR Annual Meeting, Washington DC, April 2010. Abstract number 5661.Google Scholar
  99. 99.
    Provinciali, M., Papalini, F., Orlando, F., Pierpaoli, S., Donnini, A., Morazzoni, P., et al. (2007). Effect of the silybin–phosphatidylcholine complex (IdB 1016) on the development of mammary tumors in HER-2/neu transgenic mice. Cancer Research, 67(5), 2022–2029.PubMedCrossRefGoogle Scholar
  100. 100.
    Lee, S. O., Jeong, Y. J., Im, H. G., Kim, C. H., Chang, Y. C., & Lee, I. S. (2007). Silibinin suppresses PMA-induced MMP-9 expression by blocking the AP-1 activation via MAPK signaling pathways in MCF-7 human breast carcinoma cells. Biochemical and Biophysical Research Communications, 354(1), 165–171.PubMedCrossRefGoogle Scholar
  101. 101.
    Chen, P. N., Hsieh, Y. S., Chiang, C. L., Chiou, H. L., Yang, S. F., & Chu, S. C. (2006). Silibinin inhibits invasion of oral cancer cells by suppressing the MAPK pathway. Journal of Dental Research, 85(3), 220–225.PubMedCrossRefGoogle Scholar
  102. 102.
    Chu, S. C., Chiou, H. L., Chen, P. N., Yang, S. F., & Hsieh, Y. S. (2004). Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Molecular Carcinogenesis, 40(3), 143–149.PubMedCrossRefGoogle Scholar
  103. 103.
    Hsieh, Y. S., Chu, S. C., Yang, S. F., Chen, P. N., Liu, Y. C., & Lu, K. H. (2007). Silibinin suppresses human osteosarcoma MG-63 cell invasion by inhibiting the ERK-dependent c-Jun/AP-1 induction of MMP-2. Carcinogenesis, 28(5), 977–987. doi: 10.1093/carcin/bgl221.PubMedCrossRefGoogle Scholar
  104. 104.
    Baranwal, S., & Alahari, S. K. (2009). Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochemical and Biophysical Research Communications, 384(1), 6–11. doi: 10.1016/j.bbrc.2009.04.051/S0006-291X(09)00688-3.PubMedCrossRefGoogle Scholar
  105. 105.
    Jiang, Y. G., Luo, Y., He, D. L., Li, X., Zhang, L. L., Peng, T., et al. (2007). Role of Wnt/beta-catenin signaling pathway in epithelial–mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. International Journal of Urology, 14(11), 1034–1039. doi: 10.1111/j.1442-2042.2007.01866.x/IJU1866.PubMedCrossRefGoogle Scholar
  106. 106.
    Roy, R., Yang, J., & Moses, M. A. (2009). Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. Journal of Clinical Oncology, 27(31), 5287–5297. doi: 10.1200/JCO.2009.23.5556.PubMedCrossRefGoogle Scholar
  107. 107.
    Vihinen, P., & Kahari, V. M. (2002). Matrix metalloproteinases in cancer: Prognostic markers and therapeutic targets. International Journal of Cancer, 99(2), 157–166. doi: 10.1002/ijc.10329.CrossRefGoogle Scholar
  108. 108.
    Itoh, T., Tanioka, M., Matsuda, H., Nishimoto, H., Yoshioka, T., Suzuki, R., et al. (1999). Experimental metastasis is suppressed in MMP-9-deficient mice. Clinical & Experimental Metastasis, 17(2), 177–181.CrossRefGoogle Scholar
  109. 109.
    Itoh, T., Tanioka, M., Yoshida, H., Yoshioka, T., Nishimoto, H., & Itohara, S. (1998). Reduced angiogenesis and tumor progression in gelatinase a-deficient mice. Cancer Research, 58(5), 1048–1051.PubMedGoogle Scholar
  110. 110.
    Garbisa, S., Scagliotti, G., Masiero, L., Di Francesco, C., Caenazzo, C., Onisto, M., et al. (1992). Correlation of serum metalloproteinase levels with lung cancer metastasis and response to therapy. Cancer Research, 52(16), 4548–4549.PubMedGoogle Scholar
  111. 111.
    Noe, V., Fingleton, B., Jacobs, K., Crawford, H. C., Vermeulen, S., Steelant, W., et al. (2001). Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. Journal of Cell Science, 114(Pt 1), 111–118.PubMedGoogle Scholar
  112. 112.
    Li, X., & Wu, J. F. (2010). Recent developments in patent anti-cancer agents targeting the matrix metalloproteinases (MMPs). Recent Patents on Anticancer Drug Discovery, 5(2), 109–141. doi: E-Pub PRA-ABS-Li-18.CrossRefGoogle Scholar
  113. 113.
