Cancer and Metastasis Reviews

, Volume 28, Issue 1–2, pp 5–14 | Cite as

The cytoskeleton and cancer

Article

Abstract

Cancer is a disease in which many of the characteristics of normal cell behavior are lost or perturbed. Uncontrolled cell proliferation and inappropriate cell survival are common features of all cancers, but in addition defects in cellular morphogenesis that lead to tissue disruption, the acquisition of inappropriate migratory and invasive characteristics and the generation of genomic instability through defects in mitosis also accompany progression of the disease. This volume is focused on the actin and microtubule cytoskeletons, key players that underpin these cellular processes. Actin and tubulin form highly versatile, dynamic polymers that are capable of organizing cytoplasmic organelles and intracellular compartments, defining cell polarity and generating both pushing and contractile forces. In the cell cycle, these two cytoskeletal structures drive chromosomal separation and cell division. During morphogenesis, they determine cell shape and polarity, and promote stable cell-cell and cell-matrix adhesions through their interactions with cadherins and integrins, respectively. Finally, during cell migration they generate protrusive forces at the front and retraction forces at the rear. These are all aspects of cell behavior than often go awry in cancer. This volume brings together those interested in understanding the contribution of the actin and microtubule cytoskeletons to the cell biology of cancer.

Keywords

Cell cycle Migration Morphogenesis Rho GTPases Tumorigenesis Metastasis 

References

  1. 1.
    Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science, 279, 509–514.PubMedCrossRefGoogle Scholar
  2. 2.
    Bishop, A. L., & Hall, A. (2000). Rho GTPases and their effector proteins. Biochemical Journal, 348, 241–255.PubMedCrossRefGoogle Scholar
  3. 3.
    Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70, 389–399.PubMedCrossRefGoogle Scholar
  4. 4.
    Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D., & Hall, A. (1992). The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell, 70, 401–410.PubMedCrossRefGoogle Scholar
  5. 5.
    Nobes, C. D., & Hall, A. (1995). Rho, Rac and Cdc42 GTPases regulate the assembly of multi-molecular focal complexes associated with actin stress fibers, lamellipodia and filopodia. Cell, 81, 53–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Watanabe, N., Kato, T., Fujita, A., Ishizaki, T., & Narumiya, S. (1999). Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature cell biology, 1, 136–143.PubMedCrossRefGoogle Scholar
  7. 7.
    Rohatgi, R., Ma, L., Miki, H., Lopez, M., Kirchhausen, T., & Takenawa, T. (1999). The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell, 97, 221–231.PubMedCrossRefGoogle Scholar
  8. 8.
    Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M., & Kirschner, M. W. (2002). Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature, 418, 790–793.PubMedCrossRefGoogle Scholar
  9. 9.
    Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420, 629–635.PubMedCrossRefGoogle Scholar
  10. 10.
    Ewen, M. E., Sluss, H. K., Sherr, C. J., Matsushime, H., Kato, J., & Livingston, D. M. (1993). Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell, 73, 487–497.PubMedCrossRefGoogle Scholar
  11. 11.
    Dynlacht, R. B., Flores, O., Lees, J. A., & Harlow, E. (1994). Differential regulation of E2F transactivation by cyclin/cdk2 complexes. Genes & Development, 8, 1772–1286.CrossRefGoogle Scholar
  12. 12.
    Malumbres, M., & Barbacid, M. (2003). RAS oncogenes: the first 30 years. Nature reviews Cancer, 3, 459–465.PubMedCrossRefGoogle Scholar
  13. 13.
    Gille, H., & Downward, J. (1994). Multiple Ras effector pathways contribute to G1 cell cycle progression. Journal of biological chemistry, 274, 22033–22040.CrossRefGoogle Scholar
  14. 14.
    Fu, J., Bian, M., Jiang, Q., & Zhang, C. (2007). Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Rev, 5, 1–10.CrossRefGoogle Scholar
  15. 15.
