Skip to main content

The cytoskeleton and cancer

Abstract

Cancer is a disease in which many of the characteristics of normal cell behavior are lost or perturbed. Uncontrolled cell proliferation and inappropriate cell survival are common features of all cancers, but in addition defects in cellular morphogenesis that lead to tissue disruption, the acquisition of inappropriate migratory and invasive characteristics and the generation of genomic instability through defects in mitosis also accompany progression of the disease. This volume is focused on the actin and microtubule cytoskeletons, key players that underpin these cellular processes. Actin and tubulin form highly versatile, dynamic polymers that are capable of organizing cytoplasmic organelles and intracellular compartments, defining cell polarity and generating both pushing and contractile forces. In the cell cycle, these two cytoskeletal structures drive chromosomal separation and cell division. During morphogenesis, they determine cell shape and polarity, and promote stable cell-cell and cell-matrix adhesions through their interactions with cadherins and integrins, respectively. Finally, during cell migration they generate protrusive forces at the front and retraction forces at the rear. These are all aspects of cell behavior than often go awry in cancer. This volume brings together those interested in understanding the contribution of the actin and microtubule cytoskeletons to the cell biology of cancer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science, 279, 509–514.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Bishop, A. L., & Hall, A. (2000). Rho GTPases and their effector proteins. Biochemical Journal, 348, 241–255.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70, 389–399.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell, 70, 401–410.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Nobes, C. D., & Hall, A. (1995). Rho, Rac and Cdc42 GTPases regulate the assembly of multi-molecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell, 81, 53–62.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Watanabe, N., Kato, T., Fujita, A., Ishizaki, T., & Narumiya, S. (1999). Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature cell biology, 1, 136–143.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., & Takenawa, T. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97, 221–231.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M., & Kirschner, M. W. (2002). Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature, 418, 790–793.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420, 629–635.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Ewen, M. E., Sluss, H. K., Sherr, C. J., Matsushime, H., Kato, J., & Livingston, D. M. (1993). Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell, 73, 487–497.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Dynlacht, R. B., Flores, O., Lees, J. A., & Harlow, E. (1994). Differential regulation of E2F transactivation by cyclin/cdk2 complexes. Genes & Development, 8, 1772–1286.

    Article  CAS  Google Scholar 

  12. 12.

    Malumbres, M., & Barbacid, M. (2003). RAS oncogenes: the first 30 years. Nature reviews Cancer, 3, 459–465.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Gille, H., & Downward, J. (1994). Multiple Ras effector pathways contribute to G1 cell cycle progression. Journal of biological chemistry, 274, 22033–22040.

    Article  Google Scholar 

  14. 14.

    Fu, J., Bian, M., Jiang, Q., & Zhang, C. (2007). Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Rev, 5, 1–10.

    Article  CAS  Google Scholar 

  15. 15.

    Boutros, R., Dozier, C., & Ducommun, B. (2006). The when and wheres of CDC25 phosphatases. Current opinion in chemical biology, 18, 185–191.

    CAS  Google Scholar 

  16. 16.

    Larochelle, S., Merrick, K. A., Terret, M. E., Wohlbold, L., Barboza, N. M., & Zhang, C. (2007). Requirements for Cdk7 in the assembly of Cdk1/cyclinB and activation of Cdk2 revealed by chemical genetics in human cells. Molecular cell, 25, 839–850.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Eckerdt, F., & Strebhardt, K. (2006). Polo-like kinase 1: Target and regulator of Anaphase-promoting complex/cyclosome-dependent proteolysis. Cancer research, 66, 6895–6898.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Pines, J. (2005). Mitosis: a matter of getting rid of the right protein at the right time. Trends in cell biology, 16, 55–63.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Glotzer, M. (2001). Animal cell cytokinesis. AnnualReveview Cell Developments in biologicals, 17, 351–386.

    CAS  Google Scholar 

  20. 20.