    Gomez, D. E., Alonso, D. F., Yoshiji, H., & Thorgeirsson, U. P. (1997). Tissue inhibitors of metalloproteinases: Structure, regulation and biological functions. European Journal of Cell Biology, 74(2), 111–122.PubMedGoogle Scholar
  114. 114.
    Chen, P. N., Hsieh, Y. S., Chiou, H. L., & Chu, S. C. (2005). Silibinin inhibits cell invasion through inactivation of both PI3K-Akt and MAPK signaling pathways. Chemico-Biological Interactions, 156(2–3), 141–150.PubMedCrossRefGoogle Scholar
  115. 115.
    Momeny, M., Khorramizadeh, M. R., Ghaffari, S. H., Yousefi, M., Yekaninejad, M. S., Esmaeili, R., et al. (2008). Effects of silibinin on cell growth and invasive properties of a human hepatocellular carcinoma cell line, HepG-2, through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. European Journal of Pharmacology, 591(1–3), 13–20. doi: 10.1016/j.ejphar.2008.06.011/S0014-2999(08)00625-0.PubMedCrossRefGoogle Scholar
  116. 116.
    Momeny, M., Malehmir, M., Zakidizaji, M., Ghasemi, R., Ghadimi, H., Shokrgozar, M. A., et al. (2010). Silibinin inhibits invasive properties of human glioblastoma U87MG cells through suppression of cathepsin B and nuclear factor kappa b-mediated induction of matrix metalloproteinase 9. Anticancer Drugs, 21(3), 252–260.PubMedCrossRefGoogle Scholar
  117. 117.
    Rao, J. S. (2003). Molecular mechanisms of glioma invasiveness: The role of proteases. Nature Reviews. Cancer, 3(7), 489–501. doi: 10.1038/nrc1121.PubMedCrossRefGoogle Scholar
  118. 118.
    Mohanam, S., Sawaya, R. E., Yamamoto, M., Bruner, J. M., Nicholson, G. L., & Rao, J. S. (1994). Proteolysis and invasiveness of brain tumors: Role of urokinase-type plasminogen activator receptor. Journal of Neurooncology, 22(2), 153–160.CrossRefGoogle Scholar
  119. 119.
    Mohanam, S., Gladson, C. L., Rao, C. N., & Rao, J. S. (1999). Biological significance of the expression of urokinase-type plasminogen activator receptors (uPARs) in brain tumors. Frontiers in Bioscience, 4, D178–D187.PubMedCrossRefGoogle Scholar
  120. 120.
    Huang, C., Jacobson, K., & Schaller, M. D. (2004). MAP kinases and cell migration. Journal of Cell Science, 117(Pt 20), 4619–4628. doi: 10.1242/jcs.01481/117/20/4619.PubMedCrossRefGoogle Scholar
  121. 121.
    Huang, C., Jacobson, K., & Schaller, M. D. (2004). A role for JNK-paxillin signaling in cell migration. Cell Cycle, 3(1), 4–6. doi: 601.PubMedGoogle Scholar
  122. 122.
    Wu, W. S., Wu, J. R., & Hu, C. T. (2008). Signal cross talks for sustained MAPK activation and cell migration: The potential role of reactive oxygen species. Cancer and Metastasis Reviews, 27(2), 303–314. doi: 10.1007/s10555-008-9112-4.PubMedCrossRefGoogle Scholar
  123. 123.
    Silletti, S., Yebra, M., Perez, B., Cirulli, V., McMahon, M., & Montgomery, A. M. (2004). Extracellular signal-regulated kinase (ERK)-dependent gene expression contributes to l1 cell adhesion molecule-dependent motility and invasion. The Journal of Biological Chemistry, 279(28), 28880–28888. doi: 10.1074/jbc.M404075200.PubMedCrossRefGoogle Scholar
  124. 124.
    Singh, R. P., Dhanalakshmi, S., Mohan, S., Agarwal, C., & Agarwal, R. (2006). Silibinin inhibits UVB- and epidermal growth factor-induced mitogenic and cell survival signaling involving activator protein-1 and nuclear factor-kappab in mouse epidermal JB6 cells. Molecular Cancer Therapeutics, 5(5), 1145–1153.PubMedCrossRefGoogle Scholar
  125. 125.
    Gu, M., Dhanalakshmi, S., Mohan, S., Singh, R. P., & Agarwal, R. (2005). Silibinin inhibits ultraviolet B radiation-induced mitogenic and survival signaling, and associated biological responses in SKH-1 mouse skin. Carcinogenesis, 26(8), 1404–1413.PubMedCrossRefGoogle Scholar
  126. 126.