    Boutros, R., Dozier, C., & Ducommun, B. (2006). The when and wheres of CDC25 phosphatases. Current opinion in chemical biology, 18, 185–191.Google Scholar
  16. 16.
    Larochelle, S., Merrick, K. A., Terret, M. E., Wohlbold, L., Barboza, N. M., & Zhang, C. (2007). Requirements for Cdk7 in the assembly of Cdk1/cyclinB and activation of Cdk2 revealed by chemical genetics in human cells. Molecular cell, 25, 839–850.PubMedCrossRefGoogle Scholar
  17. 17.
    Eckerdt, F., & Strebhardt, K. (2006). Polo-like kinase 1: Target and regulator of Anaphase-promoting complex/cyclosome-dependent proteolysis. Cancer research, 66, 6895–6898.PubMedCrossRefGoogle Scholar
  18. 18.
    Pines, J. (2005). Mitosis: a matter of getting rid of the right protein at the right time. Trends in cell biology, 16, 55–63.PubMedCrossRefGoogle Scholar
  19. 19.
    Glotzer, M. (2001). Animal cell cytokinesis. AnnualReveview Cell Developments in biologicals, 17, 351–386.Google Scholar
  20. 20.
    Kops, G. J. P. L., Weaver, B. A. A., & Cleveland, D. W. (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nature reviews Cancer, 5, 773–785.PubMedCrossRefGoogle Scholar
  21. 21.
    Ganem, N. J., Storchova, Z., & Pellman, D. (2007). Tetraploidy, aneuploidy and cancer. Current opinion in genetics & development, 17, 157–162.CrossRefGoogle Scholar
  22. 22.
    Dai, W., Wang, Q., Liu, T., Swamy, M., Fang, Y., & Xie, S. (2004). Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer research, 64, 440–445.PubMedCrossRefGoogle Scholar
  23. 23.
    Rao, C. V., Yang, Y. M., Swamy, V. M., Liu, T., Fang, Y., & Mahmood, R. (2005). Colonic tumorigenesis in BubR1+/-ApcMin/+ compound mutant mice is linked to premature separation of sister chromatids and enhanced genomic instability. Proceedings of the National Academy of Sciences of the United States of America, 102, 4365–4370.PubMedCrossRefGoogle Scholar
  24. 24.
    Yamamoto, M., Marui, N., Sakai, T., & Kozaki, S. (1993). ADP-ribosylation of the RhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle. Oncogene, 8, 1449–14455.PubMedGoogle Scholar
  25. 25.
    Olson, M. F., Ashworth, A., & Hall, A. (1995). An essential role for Rho, Rac and Cdc42 GTPases in cell cycle progression through G1. Science, 269, 1270–1272.PubMedCrossRefGoogle Scholar
  26. 26.
    Coleman, M. L., Marshall, C. J., & Olson, M. F. (2004). Ras and Rho GTPases in G1-phase cell cycle regulation. Nature reviews. Molecular cell biology, 5, 355–366.PubMedCrossRefGoogle Scholar
  27. 27.
    Welsh, C. F., Roovers, K., Villanueva, J., Liu, Y., Schwartz, M. A., & Assoian, R. K. (2001). Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nature cell biology, 3, 950–957.PubMedCrossRefGoogle Scholar
  28. 28.
    Croft, D. R., & Olson, M. F. (2006). The Rho GTPase effector ROCK regulates cyclin A, cyclin D1 and p27KIP1 levels by distinct mechanisms. Biol Molecular and cellular biology, 26, 4612–4627.CrossRefGoogle Scholar
  29. 29.
    Mammoto, A., Huang, S., Moore, K., Oh, P., & Ingber, D. E. (2004). Role of RhoA, mDia and ROCK in cell shape-dependent control of the Skp-p27kip1 pathway and the G1/s transition. Journal of biological chemistry, 279, 26323–26330.PubMedCrossRefGoogle Scholar
  30. 30.