    Kops, G. J. P. L., Weaver, B. A. A., & Cleveland, D. W. (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nature reviews Cancer, 5, 773–785.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Ganem, N. J., Storchova, Z., & Pellman, D. (2007). Tetraploidy, aneuploidy and cancer. Current opinion in genetics & development, 17, 157–162.

    Article  CAS  Google Scholar 

  22. 22.

    Dai, W., Wang, Q., Liu, T., Swamy, M., Fang, Y., & Xie, S. (2004). Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer research, 64, 440–445.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Rao, C. V., Yang, Y. M., Swamy, V. M., Liu, T., Fang, Y., & Mahmood, R. (2005). Colonic tumorigenesis in BubR1+/-ApcMin/+ compound mutant mice is linked to premature separation of sister chromatids and enhanced genomic instability. Proceedings of the National Academy of Sciences of the United States of America, 102, 4365–4370.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Yamamoto, M., Marui, N., Sakai, T., & Kozaki, S. (1993). ADP-ribosylation of the RhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle. Oncogene, 8, 1449–14455.

    PubMed  CAS  Google Scholar 

  25. 25.

    Olson, M. F., Ashworth, A., & Hall, A. (1995). An essential role for Rho, Rac and Cdc42 GTPases in cell cycle progression through G1. Science, 269, 1270–1272.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Coleman, M. L., Marshall, C. J., & Olson, M. F. (2004). Ras and Rho GTPases in G1-phase cell cycle regulation. Nature reviews. Molecular cell biology, 5, 355–366.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Welsh, C. F., Roovers, K., Villanueva, J., Liu, Y., Schwartz, M. A., & Assoian, R. K. (2001). Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nature cell biology, 3, 950–957.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Croft, D. R., & Olson, M. F. (2006). The Rho GTPase effector ROCK regulates cyclin A, cyclin D1 and p27KIP1 levels by distinct mechanisms. Biol Molecular and cellular biology, 26, 4612–4627.

    Article  CAS  Google Scholar 

  29. 29.

    Mammoto, A., Huang, S., Moore, K., Oh, P., & Ingber, D. E. (2004). Role of RhoA, mDia and ROCK in cell shape-dependent control of the Skp-p27kip1 pathway and the G1/s transition. Journal of biological chemistry, 279, 26323–26330.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Vidal, A., Millard, S. S., Miller, J. P., & Koff, A. (2002). Rho activity can alter the translation of p27 mRNA and is important for RasV12-induced transformation in a manner dependent on p27 status. Journal of biological chemistry, 277, 16433–16440.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Rosenblatt, J., Cramer, L. P., Baum, B., & McGee, M. (2004). Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell, 117, 361–372.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Maddox, A. S., & Burridge, K. (2003). RhoA is required for cortical retraction and rigidity during mitotic cell rounding. Journal of cell biology, 160, 255–265.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Yasuda, S., Oceguera-Yanez, F., Kato, T., Okamoto, M., Yonemura, S., & Terada, Y. (2004). Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature, 428, 767–771.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Oceguera-Yanez, F., Kimura, K., Yasuda, S., Higashida, C., Kitamura, T., & Hiraoka, Y. (2005). Ect2 and MgcRacGAP regulate activation and function of Cdc42 in mitosis. Journal of cell biology, 168, 221–232.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Bakal, C. J., Finn, D., LaRose, J., Wells, C. D., Gish, G., & Kulkarni, S. (2005). The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis. Proceedings of the National Academy of Sciences of the United States of America, 102, 9529–9534.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Betschinger, J., & Knoblich, J. A. (2004). Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Current biology, 14, R674–685.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Schonegg, S., & Hyman, A. A. (2006). Cdc42 and Rho-1 coordinate acto-myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos. Development, 133, 3507–3516.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Aceto, D., Beers, M., & Kemphues, K. J. (2006). Interaction of Par-6 with Cdc42 is required for maintenance but not establishment of PAR asymmetry in C. elegans. Developments in biologicals, 299, 386–397.