    Mallikarjuna, G., Dhanalakshmi, S., Singh, R. P., Agarwal, C., & Agarwal, R. (2004). Silibinin protects against photocarcinogenesis via modulation of cell cycle regulators, mitogen-activated protein kinases, and Akt signaling. Cancer Research, 64(17), 6349–6356.PubMedCrossRefGoogle Scholar
  127. 127.
    Tyagi, A., Singh, R. P., Ramasamy, K., Raina, K., Redente, E. F., Dwyer-Nield, L. D., et al. (2009). Growth inhibition and regression of lung tumors by silibinin: Modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-kappab and signal transducers and activators of transcription 3. Cancer Prevention Research (Philadelphia, PA), 2(1), 74–83. doi: 10.1158/1940-6207.CAPR-08-0095/2/1/74.Google Scholar
  128. 128.
    Singh, R. P., Gu, M., & Agarwal, R. (2008). Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer Research, 68(6), 2043–2050.PubMedCrossRefGoogle Scholar
  129. 129.
    Singh, R. P., Deep, G., Blouin, M. J., Pollak, M. N., & Agarwal, R. (2007). Silibinin suppresses in vivo growth of human prostate carcinoma PC-3 tumor xenograft. Carcinogenesis, 28(12), 2567–2574.PubMedCrossRefGoogle Scholar
  130. 130.
    Gu, M., Singh, R. P., Dhanalakshmi, S., Agarwal, C., & Agarwal, R. (2007). Silibinin inhibits inflammatory and angiogenic attributes in photocarcinogenesis in SKH-1 hairless mice. Cancer Research, 67(7), 3483–3491.PubMedCrossRefGoogle Scholar
  131. 131.
    Chittezhath, M., Deep, G., Singh, R. P., Agarwal, C., & Agarwal, R. (2008). Silibinin inhibits cytokine-induced signaling cascades and down-regulates inducible nitric oxide synthase in human lung carcinoma A549 cells. Molecular Cancer Therapeutics, 7(7), 1817–1826.PubMedCrossRefGoogle Scholar
  132. 132.
    Thelen, P., Wuttke, W., Jarry, H., Grzmil, M., & Ringert, R. H. (2004). Inhibition of telomerase activity and secretion of prostate specific antigen by silibinin in prostate cancer cells. Journal d’Urologie, 171(5), 1934–1938.Google Scholar
  133. 133.
    Sharma, Y., Agarwal, C., Singh, A. K., & Agarwal, R. (2001). Inhibitory effect of silibinin on ligand binding to erbB1 and associated mitogenic signaling, growth, and DNA synthesis in advanced human prostate carcinoma cells. Molecular Carcinogenesis, 30(4), 224–236.PubMedCrossRefGoogle Scholar
  134. 134.
    Deep, G., Oberlies, N. H., Kroll, D. J., & Agarwal, R. (2008). Identifying the differential effects of silymarin constituents on cell growth and cell cycle regulatory molecules in human prostate cancer cells. International Journal of Cancer, 123(1), 41–50.CrossRefGoogle Scholar
  135. 135.
    Flaig, T. W., Su, L. J., Harrison, G., Agarwal, R., & Glode, L. M. (2007). Silibinin synergizes with mitoxantrone to inhibit cell growth and induce apoptosis in human prostate cancer cells. International Journal of Cancer, 120(9), 2028–2033.CrossRefGoogle Scholar
  136. 136.
    Dhanalakshmi, S., Singh, R. P., Agarwal, C., & Agarwal, R. (2002). Silibinin inhibits constitutive and TNFalpha-induced activation of NF-kappab and sensitizes human prostate carcinoma DU145 cells to TNFalpha-induced apoptosis. Oncogene, 21(11), 1759–1767.PubMedCrossRefGoogle Scholar
  137. 137.
    Tyagi, A. K., Singh, R. P., Agarwal, C., Chan, D. C., & Agarwal, R. (2002). Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G2-M arrest, and apoptosis. Clinical Cancer Research, 8(11), 3512–3519.PubMedGoogle Scholar
  138. 138.
    Agarwal, C., Tyagi, A., Kaur, M., & Agarwal, R. (2007). Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells. Carcinogenesis, 28(7), 1463–1470.PubMedCrossRefGoogle Scholar
  139. 139.