    Vidal, A., Millard, S. S., Miller, J. P., & Koff, A. (2002). Rho activity can alter the translation of p27 mRNA and is important for RasV12-induced transformation in a manner dependent on p27 status. Journal of biological chemistry, 277, 16433–16440.PubMedCrossRefGoogle Scholar
  31. 31.
    Rosenblatt, J., Cramer, L. P., Baum, B., & McGee, M. (2004). Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell, 117, 361–372.PubMedCrossRefGoogle Scholar
  32. 32.
    Maddox, A. S., & Burridge, K. (2003). RhoA is required for cortical retraction and rigidity during mitotic cell rounding. Journal of cell biology, 160, 255–265.PubMedCrossRefGoogle Scholar
  33. 33.
    Yasuda, S., Oceguera-Yanez, F., Kato, T., Okamoto, M., Yonemura, S., & Terada, Y. (2004). Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature, 428, 767–771.PubMedCrossRefGoogle Scholar
  34. 34.
    Oceguera-Yanez, F., Kimura, K., Yasuda, S., Higashida, C., Kitamura, T., & Hiraoka, Y. (2005). Ect2 and MgcRacGAP regulate activation and function of Cdc42 in mitosis. Journal of cell biology, 168, 221–232.PubMedCrossRefGoogle Scholar
  35. 35.
    Bakal, C. J., Finn, D., LaRose, J., Wells, C. D., Gish, G., & Kulkarni, S. (2005). The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis. Proceedings of the National Academy of Sciences of the United States of America, 102, 9529–9534.PubMedCrossRefGoogle Scholar
  36. 36.
    Betschinger, J., & Knoblich, J. A. (2004). Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Current biology, 14, R674–685.PubMedCrossRefGoogle Scholar
  37. 37.
    Schonegg, S., & Hyman, A. A. (2006). Cdc42 and Rho-1 coordinate acto-myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos. Development, 133, 3507–3516.PubMedCrossRefGoogle Scholar
  38. 38.
    Aceto, D., Beers, M., & Kemphues, K. J. (2006). Interaction of Par-6 with Cdc42 is required for maintenance but not establishment of PAR asymmetry in C. elegans. Developments in biologicals, 299, 386–397.CrossRefGoogle Scholar
  39. 39.
    Narumiya, S., & Yasuda, S. (2006). Rho GTPases in animal cell mitosis. Current opinion in chemical biology, 18, 199–205.Google Scholar
  40. 40.
    Naim, V., Imarisio, S., Di Cunto, F., Gatti, M., & Bonaccorsi, S. (2004). Drosophila citron kinase is required for the final steps of cytokinesis. Molecular biology of the cell, 15, 5053−5063.PubMedCrossRefGoogle Scholar
  41. 41.
    Schmidt, A., Durgan, J., Magalhaes, A., & Hall, A. (2007). Rho GTPases regulate PRK2 to control entry into mitosis and exit from mitosis. EMBO Jounal, 26, 1624−1636.Google Scholar
  42. 42.
    Roh, M. H., & Margolis, B. (2003). Composition and function of PDZ protein complexes during cell polarization. Am J Renal Physiol, 285, F377−387.Google Scholar
  43. 43.
    Medina, E., Lemmers, C., Lane-Guermonprez, L., & Le Bivic, A. (2002). Role of Crumbs complex in the regulation of junction formation in Drosophila and mammalian epithelial cells. Biology of the cell, 94, 305–313.PubMedCrossRefGoogle Scholar
  44. 44.
    Kirby, C., Kusch, M., & Kemphues, K. (1990). Mutations in the par genes of C. elegans affect cytoplasmic reorganization during first cell cycle. Developments in biologicals, 142, 203–215.CrossRefGoogle Scholar
  45. 45.
    Etienne-Manneville, S., & Hall, A. (2001). Integrin-mediated activation of Ccd42 controls cell polarity in migrating astrocytes through PKCζ. Cell, 106, 489–498.PubMedCrossRefGoogle Scholar
  46. 46.