    Article  CAS  Google Scholar 

  39. 39.

    Narumiya, S., & Yasuda, S. (2006). Rho GTPases in animal cell mitosis. Current opinion in chemical biology, 18, 199–205.

    CAS  Google Scholar 

  40. 40.

    Naim, V., Imarisio, S., Di Cunto, F., Gatti, M., & Bonaccorsi, S. (2004). Drosophila citron kinase is required for the final steps of cytokinesis. Molecular biology of the cell, 15, 5053−5063.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Schmidt, A., Durgan, J., Magalhaes, A., & Hall, A. (2007). Rho GTPases regulate PRK2 to control entry into mitosis and exit from mitosis. EMBO Jounal, 26, 1624−1636.

    Google Scholar 

  42. 42.

    Roh, M. H., & Margolis, B. (2003). Composition and function of PDZ protein complexes during cell polarization. Am J Renal Physiol, 285, F377−387.

    Google Scholar 

  43. 43.

    Medina, E., Lemmers, C., Lane-Guermonprez, L., & Le Bivic, A. (2002). Role of Crumbs complex in the regulation of junction formation in Drosophila and mammalian epithelial cells. Biology of the cell, 94, 305–313.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Kirby, C., Kusch, M., & Kemphues, K. (1990). Mutations in the par genes of C. elegans affect cytoplasmic reorganization during first cell cycle. Developments in biologicals, 142, 203–215.

    Article  CAS  Google Scholar 

  45. 45.

    Etienne-Manneville, S., & Hall, A. (2001). Integrin-mediated activation of Ccd42 controls cell polarity in migrating astrocytes through PKCζ. Cell, 106, 489–498.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Izumi, Y., Hirose, T., Tamai, Y., Hirai, S., Nagashima, Y., & Fujimoto, T. (1998). An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of C. elegans polarity protein Par-3. Journal of cell biology, 143, 95–106.

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Shi, S. H., Jan, L. Y., & Jan, Y. N. (2003). Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell, 112, 63–75.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Macara, I. (2004). Par proteins: partners in polarization. Current biology, 14, 160–162.

    Google Scholar 

  49. 49.

    Elbert, M., Cohen, D., & Musch, A. (2006). Par1b promotes cell-cell adhesion and inhibits disheveled-mediated transformation of MDCK cells. Molecular biology of the cell, 17, 3345–3355.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Hardie, D. G. (2005). New roles for the LKB1-AMPK pathway. Current opinion in chemical biology, 17, 167–173.

    CAS  Google Scholar 

  51. 51.

    Hemminke, A. (1998). A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature, 391, 184–187.

    Article  CAS  Google Scholar 

  52. 52.

    Shaw, R. J., Bardeesy, N., Manning, B. D., Lopez, L., Kosmatka, M., & DePinho, R. A. (2004). The LKB tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 6, 91–99.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Martin, S. G., & St Johnston, D. (2003). A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature, 421, 379–384.

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Baas, A. F., Kuipers, J., van der Wel, N. N., Batle, E., Koerten, H. K., Peters, P. J., et al. (2004). Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell, 116, 457–466.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Van Aelst, L., & Symons, M. (2002). Role of Rho family GTPases in epithelial morphogenesis. Genes & Development, 16, 1032–1054.

    Article  CAS  Google Scholar 

  56. 56.

    Hutterer, A., Betschinegr, J., Petronczki, M., & Knoblich, J. A. (2004). Sequential roles of Cdc42, Par6, aPKC and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Developments in cell, 6, 845–854.

    Article  CAS  Google Scholar 

  57. 57.

    Sotillos, S., Diaz-Mecco, M. T., Caminero, E., Moscat, J., & Campuzano, S. (2004). DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila. Journal of cell biology, 166, 549–557.

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Betschinger, J., Eisenhaber, F., & Knoblich, J. A. (2005). Phosphorylation-induced autoinhibition regulates the cytoskeletal protein Lethal (2) giant larvae. Current biology, 15, 276–282.

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G., & Margolis, B. (2003). Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature cell biology, 5, 137–142.

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Braga, V. M. M., Machesky, L., Hall, A., & Hotchin, N. A. (1997). The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. Journal of cell biology, 137, 1421–1431.

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Takaishi, K., Sasaki, T., Kotani, H., Nishioka, H., & Takai, Y. (1997). Regulation of cell-cell adhesion by rac and rho small G proteins in MDCK cells. Journal of cell biology, 139, 1047–1059.

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Fox, D. T., Homem, C. C., Myster, S. H., Wang, F., Bain, E. E., & Peifer, M. (2005). Rho1 regulates Drosophila adherens junctions independently of p120ctn. Development, 132, 4819–4831.

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Vasioukhin, V., Bauer, C., Yin, M., & Fuchs, E. (2000). Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell, 100, 209–219.

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Ehrlich, J. S., Hansen, M. D., & Nelson, W. J. (2002). Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics in epithelial cell-cell adhesion. Developments in cell, 3, 259–270.

    Article  CAS  Google Scholar 

  65. 65.

    Fukuhara, T., Shimizu, K., Kawakatsu, T., Fukuyama, T., Minami, Y., Honda, T., et al. (2004). Activation of Cdc42 by trans interactions of cell adhesion molecules nectins through c-Src, Cdc42-GEF FRG. Journal of cell biology, 166, 393–405.

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Yang, J., & Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Development in Cell, 14, 818–829.

    Article  CAS  Google Scholar 

  67. 67.

    Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Bilder, D. (2004). Epithelial polarity and proliferation control: links form the Drosophila neoplastic tumor suppressors. Genes & Development, 18, 1909–1925.

    Article  CAS  Google Scholar 

  69. 69.

    Pagliarini, R. A., & Xu, T. (2003). A genetic screen in Drosophila for metastatic behavior. Science, 302, 1227–1231.

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Humbert, P., Russell, S., & Richardson, H. (2003). Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioassays, 25, 542–553.

    Article  CAS  Google Scholar 

  71. 71.

    Thomas, M., Massimi, P., Navarro, C., Borg, J. P., & Banks, L. (2005). The hScrib/Dlg apico-basal control complex is differentially targeted by HPV-16 and HPV-18 E6 proteins. Oncogene, 24, 6222–6230.

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Yuan, B. Z., Miller, M. J., Keck, C. L., Zimonjic, D. B., Thorgeirsson, S. S., & Popescu, N. C. (1998). Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer research, 58, 2196–2199.

    PubMed  CAS  Google Scholar 

  73. 73.

    Xue, W., Krasnitz, A., Lucito, R., Sordella, R., Vanaelst, L., Cordon-Cardo, C., et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes & Development, 22, 1439–1444.

    Article  CAS  Google Scholar 

  74. 74.

    Brodu, V., & Casanova, J. (2006). The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination. Genes & Development, 20, 1817–1828.

    Article  CAS  Google Scholar 

  75. 75.

    Raftopoulou, M., & Hall, A. (2004). Cell migration: Rho GTPases lead the way. Developments in biologicals, 265, 23–32.

    Article  CAS  Google Scholar 

  76. 76.

    Lehman, R. (2001). Cell migration in invertebrates: clues from border and distal tip cells. Current opinion in genetics & development, 11, 457–463.

    Article  Google Scholar 

  77. 77.

    Condeelis, J. S., Wyckoff, J., & Segall, J. E. (2000). Imaging of cancer invasion and metastasis using green fluorescent protein. European journal of cancer, 36, 1671–1680.

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Stebler, J., Spieler, D., Slanchev, K., Molyneaux, K. A., Richter, U., Cojocaru, V., et al. (2004). Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Developments in biologicals, 272, 351–361.

    Article  CAS  Google Scholar 

  79. 79.

    Schmitz, A. A., Govek, E. E., Bottner, B., & Van Aelst, L. (2000). Rho GTPases: signaling, migration and invasion. Experimental cell research, 261, 1–12.

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440, 1069–1072.

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Wittmann, T., & Waterman-Storer, C. M. (2001). Cell motility: can Rho GTPases and microtubules point the way. Journal of Cell Science, 114, 3795–3803.

    PubMed  CAS  Google Scholar 

  82. 82.

    Tanaka, T., Serneo, F. F., Higgins, C., Gambello, M. J., Wynshaw-Boris, A., & Gleeson, J. G. (2004). Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. Journal of cell biology, 165, 709–721.

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Sahai, E., & Marshall, C. J. (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signaling and extracellular proteolysis. Nature cell biology, 5, 711–719.

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Pankov, R., Endo, Y., Even-Ram, S., Araki, M., Clark, K., & Cukierman, E. (2005). A Rac switch regulates random versus directionally persistent cell migration. Journal of cell biology, 170, 793–802.

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Devreotes, P., & Janetopoulos, C. (2003). Eukaryotic chemotaxis: distinctions between directional sensing and polarization. Journal of biological chemistry, 278, 20445–20448.

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion and adhesion during cell movement. Journal of cell biology, 144, 1235–1244.

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Srinivasan, S., Wang, F., Glavas, S., Ott, A., Hofmann, F., & Aktories, K. (2003). Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. Journal of cell biology, 160, 375–385.

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Li, Z., Hannigan, M., Mo, Z., Liu, B., Lu, W., Wu, Y., et al. (2003). Directional sensing requires G beta gamma-mediated PAK1 and PIX-alpha-dependent activation of Cdc42. Cell, 114, 215–227.

    PubMed  Article  CAS  Google Scholar 

  89. 89.

    Iijima, M., & Devreotes, P. (2002). Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell, 109, 599–610.

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Van Keymeulen, A., Wong, K., Knight, Z. A., Govaerts, C., Hahn, K. M., & Shokat, K. M. (2006). To stabilize neutrophil polarity, PIP3 and Cdc42 augment RhoA activity at the back as well as signals at the front. Journal of cell biology, 174, 437–445.

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Gomes, E. R., Jani, S., & Gundersen, G. G. (2005). Nuclear movement regulated by Cdc42, MRCK, myosin and actin flow establishes MTOC polarization. Cell, 121, 451–463.

    PubMed  Article  CAS  Google Scholar 

  92. 92.

    Tzima, E., Kiosses, W. B., del Pozo, M. A., & Schwartz, M. A. (2003). Localized Cdc42 activation detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid stress. Journal of biological chemistry, 278, 31020–31023.

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Etienne-Manneville, S., & Hall, A. (2003). Cdc42 regulates GSK3b and adenomatous polyposis coli to control cell polarity. Nature, 421, 753–756.

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Etienne-Manneville, S., Manneville, J. B., Nicholls, S., Ferenczi, M. A., & Hall, A. (2005). Cdc42 and Par6-PKCz regulate the spatially localized association of Dlg1 and APC to control cell polarization. Journal of cell biology, 170, 895–901.

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Schlessinger, K., McManus, E. J., & Hall, A. (2007). Cdc42 and non-canonical Wnt signal transduction pathways cooperate to promote cell polarity. Journal of cell biology, 178, 355–361.

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Cau, J., & Hall, A. (2005). Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. Journal of Cell Science, 118, 2579–2587.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alan Hall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hall, A. The cytoskeleton and cancer. Cancer Metastasis Rev 28, 5–14 (2009). https://doi.org/10.1007/s10555-008-9166-3

Download citation

Keywords

  • Cell cycle
  • Migration
  • Morphogenesis
  • Rho GTPases
  • Tumorigenesis
  • Metastasis