    Dhanalakshmi, S., Agarwal, P., Glode, L. M., & Agarwal, R. (2003). Silibinin sensitizes human prostate carcinoma DU145 cells to cisplatin- and carboplatin-induced growth inhibition and apoptotic death. International Journal of Cancer, 106(5), 699–705.CrossRefGoogle Scholar
  140. 140.
    Roy, S., Kaur, M., Agarwal, C., Tecklenburg, M., Sclafani, R. A., & Agarwal, R. (2007). p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells. Molecular Cancer Therapeutics, 6(10), 2696–2707.PubMedCrossRefGoogle Scholar
  141. 141.
    Tyagi, A., Agarwal, C., & Agarwal, R. (2002). Inhibition of retinoblastoma protein (Rb) phosphorylation at serine sites and an increase in Rb–E2F complex formation by silibinin in androgen-dependent human prostate carcinoma LNCaP cells: Role in prostate cancer prevention. Molecular Cancer Therapeutics, 1(7), 525–532.PubMedGoogle Scholar
  142. 142.
    Zi, X., Zhang, J., Agarwal, R., & Pollak, M. (2000). Silibinin up-regulates insulin-like growth factor-binding protein 3 expression and inhibits proliferation of androgen-independent prostate cancer cells. Cancer Research, 60(20), 5617–5620.PubMedGoogle Scholar
  143. 143.
    Thelen, P., Jarry, H., Ringert, R. H., & Wuttke, W. (2004). Silibinin down-regulates prostate epithelium-derived Ets transcription factor in LNCaP prostate cancer cells. Planta Medica, 70(5), 397–400.PubMedCrossRefGoogle Scholar
  144. 144.
    Tyagi, A., Bhatia, N., Condon, M. S., Bosland, M. C., Agarwal, C., & Agarwal, R. (2002). Antiproliferative and apoptotic effects of silibinin in rat prostate cancer cells. The Prostate, 53(3), 211–217. doi: 10.1002/pros.10146.PubMedCrossRefGoogle Scholar
  145. 145.
    Zhu, W., Zhang, J. S., & Young, C. Y. (2001). Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis, 22(9), 1399–1403.PubMedCrossRefGoogle Scholar
  146. 146.
    Bhatia, N., Zhao, J., Wolf, D. M., & Agarwal, R. (1999). Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: Comparison with silymarin. Cancer Letters, 147(1–2), 77–84.PubMedCrossRefGoogle Scholar
  147. 147.
    Deep, G., Raina, K., Singh, R. P., Oberlies, N. H., Kroll, D. J., & Agarwal, R. (2008). Isosilibinin inhibits advanced human prostate cancer growth in athymic nude mice: Comparison with silymarin and silibinin. International Journal of Cancer, 123(12), 2750–2758.CrossRefGoogle Scholar
  148. 148.
    Singh, R. P., Dhanalakshmi, S., Tyagi, A. K., Chan, D. C., Agarwal, C., & Agarwal, R. (2002). Dietary feeding of silibinin inhibits advance human prostate carcinoma growth in athymic nude mice and increases plasma insulin-like growth factor-binding protein-3 levels. Cancer Research, 62(11), 3063–3069.PubMedGoogle Scholar
  149. 149.
    Raina, K., Serkova, N. J., & Agarwal, R. (2009). Silibinin feeding alters the metabolic profile in TRAMP prostatic tumors: 1H-NMRS-based metabolomics study. Cancer Research, 69(9), 3731–3735. doi: 10.1158/0008-5472.CAN-09-0096.PubMedCrossRefGoogle Scholar
  150. 150.
    Verschoyle, R. D., Greaves, P., Patel, K., Marsden, D. A., Brown, K., Steward, W. P., et al. (2008). Evaluation of the cancer chemopreventive efficacy of silibinin in genetic mouse models of prostate and intestinal carcinogenesis: Relationship with silibinin levels. European Journal of Cancer, 44(6), 898–906.PubMedCrossRefGoogle Scholar
  151. 151.
    Dhanalakshmi, S., Agarwal, C., Singh, R. P., & Agarwal, R. (2005). Silibinin up-regulates DNA-protein kinase-dependent p53 activation to enhance UVB-induced apoptosis in mouse epithelial JB6 cells. The Journal of Biological Chemistry, 280(21), 20375–20383.PubMedCrossRefGoogle Scholar
  152. 152.
    Dhanalakshmi, S., Mallikarjuna, G. U., Singh, R. P., & Agarwal, R. (2004). Dual efficacy of silibinin in protecting or enhancing ultraviolet B radiation-caused apoptosis in HaCaT human immortalized keratinocytes. Carcinogenesis, 25(1), 99–106.PubMedCrossRefGoogle Scholar
  153. 153.