    Izumi, Y., Hirose, T., Tamai, Y., Hirai, S., Nagashima, Y., & Fujimoto, T. (1998). An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of C. elegans polarity protein Par-3. Journal of cell biology, 143, 95–106.PubMedCrossRefGoogle Scholar
  47. 47.
    Shi, S. H., Jan, L. Y., & Jan, Y. N. (2003). Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell, 112, 63–75.PubMedCrossRefGoogle Scholar
  48. 48.
    Macara, I. (2004). Par proteins: partners in polarization. Current biology, 14, 160–162.Google Scholar
  49. 49.
    Elbert, M., Cohen, D., & Musch, A. (2006). Par1b promotes cell-cell adhesion and inhibits disheveled-mediated transformation of MDCK cells. Molecular biology of the cell, 17, 3345–3355.PubMedCrossRefGoogle Scholar
  50. 50.
    Hardie, D. G. (2005). New roles for the LKB1-AMPK pathway. Current opinion in chemical biology, 17, 167–173.Google Scholar
  51. 51.
    Hemminke, A. (1998). A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature, 391, 184–187.CrossRefGoogle Scholar
  52. 52.
    Shaw, R. J., Bardeesy, N., Manning, B. D., Lopez, L., Kosmatka, M., & DePinho, R. A. (2004). The LKB tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 6, 91–99.PubMedCrossRefGoogle Scholar
  53. 53.
    Martin, S. G., & St Johnston, D. (2003). A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature, 421, 379–384.PubMedCrossRefGoogle Scholar
  54. 54.
    Baas, A. F., Kuipers, J., van der Wel, N. N., Batle, E., Koerten, H. K., Peters, P. J., et al. (2004). Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell, 116, 457–466.PubMedCrossRefGoogle Scholar
  55. 55.
    Van Aelst, L., & Symons, M. (2002). Role of Rho family GTPases in epithelial morphogenesis. Genes & Development, 16, 1032–1054.CrossRefGoogle Scholar
  56. 56.
    Hutterer, A., Betschinegr, J., Petronczki, M., & Knoblich, J. A. (2004). Sequential roles of Cdc42, Par6, aPKC and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Developments in cell, 6, 845–854.CrossRefGoogle Scholar
  57. 57.
    Sotillos, S., Diaz-Mecco, M. T., Caminero, E., Moscat, J., & Campuzano, S. (2004). DaPKC-dependent phosphorylation of Crumbs is required for epithelial cell polarity in Drosophila. Journal of cell biology, 166, 549–557.PubMedCrossRefGoogle Scholar
  58. 58.
    Betschinger, J., Eisenhaber, F., & Knoblich, J. A. (2005). Phosphorylation-induced autoinhibition regulates the cytoskeletal protein Lethal (2) giant larvae. Current biology, 15, 276–282.PubMedCrossRefGoogle Scholar
  59. 59.
    Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G., & Margolis, B. (2003). Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature cell biology, 5, 137–142.PubMedCrossRefGoogle Scholar
  60. 60.
    Braga, V. M. M., Machesky, L., Hall, A., & Hotchin, N. A. (1997). The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. Journal of cell biology, 137, 1421–1431.PubMedCrossRefGoogle Scholar
  61. 61.
    Takaishi, K., Sasaki, T., Kotani, H., Nishioka, H., & Takai, Y. (1997). Regulation of cell-cell adhesion by rac and rho small G proteins in MDCK cells. Journal of cell biology, 139, 1047–1059.PubMedCrossRefGoogle Scholar
  62. 62.
    Fox, D. T., Homem, C. C., Myster, S. H., Wang, F., Bain, E. E., & Peifer, M. (2005). Rho1 regulates Drosophila adherens junctions independently of p120ctn. Development, 132, 4819–4831.PubMedCrossRefGoogle Scholar
  63. 63.
    Vasioukhin, V., Bauer, C., Yin, M., & Fuchs, E. (2000). Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell, 100, 209–219.PubMedCrossRefGoogle Scholar
  64. 64.