    Mohan, S., Dhanalakshmi, S., Mallikarjuna, G. U., Singh, R. P., & Agarwal, R. (2004). Silibinin modulates UVB-induced apoptosis via mitochondrial proteins, caspases activation, and mitogen-activated protein kinase signaling in human epidermoid carcinoma A431 cells. Biochemical and Biophysical Research Communications, 320(1), 183–189.PubMedCrossRefGoogle Scholar
  154. 154.
    Bhatia, N., Agarwal, C., & Agarwal, R. (2001). Differential responses of skin cancer-chemopreventive agents silibinin, quercetin, and epigallocatechin 3-gallate on mitogenic signaling and cell cycle regulators in human epidermoid carcinoma A431 cells. Nutrition and Cancer, 39(2), 292–299.PubMedCrossRefGoogle Scholar
  155. 155.
    Svobodova, A., Zdarilova, A., Walterova, D., & Vostalova, J. (2007). Flavonolignans from Silybum marianum moderate UVA-induced oxidative damage to HaCaT keratinocytes. Journal of Dermatological Science, 48(3), 213–224.PubMedCrossRefGoogle Scholar
  156. 156.
    Singh, R. P., Tyagi, A. K., Zhao, J., & Agarwal, R. (2002). Silymarin inhibits growth and causes regression of established skin tumors in sencar mice via modulation of mitogen-activated protein kinases and induction of apoptosis. Carcinogenesis, 23(3), 499–510.PubMedCrossRefGoogle Scholar
  157. 157.
    Gu, M., Dhanalakshmi, S., Singh, R. P., & Agarwal, R. (2005). Dietary feeding of silibinin prevents early biomarkers of UVB radiation-induced carcinogenesis in SKH-1 hairless mouse epidermis. Cancer Epidemiology, Biomarkers & Prevention, 14(5), 1344–1349.CrossRefGoogle Scholar
  158. 158.
    Dhanalakshmi, S., Mallikarjuna, G. U., Singh, R. P., & Agarwal, R. (2004). Silibinin prevents ultraviolet radiation-caused skin damages in SKH-1 hairless mice via a decrease in thymine dimer positive cells and an up-regulation of p53-p21/Cip1 in epidermis. Carcinogenesis, 25(8), 1459–1465.PubMedCrossRefGoogle Scholar
  159. 159.
    Gu, M., Singh, R. P., Dhanalakshmi, S., Mohan, S., & Agarwal, R. (2006). Differential effect of silibinin on E2F transcription factors and associated biological events in chronically UVB-exposed skin versus tumors in SKH-1 hairless mice. Molecular Cancer Therapeutics, 5(8), 2121–2129.PubMedCrossRefGoogle Scholar
  160. 160.
    Zhao, J., & Agarwal, R. (1999). Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: Implications in cancer chemoprevention. Carcinogenesis, 20(11), 2101–2108.PubMedCrossRefGoogle Scholar
  161. 161.
    Sharma, G., Singh, R. P., Chan, D. C., & Agarwal, R. (2003). Silibinin induces growth inhibition and apoptotic cell death in human lung carcinoma cells. Anticancer Research, 23(3B), 2649–2655.PubMedGoogle Scholar
  162. 162.
    Singh, R. P., Mallikarjuna, G. U., Sharma, G., Dhanalakshmi, S., Tyagi, A. K., Chan, D. C., et al. (2004). Oral silibinin inhibits lung tumor growth in athymic nude mice and forms a novel chemocombination with doxorubicin targeting nuclear factor kappab-mediated inducible chemoresistance. Clinical Cancer Research, 10(24), 8641–8647.PubMedCrossRefGoogle Scholar
  163. 163.
    Yan, Y., Wang, Y., Tan, Q., Lubet, R. A., & You, M. (2005). Efficacy of deguelin and silibinin on benzo(a)pyrene-induced lung tumorigenesis in A/J mice. Neoplasia, 7(12), 1053–1057.PubMedCrossRefGoogle Scholar
  164. 164.
    Kaur, M., Velmurugan, B., Tyagi, A., Agarwal, C., Singh, R. P., & Agarwal, R. (2010). Silibinin suppresses growth of human colorectal carcinoma SW480 cells in culture and xenograft through down-regulation of beta-catenin-dependent signaling. Neoplasia, 12(5), 415–424.PubMedGoogle Scholar
  165. 165.
    Hogan, F. S., Krishnegowda, N. K., Mikhailova, M., & Kahlenberg, M. S. (2007). Flavonoid, silibinin, inhibits proliferation and promotes cell-cycle arrest of human colon cancer. The Journal of Surgical Research, 143(1), 58–65.PubMedCrossRefGoogle Scholar
  166. 166.
    Yang, S. H., Lin, J. K., Huang, C. J., Chen, W. S., Li, S. Y., & Chiu, J. H. (2005). Silibinin inhibits angiogenesis via Flt-1, but not KDR, receptor up-regulation. The Journal of Surgical Research, 128(1), 140–146.PubMedGoogle Scholar
  167. 167.
    Yang, S. H., Lin, J. K., Chen, W. S., & Chiu, J. H. (2003). Anti-angiogenic effect of silymarin on colon cancer LoVo cell line. The Journal of Surgical Research, 113(1), 133–138.PubMedCrossRefGoogle Scholar
  168. 168.
    Rajamanickam, S., Kaur, M., Velmurugan, B., Singh, R. P., & Agarwal, R. (2009). Silibinin suppresses spontaneous tumorigenesis in APC min/+ mouse model by modulating beta-catenin pathway. Pharmaceutical Research, 26(12), 2558–2567.PubMedCrossRefGoogle Scholar
  169. 169.
    Sangeetha, N., Felix, A. J., & Nalini, N. (2009). Silibinin modulates biotransforming microbial enzymes and prevents 1, 2-dimethylhydrazine-induced preneoplastic changes in experimental colon cancer. European Journal of Cancer Prevention, 18(5), 385–394.PubMedCrossRefGoogle Scholar
  170. 170.
    Sangeetha, N., Aranganathan, S., & Nalini, N. (2010). Silibinin ameliorates oxidative stress induced aberrant crypt foci and lipid peroxidation in 1, 2 dimethylhydrazine induced rat colon cancer. Investigational New Drugs, 28(3), 225–233. doi: 10.1007/s10637-009-9237-5.PubMedCrossRefGoogle Scholar
  171. 171.
    Velmurugan, B., Singh, R. P., Tyagi, A., & Agarwal, R. (2008). Inhibition of azoxymethane-induced colonic aberrant crypt foci formation by silibinin in male fisher 344 rats. Cancer Prevention Research (Philadelphia, PA), 1(5), 376–384.Google Scholar
  172. 172.
    Tyagi, A. K., Agarwal, C., Chan, D. C., & Agarwal, R. (2004). Synergistic anti-cancer effects of silibinin with conventional cytotoxic agents doxorubicin, cisplatin and carboplatin against human breast carcinoma MCF-7 and MDA-MB468 cells. Oncology Reports, 11(2), 493–499.PubMedGoogle Scholar
  173. 173.
    Wang, H. J., Wei, X. F., Jiang, Y. Y., Huang, H., Yang, Y., Fan, S. M., et al. (2010). Silibinin induces the generation of nitric oxide in human breast cancer MCF-7 cells. Free Radical Research, 44(5), 577–584. doi: 10.3109/10715761003692495.PubMedCrossRefGoogle Scholar
  174. 174.
    Zi, X., Feyes, D. K., & Agarwal, R. (1998). Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: Induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins. Clinical Cancer Research, 4(4), 1055–1064.PubMedGoogle Scholar
  175. 175.
    Kim, S., Kim, S. H., Hur, S. M., Lee, S. K., Kim, W. W., Kim, J. S., et al. (2009). Silibinin prevents TPA-induced MMP-9 expression by down-regulation of COX-2 in human breast cancer cells. Journal of Ethnopharmacology, 126(2), 252–257. doi: 10.1016/j.jep.2009.08.032/S0378-8741(09)00529-7.PubMedCrossRefGoogle Scholar
  176. 176.
    Lin, C. J., Sukarieh, R., & Pelletier, J. (2009). Silibinin inhibits translation initiation: Implications for anticancer therapy. Molecular Cancer Therapeutics, 8(6), 1606–1612. doi: 10.1158/1535-7163.MCT-08-1152.PubMedCrossRefGoogle Scholar
  177. 177.
    Kim, S., Choi, J. H., Lim, H. I., Lee, S. K., Kim, W. W., Kim, J. S., et al. (2009). Silibinin prevents TPA-induced MMP-9 expression and vegf secretion by inactivation of the Raf/MEK/ERK pathway in MCF-7 human breast cancer cells. Phytomedicine, 16(6–7), 573–580. doi: 10.1016/j.phymed.2008.11.006/S0944-7113(08)00219-5.PubMedCrossRefGoogle Scholar
  178. 178.
    Scambia, G., De Vincenzo, R., Ranelletti, F. O., Panici, P. B., Ferrandina, G., D’Agostino, G., et al. (1996). Antiproliferative effect of silybin on gynaecological malignancies: Synergism with cisplatin and doxorubicin. European Journal of Cancer, 32A(5), 877–882.PubMedCrossRefGoogle Scholar
  179. 179.
    Verschoyle, R. D., Brown, K., Steward, W. P., & Gescher, A. J. (2008). Consumption of silibinin, a flavonolignan from milk thistle, and mammary cancer development in the C3(1) SV40 T, t antigen transgenic multiple mammary adenocarcinoma (Tag) mouse. Cancer Chemotherapy and Pharmacology, 62(2), 369–372.PubMedCrossRefGoogle Scholar
  180. 180.
    Qi, L., Singh, R. P., Lu, Y., Agarwal, R., Harrison, G. S., Franzusoff, A., et al. (2003). Epidermal growth factor receptor mediates silibinin-induced cytotoxicity in a rat glioma cell line. Cancer Biology & Therapy, 2(5), 526–531.Google Scholar
  181. 181.
    Kim, K. W., Choi, C. H., Kim, T. H., Kwon, C. H., Woo, J. S., & Kim, Y. K. (2009). Silibinin inhibits glioma cell proliferation via Ca2+/ROS/MAPK-dependent mechanism in vitro and glioma tumor growth in vivo. Neurochemical Research, 34(8), 1479–1490. doi: 10.1007/s11064-009-9935-6.PubMedCrossRefGoogle Scholar
  182. 182.
    Varghese, L., Agarwal, C., Tyagi, A., Singh, R. P., & Agarwal, R. (2005). Silibinin efficacy against human hepatocellular carcinoma. Clinical Cancer Research, 11(23), 8441–8448.PubMedCrossRefGoogle Scholar
  183. 183.
    Brandon-Warner, E., Sugg, J. A., Schrum, L. W., & McKillop, I. H. (2010). Silibinin inhibits ethanol metabolism and ethanol-dependent cell proliferation in an in vitro model of hepatocellular carcinoma. Cancer Letter, 291(1), 120–129. doi: 10.1016/j.canlet.2009.10.004/S0304-3835(09)00626-0.CrossRefGoogle Scholar
  184. 184.
    Garcia-Maceira, P., & Mateo, J. (2009). Silibinin inhibits hypoxia-inducible factor-1alpha and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: Implications for anticancer therapy. Oncogene, 28(3), 313–324. doi: 10.1038/onc.2008.398.PubMedCrossRefGoogle Scholar
  185. 185.
    Huber, A., Thongphasuk, P., Erben, G., Lehmann, W. D., Tuma, S., Stremmel, W., et al. (2008). Significantly greater antioxidant anticancer activities of 2, 3-dehydrosilybin than silybin. Biochimica et Biophysica Acta, 1780(5), 837–847. doi: 10.1016/j.bbagen.2007.12.012/S0304-4165(07)00296-6.PubMedGoogle Scholar
  186. 186.
    Lah, J. J., Cui, W., & Hu, K. Q. (2007). Effects and mechanisms of silibinin on human hepatoma cell lines. World Journal of Gastroenterology, 13(40), 5299–5305.PubMedGoogle Scholar
  187. 187.
    Cui, W., Gu, F., & Hu, K. Q. (2009). Effects and mechanisms of silibinin on human hepatocellular carcinoma xenografts in nude mice. World Journal of Gastroenterology, 15(16), 1943–1950.PubMedCrossRefGoogle Scholar
  188. 188.
    Zhou, L., Liu, P., Chen, B., Wang, Y., Wang, X., Internati, M. C., et al. (2008). Silibinin restores paclitaxel sensitivity to paclitaxel-resistant human ovarian carcinoma cells. Anticancer Research, 28(2A), 1119–1127.PubMedGoogle Scholar
  189. 189.
    Gallo, D., Giacomelli, S., Ferlini, C., Raspaglio, G., Apollonio, P., Prislei, S., et al. (2003). Antitumour activity of the silybin–phosphatidylcholine complex, IdB 1016, against human ovarian cancer. European Journal of Cancer, 39(16), 2403–2410. doi: S0959804903006245.PubMedCrossRefGoogle Scholar
  190. 190.
    Tyagi, A., Singh, R. P., Agarwal, C., & Agarwal, R. (2006). Silibinin activates p53-caspase 2 pathway and causes caspase-mediated cleavage of Cip1/p21 in apoptosis induction in bladder transitional-cell papilloma RT4 cells: Evidence for a regulatory loop between p53 and caspase 2. Carcinogenesis, 27(11), 2269–2280.PubMedCrossRefGoogle Scholar
  191. 191.
    Singh, R. P., Tyagi, A., Sharma, G., Mohan, S., & Agarwal, R. (2008). Oral silibinin inhibits in vivo human bladder tumor xenograft growth involving down-regulation of survivin. Clinical Cancer Research, 14(1), 300–308.PubMedCrossRefGoogle Scholar
  192. 192.
    Tyagi, A., Agarwal, C., Harrison, G., Glode, L. M., & Agarwal, R. (2004). Silibinin causes cell cycle arrest and apoptosis in human bladder transitional cell carcinoma cells by regulating CDKI–CDK–cyclin cascade, and caspase 3 and PARP cleavages. Carcinogenesis, 25(9), 1711–1720. doi: 10.1093/carcin/bgh180bgh180.PubMedCrossRefGoogle Scholar
  193. 193.
    Tyagi, A. K., Agarwal, C., Singh, R. P., Shroyer, K. R., Glode, L. M., & Agarwal, R. (2003). Silibinin down-regulates survivin protein and mRNA expression and causes caspases activation and apoptosis in human bladder transitional-cell papilloma RT4 cells. Biochemical and Biophysical Research Communications, 312(4), 1178–1184.PubMedCrossRefGoogle Scholar
  194. 194.
    Tyagi, A., Raina, K., Singh, R. P., Gu, M., Agarwal, C., Harrison, G., et al. (2007). Chemopreventive effects of silymarin and silibinin on N-butyl-N-(4-hydroxybutyl) nitrosamine induced urinary bladder carcinogenesis in male ICR mice. Molecular Cancer Therapeutics, 6(12 Pt 1), 3248–3255.PubMedCrossRefGoogle Scholar
  195. 195.
    Gharagozloo, M., Khoshdel, Z., & Amirghofran, Z. (2008). The effect of an iron (III) chelator, silybin, on the proliferation and cell cycle of Jurkat cells: A comparison with desferrioxamine. European Journal of Pharmacology, 589(1–3), 1–7. doi: 10.1016/j.ejphar.2008.03.059/S0014-999(08)00387-7.PubMedCrossRefGoogle Scholar
  196. 196.
    Danilenko, M., Wang, Q., Wang, X., Levy, J., Sharoni, Y., & Studzinski, G. P. (2003). Carnosic acid potentiates the antioxidant and prodifferentiation effects of 1alpha, 25-dihydroxyvitamin D3 in leukemia cells but does not promote elevation of basal levels of intracellular calcium. Cancer Research, 63(6), 1325–1332.PubMedGoogle Scholar
  197. 197.
    Kang, S. N., Lee, M. H., Kim, K. M., Cho, D., & Kim, T. S. (2001). Induction of human promyelocytic leukemia HL-60 cell differentiation into monocytes by silibinin: Involvement of protein kinase C. Biochemical Pharmacology, 61(12), 1487–1495. doi: S0006295201006268.PubMedCrossRefGoogle Scholar
  198. 198.
    Cheung, C. W., Vesey, D. A., Nicol, D. L., & Johnson, D. W. (2007). Silibinin inhibits renal cell carcinoma via mechanisms that are independent of insulin-like growth factor-binding protein 3. BJU International, 99(2), 454–460.PubMedCrossRefGoogle Scholar
  199. 199.
    Cheung, C. W., Taylor, P. J., Kirkpatrick, C. M., Vesey, D. A., Gobe, G. C., Winterford, C., et al. (2007). Therapeutic value of orally administered silibinin in renal cell carcinoma: Manipulation of insulin-like growth factor binding protein-3 levels. BJU International, 100(2), 438–444.PubMedCrossRefGoogle Scholar
  200. 200.
    Bang, C. I., Paik, S. Y., Sun, D. I., Joo, Y. H., & Kim, M. S. (2008). Cell growth inhibition and down-regulation of survivin by silibinin in a laryngeal squamous cell carcinoma cell line. The Annals of Otology, Rhinology, and Laryngology, 117(10), 781–785.PubMedGoogle Scholar
  201. 201.
    Kim, S., Choi, M. G., Lee, H. S., Lee, S. K., Kim, S. H., Kim, W. W., et al. (2009). Silibinin suppresses TNF-alpha-induced MMP-9 expression in gastric cancer cells through inhibition of the MAPK pathway. Molecules, 14(11), 4300–4311. doi: 10.3390/molecules14114300.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, School of PharmacyUniversity of Colorado DenverAuroraUSA
  2. 2.University of Colorado Cancer CenterUniversity of Colorado DenverAuroraUSA

Personalised recommendations