    Ehrlich, J. S., Hansen, M. D., & Nelson, W. J. (2002). Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics in epithelial cell-cell adhesion. Developments in cell, 3, 259–270.CrossRefGoogle Scholar
  65. 65.
    Fukuhara, T., Shimizu, K., Kawakatsu, T., Fukuyama, T., Minami, Y., Honda, T., et al. (2004). Activation of Cdc42 by trans interactions of cell adhesion molecules nectins through c-Src, Cdc42-GEF FRG. Journal of cell biology, 166, 393–405.PubMedCrossRefGoogle Scholar
  66. 66.
    Yang, J., & Weinberg, R. A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Development in Cell, 14, 818–829.CrossRefGoogle Scholar
  67. 67.
    Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMedCrossRefGoogle Scholar
  68. 68.
    Bilder, D. (2004). Epithelial polarity and proliferation control: links form the Drosophila neoplastic tumor suppressors. Genes & Development, 18, 1909–1925.CrossRefGoogle Scholar
  69. 69.
    Pagliarini, R. A., & Xu, T. (2003). A genetic screen in Drosophila for metastatic behavior. Science, 302, 1227–1231.PubMedCrossRefGoogle Scholar
  70. 70.
    Humbert, P., Russell, S., & Richardson, H. (2003). Dlg, Scribble and Lgl in cell polarity, cell proliferation and cancer. Bioassays, 25, 542–553.CrossRefGoogle Scholar
  71. 71.
    Thomas, M., Massimi, P., Navarro, C., Borg, J. P., & Banks, L. (2005). The hScrib/Dlg apico-basal control complex is differentially targeted by HPV-16 and HPV-18 E6 proteins. Oncogene, 24, 6222–6230.PubMedCrossRefGoogle Scholar
  72. 72.
    Yuan, B. Z., Miller, M. J., Keck, C. L., Zimonjic, D. B., Thorgeirsson, S. S., & Popescu, N. C. (1998). Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer research, 58, 2196–2199.PubMedGoogle Scholar
  73. 73.
    Xue, W., Krasnitz, A., Lucito, R., Sordella, R., Vanaelst, L., Cordon-Cardo, C., et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes & Development, 22, 1439–1444.CrossRefGoogle Scholar
  74. 74.
    Brodu, V., & Casanova, J. (2006). The RhoGAP crossveinless-c links trachealess and EGFR signaling to cell shape remodeling in Drosophila tracheal invagination. Genes & Development, 20, 1817–1828.CrossRefGoogle Scholar
  75. 75.
    Raftopoulou, M., & Hall, A. (2004). Cell migration: Rho GTPases lead the way. Developments in biologicals, 265, 23–32.CrossRefGoogle Scholar
  76. 76.
    Lehman, R. (2001). Cell migration in invertebrates: clues from border and distal tip cells. Current opinion in genetics & development, 11, 457–463.CrossRefGoogle Scholar
  77. 77.
    Condeelis, J. S., Wyckoff, J., & Segall, J. E. (2000). Imaging of cancer invasion and metastasis using green fluorescent protein. European journal of cancer, 36, 1671–1680.PubMedCrossRefGoogle Scholar
  78. 78.
    Stebler, J., Spieler, D., Slanchev, K., Molyneaux, K. A., Richter, U., Cojocaru, V., et al. (2004). Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Developments in biologicals, 272, 351–361.CrossRefGoogle Scholar
  79. 79.
    Schmitz, A. A., Govek, E. E., Bottner, B., & Van Aelst, L. (2000). Rho GTPases: signaling, migration and invasion. Experimental cell research, 261, 1–12.PubMedCrossRefGoogle Scholar
  80. 80.
    Pertz, O., Hodgson, L., Klemke, R. L., & Hahn, K. M. (2006). Spatiotemporal dynamics of RhoA activity in migrating cells. Nature, 440, 1069–1072.PubMedCrossRefGoogle Scholar
  81. 81.
    Wittmann, T., & Waterman-Storer, C. M. (2001). Cell motility: can Rho GTPases and microtubules point the way. Journal of Cell Science, 114, 3795–3803.PubMedGoogle Scholar
  82. 82.
    Tanaka, T., Serneo, F. F., Higgins, C., Gambello, M. J., Wynshaw-Boris, A., & Gleeson, J. G. (2004). Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. Journal of cell biology, 165, 709–721.PubMedCrossRefGoogle Scholar
  83. 83.
    Sahai, E., & Marshall, C. J. (2003). Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signaling and extracellular proteolysis. Nature cell biology, 5, 711–719.PubMedCrossRefGoogle Scholar
  84. 84.
    Pankov, R., Endo, Y., Even-Ram, S., Araki, M., Clark, K., & Cukierman, E. (2005). A Rac switch regulates random versus directionally persistent cell migration. Journal of cell biology, 170, 793–802.PubMedCrossRefGoogle Scholar
  85. 85.
    Devreotes, P., & Janetopoulos, C. (2003). Eukaryotic chemotaxis: distinctions between directional sensing and polarization. Journal of biological chemistry, 278, 20445–20448.PubMedCrossRefGoogle Scholar
  86. 86.
    Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion and adhesion during cell movement. Journal of cell biology, 144, 1235–1244.PubMedCrossRefGoogle Scholar
  87. 87.
    Srinivasan, S., Wang, F., Glavas, S., Ott, A., Hofmann, F., & Aktories, K. (2003). Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. Journal of cell biology, 160, 375–385.PubMedCrossRefGoogle Scholar
  88. 88.
    Li, Z., Hannigan, M., Mo, Z., Liu, B., Lu, W., Wu, Y., et al. (2003). Directional sensing requires G beta gamma-mediated PAK1 and PIX-alpha-dependent activation of Cdc42. Cell, 114, 215–227.PubMedCrossRefGoogle Scholar
  89. 89.
    Iijima, M., & Devreotes, P. (2002). Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell, 109, 599–610.PubMedCrossRefGoogle Scholar
  90. 90.
    Van Keymeulen, A., Wong, K., Knight, Z. A., Govaerts, C., Hahn, K. M., & Shokat, K. M. (2006). To stabilize neutrophil polarity, PIP3 and Cdc42 augment RhoA activity at the back as well as signals at the front. Journal of cell biology, 174, 437–445.PubMedCrossRefGoogle Scholar
  91. 91.
    Gomes, E. R., Jani, S., & Gundersen, G. G. (2005). Nuclear movement regulated by Cdc42, MRCK, myosin and actin flow establishes MTOC polarization. Cell, 121, 451–463.PubMedCrossRefGoogle Scholar
  92. 92.
    Tzima, E., Kiosses, W. B., del Pozo, M. A., & Schwartz, M. A. (2003). Localized Cdc42 activation detected using a novel assay, mediates microtubule organizing center positioning in endothelial cells in response to fluid stress. Journal of biological chemistry, 278, 31020–31023.PubMedCrossRefGoogle Scholar
  93. 93.
    Etienne-Manneville, S., & Hall, A. (2003). Cdc42 regulates GSK3b and adenomatous polyposis coli to control cell polarity. Nature, 421, 753–756.PubMedCrossRefGoogle Scholar
  94. 94.
    Etienne-Manneville, S., Manneville, J. B., Nicholls, S., Ferenczi, M. A., & Hall, A. (2005). Cdc42 and Par6-PKCz regulate the spatially localized association of Dlg1 and APC to control cell polarization. Journal of cell biology, 170, 895–901.PubMedCrossRefGoogle Scholar
  95. 95.
    Schlessinger, K., McManus, E. J., & Hall, A. (2007). Cdc42 and non-canonical Wnt signal transduction pathways cooperate to promote cell polarity. Journal of cell biology, 178, 355–361.PubMedCrossRefGoogle Scholar
  96. 96.
    Cau, J., & Hall, A. (2005). Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. Journal of Cell Science, 118, 2579–2587.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Cell Biology ProgramMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations