Advertisement

Cancer and Metastasis Reviews

, Volume 27, Issue 3, pp 495–522 | Cite as

Pancreatic cancer: from molecular pathogenesis to targeted therapy

  • Alexios Strimpakos
  • Muhammad W. Saif
  • Kostas N. Syrigos
NON-THEMATIC REVIEW

Abstract

Pancreatic cancer is a deadly malignancy with still high mortality and poor survival despite the significant advances in understanding, diagnosis, and access to conventional and novel treatments. Though cytotoxic chemotherapy based on the purine analogue gemcitabine remains the standard approach in adjuvant and palliative setting the need for novel agents aiming at the main pathophysiological abnormalities and molecular pathways involved remains soaring. So far, evidence of clinical benefit, though small, exists only from the addition of the targeted agent erlotinib on the standard gemcitabine chemotherapy. Apart from the popular monoclonal antibodies and small molecules tyrosine kinase inhibitors, other novel compounds being tested in preclinical and clinical studies target mTOR, NF-κB, proteasome and histone deacetylase. These new drugs along with gene therapy and immunotherapy, which are also under clinical evaluation, may alter the unfavorable natural course of this disease. In this review we present the main pathophysiological alterations met in pancreatic cancer and the results of the florid preclinical and clinical research with regards to the targeted therapy associated to these abnormalities.

Keywords

Molecular pathophysiology Pancreatic adenocarcinoma Monoclonal antibodies Tyrosine kinase inhibitors Novel agents Targeted therapies 

References

  1. 1.
    Heywood, G., Vezeridis, M. P., & Wanebo, H. J. (1998). Surgical therapy of pancreatic cancer. Frontiers in Bioscience, 3, E175–E180.PubMedGoogle Scholar
  2. 2.
    Espey, D. K., Wu, X. C., Swan, J., Wiggins, C., Jim, M. A., Ward, E., et al. (2007). Annual report to the nation on the status of cancer, 1975–2004, featuring cancer in American Indians and Alaska Natives. Cancer, 110, 2119–2152.PubMedGoogle Scholar
  3. 3.
    Lowenfels, A. B., & Maisonneuve, P. (2004). Epidemiology and prevention of pancreatic cancer. Japanese Journal of Clinical Oncology, 34(5), 238–244.PubMedGoogle Scholar
  4. 4.
    Hansen, R., Quebbeman, E., Ritch, P., Chitambar, C., & Anderson, T. (1988). Continuous 5-fluorouracil (5FU) infusion in carcinoma of the pancreas: a phase II study. American Journal of the Medical Sciences, 295(2), 91–93.PubMedGoogle Scholar
  5. 5.
    Burris III, H. A., Moore, M. J., Andersen, J., Green, M. R., Rothenberg, M. L., Modiano, M. R., et al. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal of Clinical Oncology, 15(6), 2403–2413.PubMedGoogle Scholar
  6. 6.
    Moskaluk, C. A., Hruban, R. H., & Kern, S. E. (1997). p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Research, 57(11), 2140–2143.PubMedGoogle Scholar
  7. 7.
    Hruban, R. H., Adsay, N. V., Albores-Saavedra, J., Compton, C., Garrett, E. S., Goodman, S. N., et al. (2001). Pancreatic intraepithelial neoplasia: A new nomenclature and classification system for pancreatic duct lesions. American Journal of Surgical Pathology, 25(5), 579–586.PubMedGoogle Scholar
  8. 8.
    Lumadue, J. A., Griffin, C. A., Osman, M., & Hruban, R. H. (1995). Familial pancreatic cancer and the genetics of pancreatic cancer. Surgical Clinics of North America, 75(5), 845–855.PubMedGoogle Scholar
  9. 9.
    Dang, C. X., Han, Y., Qin, Z. Y., & Wang, Y. J. (2002). Clinical significance of expression of p21 and p53 proteins and proliferating cell nuclear antigen in pancreatic cancer. Hepatobiliary and Pancreatic Diseases International, 1(2), 302–305.PubMedGoogle Scholar
  10. 10.
    Dergham, S. T., Dugan, M. C., Kucway, R., Du, W., Kamarauskiene, D. S., Vaitkevicius, V. K., et al. (1997). Prevalence and clinical significance of combined K-ras mutation and p53 aberration in pancreatic adenocarcinoma. International Journal of Pancreatology, 21(2), 127–143.PubMedGoogle Scholar
  11. 11.
    Dong, M., Dong, Q., Zhang, H., Zhou, J., Tian, Y., & Dong, Y. (2007). Expression of Gadd45a and p53 proteins in human pancreatic cancer: Potential effects on clinical outcomes. Journal of Surgical Oncology, 95(4), 332–336.PubMedGoogle Scholar
  12. 12.
    Bloomston, M., Bhardwaj, A., Ellison, E. C., & Frankel, W. L. (2006). Epidermal growth factor receptor expression in pancreatic carcinoma using tissue microarray technique. Digestive Surgery, 23(1–2), 74–79.PubMedGoogle Scholar
  13. 13.
    Dugan, M. C., Dergham, S. T., Kucway, R., Singh, K., Biernat, L., Du, W., et al. (1997). HER-2/neu expression in pancreatic adenocarcinoma: relation to tumor differentiation and survival. Pancreas, 14(3), 229–236.PubMedGoogle Scholar
  14. 14.
    Schutte, M., Hruban, R. H., Hedrick, L., Cho, K. R., Nadasdy, G. M., Weinstein, C. L., et al. (1996). DPC4 gene in various tumor types. Cancer Research, 56(11), 2527–2530.PubMedGoogle Scholar
  15. 15.
    Hua, Z., Zhang, Y. C., Hu, X. M., & Jia, Z. G. (2003). Loss of DPC4 expression and its correlation with clinicopathological parameters in pancreatic carcinoma. World Journal of Gastroenterology, 9(12), 2764–2767.PubMedGoogle Scholar
  16. 16.
    Goggins, M., Schutte, M., Lu, J., Moskaluk, C. A., Weinstein, C. L., Petersen, G. M., et al. (1996). Germline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Research, 56(23), 5360–5364.PubMedGoogle Scholar
  17. 17.
    Chadha, K. S., Khoury, T., Yu, J., Black, J. D., Gibbs, J. F., Kuvshinoff, B. W., et al. (2006). Activated Akt and Erk expression and survival after surgery in pancreatic carcinoma. Annals of Surgical Oncology, 13(7), 933–939.PubMedGoogle Scholar
  18. 18.
    Lal, G., Liu, G., Schmocker, B., Kaurah, P., Ozcelik, H., Narod, S. A., et al. (2000). Inherited predisposition to pancreatic adenocarcinoma: role of family history and germ-line p16, BRCA1, and BRCA2 mutations. Cancer Research, 60(2), 409–416.PubMedGoogle Scholar
  19. 19.
    Simon, B., Bartsch, D., Barth, P., Prasnikar, N., Munch, K., Blum, A., et al. (1998). Frequent abnormalities of the putative tumor suppressor gene FHIT at 3p14.2 in pancreatic carcinoma cell lines. Cancer Research, 58(8), 1583–1587.PubMedGoogle Scholar
  20. 20.
    Wang, Z., Banerjee, S., Li, Y., Rahman, K. M., Zhang, Y., & Sarkar, F. H. (2006). Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Research, 66(5), 2778–2784.PubMedGoogle Scholar
  21. 21.
    Wang, Z., Zhang, Y., Li, Y., Banerjee, S., Liao, J., & Sarkar, F. H. (2006). Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Molecular Cancer Therapeutics, 5(3), 483–493.PubMedGoogle Scholar
  22. 22.
    Albazaz, R., Verbeke, C. S., Rahman, S. H., & McMahon, M. J. (2005). Cyclooxygenase-2 expression associated with severity of PanIN lesions: A possible link between chronic pancreatitis and pancreatic cancer. Pancreatology, 5(4–5), 361–369.PubMedGoogle Scholar
  23. 23.
    Juuti, A., Louhimo, J., Nordling, S., Ristimaki, A., & Haglund, C. (2006). Cyclooxygenase-2 expression correlates with poor prognosis in pancreatic cancer. Journal of Clinical Pathology, 59(4), 382–386.PubMedGoogle Scholar
  24. 24.
    Okami, J., Yamamoto, H., Fujiwara, Y., Tsujie, M., Kondo, M., Noura, S., et al. (1999). Overexpression of cyclooxygenase-2 in carcinoma of the pancreas. Clinical Cancer Research, 5(8), 2018–2024.PubMedGoogle Scholar
  25. 25.
    Maitra, A., Ashfaq, R., Gunn, C. R., Rahman, A., Yeo, C. J., Sohn, T. A., et al. (2002). Cyclooxygenase 2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imaging. American Journal of Clinical Pathology, 118(2), 194–201.PubMedGoogle Scholar
  26. 26.
    Almoguera, C., Shibata, D., Forrester, K., Martin, J., Arnheim, N., & Perucho, M. (1988). Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell, 53(4), 549–554.PubMedGoogle Scholar
  27. 27.
    Smit, V. T., Boot, A. J., Smits, A. M., Fleuren, G. J., Cornelisse, C. J., & Bos, J. L. (1988). KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Research, 16(16), 7773–7782.PubMedGoogle Scholar
  28. 28.
    Hruban, R. H., van Mansfeld, A. D., Offerhaus, G. J., van Weering, D. H., Allison, D. C., Goodman, S. N., et al. (1993). K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. American Journal of Pathology, 143(2), 545–554.PubMedGoogle Scholar
  29. 29.
    van Heek, T., Rader, A. E., Offerhaus, G. J., McCarthy, D. M., Goggins, M., Hruban, R. H., et al. (2002). K-ras, p53, and DPC4 (MAD4) alterations in fine-needle aspirates of the pancreas: a molecular panel correlates with and supplements cytologic diagnosis. American Journal of Clinical Pathology, 117(5), 755–765.PubMedGoogle Scholar
  30. 30.
    Rozenblum, E., Schutte, M., Goggins, M., Hahn, S. A., Panzer, S., Zahurak, M., et al. (1997). Tumor-suppressive pathways in pancreatic carcinoma. Cancer Research, 57(9), 1731–1734.PubMedGoogle Scholar
  31. 31.
    Kawesha, A., Ghaneh, P., Andren-Sandberg, A., Ograed, D., Skar, R., Dawiskiba, S., et al. (2000). K-ras oncogene subtype mutations are associated with survival but not expression of p53, p16(INK4A), p21(WAF-1), cyclin D1, erbB-2 and erbB-3 in resected pancreatic ductal adenocarcinoma. International Journal of Cancer, 89(6), 469–474.Google Scholar
  32. 32.
    Eberhard, D. A., Johnson, B. E., Amler, L. C., Goddard, A. D., Heldens, S. L., Herbst, R. S., et al. (2005). Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. Journal of Clinical Oncology, 23(25), 5900–5909.PubMedGoogle Scholar
  33. 33.
    Di Fiore, F., Blanchard, F., Charbonnier, F., Le Pessot, F., Lamy, A., Galais, M. P., et al. (2007). Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy. British Journal of Cancer, 96(8), 1166–1169.PubMedGoogle Scholar
  34. 34.
    Schutte, M., Hruban, R. H., Geradts, J., Maynard, R., Hilgers, W., Rabindran, S. K., et al. (1997). Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Research, 57(15), 3126–3130.PubMedGoogle Scholar
  35. 35.
    Huang, L., Goodrow, T. L., Zhang, S. Y., Klein-Szanto, A. J., Chang, H., & Ruggeri, B. A. (1996). Deletion and mutation analyses of the P16/MTS-1 tumor suppressor gene in human ductal pancreatic cancer reveals a higher frequency of abnormalities in tumor-derived cell lines than in primary ductal adenocarcinomas. Cancer Research, 56(5), 1137–1141.PubMedGoogle Scholar
  36. 36.
    Hu, Y. X., Watanabe, H., Ohtsubo, K., Yamaguchi, Y., Ha, A., Okai, T., et al. (1997). Frequent loss of p16 expression and its correlation with clinicopathological parameters in pancreatic carcinoma. Clinical Cancer Research, 3(9), 1473–1477.PubMedGoogle Scholar
  37. 37.
    Naka, T., Kobayashi, M., Ashida, K., Toyota, N., Kaneko, T., & Kaibara, N. (1998). Aberrant p16INK4 expression related to clinical stage and prognosis in patients with pancreatic cancer. International Journal of Oncology, 12(5), 1111–1116.PubMedGoogle Scholar
  38. 38.
    Barton, C. M., Staddon, S. L., Hughes, C. M., Hall, P. A., O’Sullivan, C., Kloppel, G., et al. (1991). Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. British Journal of Cancer, 64(6), 1076–1082.PubMedGoogle Scholar
  39. 39.
    Dong, M., Ma, G., Tu, W., Guo, K. J., Tian, Y. L., & Dong, Y. T. (2005). Clinicopathological significance of p53 and mdm2 protein expression in human pancreatic cancer. World Journal of Gastroenterology, 11(14), 2162–2165.PubMedGoogle Scholar
  40. 40.
    Lowe, S. W., Ruley, H. E., Jacks, T., & Housman, D. E. (1993). p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell, 74(6), 957–967.PubMedGoogle Scholar
  41. 41.
    Lowe, S. W. (1995). Cancer therapy and p53. Current Opinion in Oncology, 7(6), 547–553.PubMedGoogle Scholar
  42. 42.
    Sun, Y. (2006). p53 and its downstream proteins as molecular targets of cancer. Molecular Carcinogenesis, 45(6), 409–415.PubMedGoogle Scholar
  43. 43.
    Zhan, M., Yu, D., Lang, A., Li, L., & Pollock, R. E. (2001). Wild type p53 sensitizes soft tissue sarcoma cells to doxorubicin by down-regulating multidrug resistance-1 expression. Cancer, 92(6), 1556–1566.PubMedGoogle Scholar
  44. 44.
    Lang, D., Miknyoczki, S. J., Huang, L., & Ruggeri, B. A. (1998). Stable reintroduction of wild-type P53 (MTmp53ts) causes the induction of apoptosis and neuroendocrine-like differentiation in human ductal pancreatic carcinoma cells. Oncogene, 16(12), 1593–1602.PubMedGoogle Scholar
  45. 45.
    Nakamori, S., Yashima, K., Murakami, Y., Ishikawa, O., Ohigashi, H., Imaoka, S., et al. (1995). Association of p53 gene mutations with short survival in pancreatic adenocarcinoma. Japanese Journal of Cancer Research, 86(2), 174–181.PubMedGoogle Scholar
  46. 46.
    Dong, M., Nio, Y., Yamasawa, K., Toga, T., Yue, L., & Harada, T. (2003). p53 alteration is not an independent prognostic indicator, but affects the efficacy of adjuvant chemotherapy in human pancreatic cancer. Journal of Surgical Oncology, 82(2), 111–120.PubMedGoogle Scholar
  47. 47.
    Gerdes, B., Ramaswamy, A., Ziegler, A., Lang, S. A., Kersting, M., Baumann, R., et al. (2002). p16INK4a is a prognostic marker in resected ductal pancreatic cancer: an analysis of p16INK4a, p53, MDM2, an Rb. Annals of Surgery, 235(1), 51–59.PubMedGoogle Scholar
  48. 48.
    Saif, M. W., Karapanagiotou, L., & Syrigos, K. (2007). Genetic alterations in pancreatic cancer. World Journal of Gastroenterology, 13(33), 4423–4430.PubMedGoogle Scholar
  49. 49.
    Massague, J., Blain, S. W., & Lo, R. S. (2000). TGFbeta signaling in growth control, cancer, and heritable disorders. Cell, 103(2), 295–309.PubMedGoogle Scholar
  50. 50.
    Miyaki, M., & Kuroki, T. (2003). Role of Smad4 (DPC4) inactivation in human cancer. Biochemical and Biophysical Research Communications, 306(4), 799–804.PubMedGoogle Scholar
  51. 51.
    Wilentz, R. E., Iacobuzio-Donahue, C. A., Argani, P., McCarthy, D. M., Parsons, J. L., Yeo, C. J., et al. (2000). Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: Evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Research, 60(7), 2002–2006.PubMedGoogle Scholar
  52. 52.
    Howe, J. R., Roth, S., Ringold, J. C., Summers, R. W., Jarvinen, H. J., Sistonen, P., et al. (1998). Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science, 280(5366), 1086–1088.PubMedGoogle Scholar
  53. 53.
    Tascilar, M., Skinner, H. G., Rosty, C., Sohn, T., Wilentz, R. E., Offerhaus, G. J., et al. (2001). The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clinical Cancer Research, 7(12), 4115–4121.PubMedGoogle Scholar
  54. 54.
    Biankin, A. V., Morey, A. L., Lee, C. S., Kench, J. G., Biankin, S. A., Hook, H. C., et al. (2002). DPC4/Smad4 expression and outcome in pancreatic ductal adenocarcinoma. Journal of Clinical Oncology, 20(23), 4531–4542.PubMedGoogle Scholar
  55. 55.
    Khorana, A. A., Hu, Y. C., Ryan, C. K., Komorowski, R. A., Hostetter, G., & Ahrendt, S. A. (2005). Vascular endothelial growth factor and DPC4 predict adjuvant therapy outcomes in resected pancreatic cancer. Journal of Gastrointestinal Surgery, 9(7), 903–911.PubMedGoogle Scholar
  56. 56.
    Schwarte-Waldhoff, I., Volpert, O. V., Bouck, N. P., Sipos, B., Hahn, S. A., Klein-Scory, S., et al. (2000). Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 97(17), 9624–9629.PubMedGoogle Scholar
  57. 57.
    Hahn, S. A., Greenhalf, B., Ellis, I., Sina-Frey, M., Rieder, H., Korte, B., et al. (2003). BRCA2 germline mutations in familial pancreatic carcinoma. Journal of the National Cancer Institute, 95(3), 214–221.PubMedGoogle Scholar
  58. 58.
    Murphy, K. M., Brune, K. A., Griffin, C., Sollenberger, J. E., Petersen, G. M., Bansal, R., et al. (2002). Evaluation of candidate genes MAP2K4, MADH4, ACVR1B, and BRCA2 in familial pancreatic cancer: Deleterious BRCA2 mutations in 17%. Cancer Research, 62(13), 3789–3793.PubMedGoogle Scholar
  59. 59.
    Real, F. X., Malats, N., Lesca, G., Porta, M., Chopin, S., Lenoir, G. M., et al. (2002). Family history of cancer and germline BRCA2 mutations in sporadic exocrine pancreatic cancer. Gut, 50(5), 653–657.PubMedGoogle Scholar
  60. 60.
    Tsiambas, E., Karameris, A., Dervenis, C., Lazaris, A. C., Giannakou, N., Gerontopoulos, K., et al. (2006). HER2/neu expression and gene alterations in pancreatic ductal adenocarcinoma: A comparative immunohistochemistry and chromogenic in situ hybridization study based on tissue microarrays and computerized image analysis. Journal of the Pancreas, 7(3), 283–294.PubMedGoogle Scholar
  61. 61.
    Safran, H., Steinhoff, M., Mangray, S., Rathore, R., King, T. C., Chai, L., et al. (2001). Overexpression of the HER-2/neu oncogene in pancreatic adenocarcinoma. American Journal of Clinical Oncology, 24(5), 496–499.PubMedGoogle Scholar
  62. 62.
    Talar-Wojnarowska, R., Gasiorowska, A., Smolarz, B., Romanowicz-Makowska, H., Strzelczyk, J., Janiak, A., et al. (2005). Clinical significance of K-ras and c-erbB-2 mutations in pancreatic adenocarcinoma and chronic pancreatitis. International Journal of Gastrointestinal Cancer, 35(1), 33–41.PubMedGoogle Scholar
  63. 63.
    Yamanaka, Y., Friess, H., Kobrin, M. S., Buchler, M., Kunz, J., Beger, H. G., et al. (1993). Overexpression of HER2/neu oncogene in human pancreatic carcinoma. Human Pathology, 24(10), 1127–1134.PubMedGoogle Scholar
  64. 64.
    Stoecklein, N. H., Luebke, A. M., Erbersdobler, A., Knoefel, W. T., Schraut, W., Verde, P. E., et al. (2004). Copy number of chromosome 17 but not HER2 amplification predicts clinical outcome of patients with pancreatic ductal adenocarcinoma. Journal of Clinical Oncology, 22(23), 4737–4745.PubMedGoogle Scholar
  65. 65.
    Korc, M., Chandrasekar, B., Yamanaka, Y., Friess, H., Buchier, M., & Beger, H. G. (1992). Overexpression of the epidermal growth factor receptor in human pancreatic cancer is associated with concomitant increases in the levels of epidermal growth factor and transforming growth factor alpha. Journal of Clinical Investigation, 90(4), 1352–1360.PubMedGoogle Scholar
  66. 66.
    Yamanaka, Y., Friess, H., Kobrin, M. S., Buchler, M., Beger, H. G., & Korc, M. (1993). Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness. Anticancer Research, 13(3), 565–569.PubMedGoogle Scholar
  67. 67.
    Durkin, A. J., Bloomston, P. M., Rosemurgy, A. S., Giarelli, N., Cojita, D., Yeatman, T. J., et al. (2003). Defining the role of the epidermal growth factor receptor in pancreatic cancer grown in vitro. American Journal of Surgery, 186(5), 431–436.PubMedGoogle Scholar
  68. 68.
    Wang, Z., Zhang, Y., Banerjee, S., Li, Y., & Sarkar, F. H. (2006). Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer, 106(11), 2503–2513.PubMedGoogle Scholar
  69. 69.
    Wang, Z., Zhang, Y., Banerjee, S., Li, Y., & Sarkar, F. H. (2006). Inhibition of nuclear factor kappab activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells. International Journal of Cancer, 118(8), 1930–1936.Google Scholar
  70. 70.
    Buchler, P., Gazdhar, A., Schubert, M., Giese, N., Reber, H. A., Hines, O. J., et al. (2005). The Notch signaling pathway is related to neurovascular progression of pancreatic cancer. Annals of Surgery, 242(6), 791–800 discussion.PubMedGoogle Scholar
  71. 71.
    Taketo, M. M. (1998). Cyclooxygenase-2 inhibitors in tumorigenesis (part I). Journal of the National Cancer Institute, 90(20), 1529–1536.PubMedGoogle Scholar
  72. 72.
    Cheng, J. Q., Ruggeri, B., Klein, W. M., Sonoda, G., Altomare, D. A., Watson, D. K., et al. (1996). Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proceedings of the National Academy of Sciences of the United States of America, 93(8), 3636–3641.PubMedGoogle Scholar
  73. 73.
    Fahy, B. N., Schlieman, M., Virudachalam, S., & Bold, R. J. (2003). AKT inhibition is associated with chemosensitisation in the pancreatic cancer cell line MIA-PaCa-2. British Journal of Cancer, 89(2), 391–397.PubMedGoogle Scholar
  74. 74.
    Lebe, B., Sagol, O., Ulukus, C., Coker, A., Karademir, S., Astarcioglu, H., et al. (2004). The importance of cyclin D1 and Ki67 expression on the biological behavior of pancreatic adenocarcinomas. Pathology, Research and Practice, 200(5), 389–396.PubMedGoogle Scholar
  75. 75.
    Ebert, M. P., Hernberg, S., Fei, G., Sokolowski, A., Schulz, H. U., Lippert, H., et al. (2001). Induction and expression of cyclin D3 in human pancreatic cancer. Journal of Cancer Research and Clinical Oncology, 127(7), 449–454.PubMedGoogle Scholar
  76. 76.
    Ito, Y., Takeda, T., Wakasa, K., Tsujimoto, M., & Matsuura, N. (2001). Expression and possible role of cyclin D3 in human pancreatic adenocarcinoma. Anticancer Research, 21(2A), 1043–1048.PubMedGoogle Scholar
  77. 77.
    Andrianifahanana, M., Moniaux, N., Schmied, B. M., Ringel, J., Friess, H., Hollingsworth, M. A., et al. (2001). Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: A potential role of MUC4 as a tumor marker of diagnostic significance. Clinical Cancer Research, 7(12), 4033–4040.PubMedGoogle Scholar
  78. 78.
    Arumugam, T., Simeone, D. M., Van Golen, K., & Logsdon, C. D. (2005). S100P promotes pancreatic cancer growth, survival, and invasion. Clinical Cancer Research, 11(15), 5356–5364.PubMedGoogle Scholar
  79. 79.
    Morton, J. P., Mongeau, M. E., Klimstra, D. S., Morris, J. P., Lee, Y. C., Kawaguchi, Y., et al. (2007). Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(12), 5103–5108.PubMedGoogle Scholar
  80. 80.
    Thayer, S. P., di Magliano, M. P., Heiser, P. W., Nielsen, C. M., Roberts, D. J., Lauwers, G. Y., et al. (2003). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 425(6960), 851–856.PubMedGoogle Scholar
  81. 81.
    Nakashima, H., Nakamura, M., Yamaguchi, H., Yamanaka, N., Akiyoshi, T., Koga, K., et al. (2006). Nuclear factor-kappaB contributes to hedgehog signaling pathway activation through sonic hedgehog induction in pancreatic cancer. Cancer Research, 66(14), 7041–7049.PubMedGoogle Scholar
  82. 82.
    Gong, Y. L., Xu, G. M., Huang, W. D., & Chen, L. B. (2000). Expression of matrix metalloproteinases and the tissue inhibitors of metalloproteinases and their local invasiveness and metastasis in Chinese human pancreatic cancer. Journal of Surgical Oncology, 73(2), 95–99.PubMedGoogle Scholar
  83. 83.
    Juuti, A., Lundin, J., Nordling, S., & Louhimo, J. (2006). Haglund C. Epithelial MMP-2 expression correlates with worse prognosis in pancreatic cancer. Oncology, 71(1–2), 61–68.PubMedGoogle Scholar
  84. 84.
    Tobita, K., Kijima, H., Dowaki, S., Kashiwagi, H., Ohtani, Y., Oida, Y., et al. (2003). Epidermal growth factor receptor expression in human pancreatic cancer: Significance for liver metastasis. International Journal of Molecular Medicine, 11(3), 305–309.PubMedGoogle Scholar
  85. 85.
    Ng, S. S., Tsao, M. S., Nicklee, T., & Hedley, D. W. (2002). Effects of the epidermal growth factor receptor inhibitor OSI-774, Tarceva, on downstream signaling pathways and apoptosis in human pancreatic adenocarcinoma. Molecular Cancer Therapeutics, 1(10), 777–783.PubMedGoogle Scholar
  86. 86.
    Iannitti, D., Dipetrillo, T., Akerman, P., Barnett, J. M., Maia-Acuna, C., Cruff, D., et al. (2005). Erlotinib and chemoradiation followed by maintenance erlotinib for locally advanced pancreatic cancer: a phase I study. American Journal of Clinical Oncology, 28(6), 570–575.PubMedGoogle Scholar
  87. 87.
    Dragovich, T., Huberman, M., Von Hoff, D. D., Rowinsky, E. K., Nadler, P., Wood, D., et al. (2007). Erlotinib plus gemcitabine in patients with unresectable pancreatic cancer and other solid tumors: phase IB trial. Cancer Chemotherapy and Pharmacology, 60(2), 295–303.PubMedGoogle Scholar
  88. 88.
    Moore, M. J., Goldstein, D., Hamm, J., Figer, A., Hecht, J. R., Gallinger, S., et al. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25(15), 1960–1966.PubMedGoogle Scholar
  89. 89.
    Wacker, B., Nagrani, T., Weinberg, J., Witt, K., Clark, G., & Cagnoni, P. J. (2007). Correlation between development of rash and efficacy in patients treated with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in two large phase III studies. Clinical Cancer Research, 13(13), 3913–3921.PubMedGoogle Scholar
  90. 90.
    Buck, E., Eyzaguirre, A., Brown, E., Petti, F., McCormack, S., Haley, J. D., et al. (2006). Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Molecular Cancer Therapeutics, 5(11), 2676–2684.PubMedGoogle Scholar
  91. 91.
    Buck, E., Eyzaguirre, A., Haley, J. D., Gibson, N. W., Cagnoni, P., & Iwata, K. K. (2006). Inactivation of Akt by the epidermal growth factor receptor inhibitor erlotinib is mediated by HER-3 in pancreatic and colorectal tumor cell lines and contributes to erlotinib sensitivity. Molecular Cancer Therapeutics, 5(8), 2051–2059.PubMedGoogle Scholar
  92. 92.
    El Rayes, B. F., Ali, S., Ali, I. F., Philip, P. A., Abbruzzese, J., & Sarkar, F. H. (2006). Potentiation of the effect of erlotinib by genistein in pancreatic cancer: the role of Akt and nuclear factor-kappaB. Cancer Research, 66(21), 10553–10559.PubMedGoogle Scholar
  93. 93.
    Kulke, M. H., Blaszkowsky, L. S., Ryan, D. P., Clark, J. W., Meyerhardt, J. A., Zhu, A. X., et al. (2007). Capecitabine plus erlotinib in gemcitabine-refractory advanced pancreatic cancer. Journal of Clinical Oncology, 25(30), 4787–4792.PubMedGoogle Scholar
  94. 94.
    Li, J., Kleeff, J., Giese, N., Buchler, M. W., Korc, M., & Friess, H. (2004). Gefitinib (‘Iressa’, ZD1839), a selective epidermal growth factor receptor tyrosine kinase inhibitor, inhibits pancreatic cancer cell growth, invasion, and colony formation. International Journal of Oncology, 25(1), 203–210.PubMedGoogle Scholar
  95. 95.
    Knight, L. A., Di Nicolantonio, F., Whitehouse, P., Mercer, S., Sharma, S., Glaysher, S., et al. (2004). The in vitro effect of gefitinib (‘Iressa’) alone and in combination with cytotoxic chemotherapy on human solid tumours. BMC Cancer, 4, 83.PubMedGoogle Scholar
  96. 96.
    Rosetti, M., Tesei, A., Ulivi, P., Fabbri, F., Vannini, I., Brigliadori, G., et al. (2005). Modulation of drug cytotoxicity by Iressa (ZD1839) in pancreatic cancer cell lines. Cancer Biology and Therapy, 4(10), 1089–1095.PubMedGoogle Scholar
  97. 97.
    Czito, B. G., Willett, C. G., Bendell, J. C., Morse, M. A., Tyler, D. S., Fernando, N. H., et al. (2006). Increased toxicity with gefitinib, capecitabine, and radiation therapy in pancreatic and rectal cancer: phase I trial results. Journal of Clinical Oncology, 24(4), 656–662.PubMedGoogle Scholar
  98. 98.
    Maurel, J., Martin-Richard, M., Conill, C., Sanchez, M., Petriz, L., Gines, A., et al. (2006). Phase I trial of gefitinib with concurrent radiotherapy and fixed 2-h gemcitabine infusion, in locally advanced pancreatic cancer. International Journal of Radiation Oncology, Biology, Physics, 66(5), 1391–1398.PubMedGoogle Scholar
  99. 99.
    Carneiro, B. A., Brand, R. E., Fine, E., Knop, R. H., Khandekar, J. D., Uhlig, W., et al. (2007). Phase I trial of fixed dose rate infusion gemcitabine with gefitinib in patients with pancreatic carcinoma. Cancer Investigation, 25(5), 366–371.PubMedGoogle Scholar
  100. 100.
    Ignatiadis, M., Polyzos, A., Stathopoulos, G. P., Tselepatiotis, E., Christophylakis, C., Kalbakis, K., et al. (2006). A multicenter phase II study of docetaxel in combination with gefitinib in gemcitabinepretreated patients with advanced/metastatic pancreatic cancer. Oncology, 71(3–4), 159–163.PubMedGoogle Scholar
  101. 101.
    Bruns, C. J., Solorzano, C. C., Harbison, M. T., Ozawa, S., Tsan, R., Fan, D., et al. (2000). Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Research, 60(11), 2926–2935.PubMedGoogle Scholar
  102. 102.
    Baker, C. H., Solorzano, C. C., & Fidler, I. J. (2002). Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer. Cancer Research, 62(7), 1996–2003.PubMedGoogle Scholar
  103. 103.
    Solorzano, C. C., Baker, C. H., Tsan, R., Traxler, P., Cohen, P., Buchdunger, E., et al. (2001). Optimization for the blockade of epidermal growth factor receptor signaling for therapy of human pancreatic carcinoma. Clinical Cancer Research, 7(8), 2563–2572.PubMedGoogle Scholar
  104. 104.
    Safran, H., Iannitti, D., Miner, T., Demel, K., Yoo, D., Joseph, P., et al. (2006). GW572016, gemcitabine and GW572016, gemcitabine, oxaliplatin, a two-stage, phase I study for advanced pancreaticobiliary cancer. Journal of Clinical Oncology (Meeting Abstracts), 24(18_suppl), 4002.Google Scholar
  105. 105.
    Buchler, P., Reber, H. A., Buchler, M. C., Roth, M. A., Buchler, M. W., Friess, H., et al. (2001). Therapy for pancreatic cancer with a recombinant humanized anti-HER2 antibody (herceptin). Journal of Gastrointestinal Surgery, 5(2), 139–146.PubMedGoogle Scholar
  106. 106.
    Kimura, K., Sawada, T., Komatsu, M., Inoue, M., Muguruma, K., Nishihara, T., et al. (2006). Antitumor effect of trastuzumab for pancreatic cancer with high HER-2 expression and enhancement of effect by combined therapy with gemcitabine. Clinical Cancer Research, 12(16), 4925–4932.PubMedGoogle Scholar
  107. 107.
    Larbouret, C., Robert, B., Navarro-Teulon, I., Thezenas, S., Ladjemi, M. Z., Morisseau, S., et al. (2007). In vivo therapeutic synergism of anti-epidermal growth factor receptor and anti-HER2 monoclonal antibodies against pancreatic carcinomas. Clinical Cancer Research, 13(11), 3356–3362.PubMedGoogle Scholar
  108. 108.
    Saeki, H., Yanoma, S., Takemiya, S., Sugimasa, Y., Akaike, M., Yukawa, N., et al. (2007). Antitumor activity of a combination of trastuzumab (Herceptin) and oral fluoropyrimidine S-1 on human epidermal growth factor receptor 2-overexpressing pancreatic cancer. Oncology Reports, 18(2), 433–439.PubMedGoogle Scholar
  109. 109.
    Safran, H., Iannitti, D., Ramanathan, R., Schwartz, J. D., Steinhoff, M., Nauman, C., et al. (2004). Herceptin and gemcitabine for metastatic pancreatic cancers that overexpress HER-2/neu. Cancer Investigation, 22(5), 706–712.PubMedGoogle Scholar
  110. 110.
    Bruns, C. J., Harbison, M. T., Davis, D. W., Portera, C. A., Tsan, R., McConkey, D. J., et al. (2000). Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clinical Cancer Research, 6(5), 1936–1948.PubMedGoogle Scholar
  111. 111.
    Overholser, J. P., Prewett, M. C., Hooper, A. T., Waksal, H. W., & Hicklin, D. J. (2000). Epidermal growth factor receptor blockade by antibody IMC-C225 inhibits growth of a human pancreatic carcinoma xenograft in nude mice. Cancer, 89(1), 74–82.PubMedGoogle Scholar
  112. 112.
    Buchsbaum, D. J., Bonner, J. A., Grizzle, W. E., Stackhouse, M. A., Carpenter, M., Hicklin, D. J., et al. (2002). Treatment of pancreatic cancer xenografts with Erbitux (IMC-C225) anti-EGFR antibody, gemcitabine, and radiation. International Journal of Radiation Oncology, Biology, Physics, 54(4), 1180–1193.PubMedGoogle Scholar
  113. 113.
    Huang, Z. Q., Buchsbaum, D. J., Raisch, K. P., Bonner, J. A., Bland, K. I., & Vickers, S. M. (2003). Differential responses by pancreatic carcinoma cell lines to prolonged exposure to Erbitux (IMC-C225) anti-EGFR antibody. Journal of Surgical Research, 111(2), 274–283.PubMedGoogle Scholar
  114. 114.
    Arnoletti, J. P., Buchsbaum, D. J., Huang, Z. Q., Hawkins, A. E., Khazaeli, M. B., Kraus, M. H., et al. (2004). Mechanisms of resistance to Erbitux (anti-epidermal growth factor receptor) combination therapy in pancreatic adenocarcinoma cells. Journal of Gastrointestinal Surgery, 8(8), 960–969.PubMedGoogle Scholar
  115. 115.
    Sclabas, G. M., Fujioka, S., Schmidt, C., Fan, Z., Evans, D. B., & Chiao, P. J. (2003). Restoring apoptosis in pancreatic cancer cells by targeting the nuclear factor-kappaB signaling pathway with the antiepidermal growth factor antibody IMC-C225. Journal of Gastrointestinal Surgery, 7(1), 37–43.PubMedGoogle Scholar
  116. 116.
    Tonra, J. R., Deevi, D. S., Corcoran, E., Li, H., Wang, S., Carrick, F. E., et al. (2006). Synergistic antitumor effects of combined epidermal growth factor receptor and vascular endothelial growth factor receptor-2 targeted therapy. Clinical Cancer Research, 12(7 Pt 1), 2197–2207.PubMedGoogle Scholar
  117. 117.
    Xiong, H. Q., Rosenberg, A., LoBuglio, A., Schmidt, W., Wolff, R. A., Deutsch, J., et al. (2004). Cetuximab, a monoclonal antibody targeting the epidermal growth factor receptor, in combination with gemcitabine for advanced pancreatic cancer: a multicenter phase II Trial. Journal of Clinical Oncology, 22(13), 2610–2616.PubMedGoogle Scholar
  118. 118.
    Philip, P. A., Benedetti, J., Fenoglio-Preiser, C., Zalupski, M., Lenz, H., O’Reilly, E., et al. (2007). Phase III study of gemcitabine [G] plus cetuximab [C] versus gemcitabine in patients [pts] with locally advanced or metastatic pancreatic adenocarcinoma [PC]: SWOG S0205 study. Journal of Clinical Oncology (Meeting Abstracts), 25(18_suppl), LBA4509.Google Scholar
  119. 119.
    Burtness, B. A., Powell, M., Berlin, J., Liles, D., Chapman, A., Mitchell, E., et al. (2007). Phase II trial of irinotecan/docetaxel for advanced pancreatic cancer with randomization between irinotecan/docetaxel and irinotecan/docetaxel plus C225, a monoclonal antibody to the epidermal growth factor receptor (EGF-r): Eastern Cooperative Oncology. Journal of Clinical Oncology (Meeting Abstracts), 25(18_suppl), 4519.Google Scholar
  120. 120.
    Graeven, U., Kremer, B., Sudhoff, T., Killing, B., Rojo, F., Weber, D., et al. (2006). Phase I study of the humanised anti-EGFR monoclonal antibody matuzumab (EMD 72000) combined with gemcitabine in advanced pancreatic cancer. British Journal of Cancer, 94(9), 1293–1299.PubMedGoogle Scholar
  121. 121.
    Yang, X. D., Jia, X. C., Corvalan, J. R., Wang, P., Davis, C. G., & Jakobovits, A. (1999). Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Research, 59(6), 1236–1243.PubMedGoogle Scholar
  122. 122.
    Yang, X. D., Jia, X. C., Corvalan, J. R., Wang, P., & Davis, C. G. (2001). Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Critical Reviews in Oncology/Hematology, 38(1), 17–23.PubMedGoogle Scholar
  123. 123.
    Egawa, S., Tsutsumi, M., Konishi, Y., Kobari, M., Matsuno, S., Nagasaki, K., et al. (1995). The role of angiogenesis in the tumor growth of Syrian hamster pancreatic cancer cell line HPD-NR. Gastroenterology, 108(5), 1526–1533.PubMedGoogle Scholar
  124. 124.
    Itakura, J., Ishiwata, T., Friess, H., Fujii, H., Matsumoto, Y., Buchler, M. W., et al. (1997). Enhanced expression of vascular endothelial growth factor in human pancreatic cancer correlates with local disease progression. Clinical Cancer Research, 3(8), 1309–1316.PubMedGoogle Scholar
  125. 125.
    Ikeda, N., Adachi, M., Taki, T., Huang, C., Hashida, H., Takabayashi, A., et al. (1999). Prognostic significance of angiogenesis in human pancreatic cancer. British Journal of Cancer, 79(9–10), 1553–1563.PubMedGoogle Scholar
  126. 126.
    Buchler, P., Reber, H. A., Buchler, M. W., Friess, H., & Hines, O. J. (2002). VEGF-RII influences the prognosis of pancreatic cancer. Annals of Surgery, 236(6), 738–749.PubMedGoogle Scholar
  127. 127.
    Fujimoto, K., Hosotani, R., Wada, M., Lee, J. U., Koshiba, T., Miyamoto, Y., et al. (1998). Expression of two angiogenic factors, vascular endothelial growth factor and platelet-derived endothelial cell growth factor in human pancreatic cancer, and its relationship to angiogenesis. European Journal of Cancer, 34(9), 1439–1447.PubMedGoogle Scholar
  128. 128.
    Bruns, C. J., Shrader, M., Harbison, M. T., Portera, C., Solorzano, C. C., Jauch, K. W., et al. (2002). Effect of the vascular endothelial growth factor receptor-2 antibody DC101 plus gemcitabine on growth, metastasis and angiogenesis of human pancreatic cancer growing orthotopically in nude mice. International Journal of Cancer, 102(2), 101–108.Google Scholar
  129. 129.
    Hotz, H. G., Reber, H. A., Hotz, B., Sanghavi, P. C., Yu, T., Foitzik, T., et al. (2001). Angiogenesis inhibitor TNP-470 reduces human pancreatic cancer growth. Journal of Gastrointestinal Surgery, 5(2), 131–138.PubMedGoogle Scholar
  130. 130.
    Kindler, H. L., Friberg, G., Singh, D. A., Locker, G., Nattam, S., Kozloff, M., et al. (2005). Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. Journal of Clinical Oncology, 23(31), 8033–8040.PubMedGoogle Scholar
  131. 131.
    Kim, G. P., Oberg, A. L., Foster, N. R., Jaslowski, A., Flynn, P. J., Campbell, D., et al. (2007). Phase II trial of bevacizumab, gemcitabine, oxaliplatin in patients with metastatic pancreatic adenocarcinoma. Journal of Clinical Oncology (Meeting Abstracts), 25(18_suppl), 4553.Google Scholar
  132. 132.
    Kindler, H. L., Niedzwiecki, D., Hollis, D., Oraefo, E., Schrag, D., Hurwitz, H., et al. (2007). A double-blind, placebo-controlled, randomized phase III trial of gemcitabine (G) plus bevacizumab (B) versus gemcitabine plus placebo (P) in patients (pts) with advanced pancreatic cancer (PC): A preliminary analysis of Cancer and Leukemia Group B (CALGB. Journal of Clinical Oncology (Meeting Abstracts), 25(18_suppl), 4508.Google Scholar
  133. 133.
    Crane, C. H., Ellis, L. M., Abbruzzese, J. L., Amos, C., Xiong, H. Q., Ho, L., et al. (2006). Phase I trial evaluating the safety of bevacizumab with concurrent radiotherapy and capecitabine in locally advanced pancreatic cancer. Journal of Clinical Oncology, 24(7), 1145–1151.PubMedGoogle Scholar
  134. 134.
    Solorzano, C. C., Baker, C. H., Bruns, C. J., Killion, J. J., Ellis, L. M., Wood, J., et al. (2001). Inhibition of growth and metastasis of human pancreatic cancer growing in nude mice by PTK 787/ZK222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Cancer Biother Radiopharm, 16(5), 359–370.PubMedGoogle Scholar
  135. 135.
    Kuo, T., Fitzgerald, A., Kaiser, H., Sikic, B. I., & Fisher, G. A. (2006). A phase I study of the VEGF receptor tyrosine kinase inhibitor vatalanib (PTK787/ZK 222584) and gemcitabine in patients with advanced pancreatic cancer. Journal of Clinical Oncology (Meeting Abstracts), 24(18_suppl), 4122.Google Scholar
  136. 136.
    Bianco, C., Giovannetti, E., Ciardiello, F., Mey, V., Nannizzi, S., Tortora, G., et al. (2006). Synergistic antitumor activity of ZD6474, an inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling, with gemcitabine and ionizing radiation against pancreatic cancer. Clinical Cancer Research, 12(23), 7099–7107.PubMedGoogle Scholar
  137. 137.
    Conrad, C., Ischenko, I., Kohl, G., Wiegand, U., Guba, M., Yezhelyev, M., et al. (2007). Antiangiogenic and antitumor activity of a novel vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor ZD6474 in a metastatic human pancreatic tumor model. Anticancer Drugs, 18(5), 569–579.PubMedGoogle Scholar
  138. 138.
    Siu, L. L., Awada, A., Takimoto, C. H., Piccart, M., Schwartz, B., Giannaris, T., et al. (2006). Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clinical Cancer Research, 12(1), 144–151.PubMedGoogle Scholar
  139. 139.
    Rosemurgy, A., Harris, J., Langleben, A., Casper, E., Goode, S., & Rasmussen, H. (1999). Marimastat in patients with advanced pancreatic cancer: a dose-finding study. American Journal of Clinical Oncology, 22(3), 247–252.PubMedGoogle Scholar
  140. 140.
    Bramhall, S. R., Rosemurgy, A., Brown, P. D., Bowry, C., & Buckels, J. A. (2001). Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. Journal of Clinical Oncology, 19(15), 3447–3455.PubMedGoogle Scholar
  141. 141.
    Bramhall, S. R., Schulz, J., Nemunaitis, J., Brown, P. D., Baillet, M., & Buckels, J. A. (2002). A double-blind placebo-controlled, randomised study comparing gemcitabine and marimastat with gemcitabine and placebo as first line therapy in patients with advanced pancreatic cancer. British Journal of Cancer, 87(2), 161–167.PubMedGoogle Scholar
  142. 142.
    Kilian, M., Gregor, J. I., Heukamp, I., Hanel, M., Ahlgrimm, M., Schimke, I., et al. (2006). Matrix metalloproteinase inhibitor RO 28–2653 decreases liver metastasis by reduction of MMP-2 and MMP-9 concentration in BOP-induced ductal pancreatic cancer in Syrian Hamsters: inhibition of matrix metalloproteinases in pancreatic cancer. Prostaglandins Leukot Essent Fatty Acids, 75(6), 429–434.PubMedGoogle Scholar
  143. 143.
    Moore, M. J., Hamm, J., Dancey, J., Eisenberg, P. D., Dagenais, M., Fields, A., et al. (2003). Comparison of gemcitabine versus the matrix metalloproteinase inhibitor BAY 12–9566 in patients with advanced or metastatic adenocarcinoma of the pancreas: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 21(17), 3296–3302.PubMedGoogle Scholar
  144. 144.
    Cohen, S. J., Ho, L., Ranganathan, S., Abbruzzese, J. L., Alpaugh, R. K., Beard, M., et al. (2003). Phase II and pharmacodynamic study of the farnesyltransferase inhibitor R115777 as initial therapy in patients with metastatic pancreatic adenocarcinoma. Journal of Clinical Oncology, 21(7), 1301–1306.PubMedGoogle Scholar
  145. 145.
    Macdonald, J. S., McCoy, S., Whitehead, R. P., Iqbal, S., Wade III, J. L., Giguere, J. K., et al. (2005). A phase II study of farnesyl transferase inhibitor R115777 in pancreatic cancer: a Southwest oncology group (SWOG 9924) study. Investigational New Drugs, 23(5), 485–487.PubMedGoogle Scholar
  146. 146.
    Van Cutsem, E., van de Velde, H., Karasek, P., Oettle, H., Vervenne, W. L., Szawlowski, A., et al. (2004). Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. Journal of Clinical Oncology, 22(8), 1430–1438.PubMedGoogle Scholar
  147. 147.
    Liu, M., Bryant, M. S., Chen, J., Lee, S., Yaremko, B., Lipari, P., et al. (1998). Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Research, 58(21), 4947–4956.PubMedGoogle Scholar
  148. 148.
    Nielsen, L. L., Shi, B., Hajian, G., Yaremko, B., Lipari, P., Ferrari, E., et al. (1999). Combination therapy with the farnesyl protein transferase inhibitor SCH66336 and SCH58500 (p53 adenovirus) in preclinical cancer models. Cancer Research, 59(23), 5896–5901.PubMedGoogle Scholar
  149. 149.
    Eskens, F. A., Awada, A., Cutler, D. L., de Jonge, M. J., Luyten, G. P., Faber, M. N., et al. (2001). Phase I and pharmacokinetic study of the oral farnesyl transferase inhibitor SCH 66336 given twice daily to patients with advanced solid tumors. Journal of Clinical Oncology, 19(4), 1167–1175.PubMedGoogle Scholar
  150. 150.
    Awada, A., Eskens, F. A., Piccart, M., Cutler, D. L., van der Gaast, A., Bleiberg, H., et al. (2002). Phase I and pharmacological study of the oral farnesyltransferase inhibitor SCH 66336 given once daily to patients with advanced solid tumours. European Journal of Cancer, 38(17), 2272–2278.PubMedGoogle Scholar
  151. 151.
    Raut, C. P., Nawrocki, S., Lashinger, L. M., Davis, D. W., Khanbolooki, S., Xiong, H., et al. (2004). Celecoxib inhibits angiogenesis by inducing endothelial cell apoptosis in human pancreatic tumor xenografts. Cancer Biology and Therapy, 3(12), 1217–1224.PubMedCrossRefGoogle Scholar
  152. 152.
    Wei, D., Wang, L., He, Y., Xiong, H. Q., Abbruzzese, J. L., & Xie, K. (2004). Celecoxib inhibits vascular endothelial growth factor expression in and reduces angiogenesis and metastasis of human pancreatic cancer via suppression of Sp1 transcription factor activity. Cancer Research, 64(6), 2030–2038.PubMedGoogle Scholar
  153. 153.
    Fife, R. S., Stott, B., & Carr, R. E. (2004). Effects of a selective cyclooxygenase-2 inhibitor on cancer cells in vitro. Cancer Biology and Therapy, 3(2), 228–232.PubMedGoogle Scholar
  154. 154.
    Blanquicett, C., Saif, M. W., Buchsbaum, D. J., Eloubeidi, M., Vickers, S. M., Chhieng, D. C., et al. (2005). Antitumor efficacy of capecitabine and celecoxib in irradiated and lead-shielded, contralateral human BxPC-3 pancreatic cancer xenografts: clinical implications of abscopal effects. Clinical Cancer Research, 11(24 Pt 1), 8773–8781.PubMedGoogle Scholar
  155. 155.
    El Rayes, B. F., Ali, S., Sarkar, F. H., & Philip, P. A. (2004). Cyclooxygenase-2-dependent and -independent effects of celecoxib in pancreatic cancer cell lines. Molecular Cancer Therapeutics, 3(11), 1421–1426.PubMedGoogle Scholar
  156. 156.
    Ali, S., El Rayes, B. F., Sarkar, F. H., & Philip, P. A. (2005). Simultaneous targeting of the epidermal growth factor receptor and cyclooxygenase-2 pathways for pancreatic cancer therapy. Molecular Cancer Therapeutics, 4(12), 1943–1951.PubMedGoogle Scholar
  157. 157.
    Lev-Ari, S., Zinger, H., Kazanov, D., Yona, D., Ben Yosef, R., Starr, A., et al. (2005). Curcumin synergistically potentiates the growth inhibitory and pro-apoptotic effects of celecoxib in pancreatic adenocarcinoma cells. Biomedicine & Pharmacotherapy, 59(Suppl 2), S276–S280.Google Scholar
  158. 158.
    Milella, M., Gelibter, A., Di Cosimo, S., Bria, E., Ruggeri, E. M., Carlini, P., et al. (2004). Pilot study of celecoxib and infusional 5-fluorouracil as second-line treatment for advanced pancreatic carcinoma. Cancer, 101(1), 133–138.PubMedGoogle Scholar
  159. 159.
    Kerr, S., Campbell, C., Legore, K., Witters, L., Harvey, H., & Lipton, A. (2005). Phase II trial of gemcitabine and irinotecan plus celecoxib in advanced adenocarcinoma of the pancreas. Journal of Clinical Oncology (Meeting Abstracts), 23(16_suppl), 4155.Google Scholar
  160. 160.
    El Rayes, B. F., Zalupski, M. M., Shields, A. F., Ferris, A. M., Vaishampayan, U., Heilbrun, L. K., et al. (2005). A phase II study of celecoxib, gemcitabine, and cisplatin in advanced pancreatic cancer. Investigational New Drugs, 23(6), 583–590.PubMedGoogle Scholar
  161. 161.
    Ferrari, V., Valcamonico, F., Amoroso, V., Simoncini, E., Vassalli, L., Marpicati, P., et al. (2006). Gemcitabine plus celecoxib (GECO) in advanced pancreatic cancer: a phase II trial. Cancer Chemotherapy and Pharmacology, 57(2), 185–190.PubMedGoogle Scholar
  162. 162.
    Jimeno, A., Amador, M. L., Kulesza, P., Wang, X., Rubio-Viqueira, B., Zhang, X., et al. (2006). Assessment of celecoxib pharmacodynamics in pancreatic cancer. Molecular Cancer Therapeutics, 5(12), 3240–3247.PubMedGoogle Scholar
  163. 163.
    Caldwell, B., Aldington, S., Weatherall, M., Shirtcliffe, P., & Beasley, R. (2006). Risk of cardiovascular events and celecoxib: A systematic review and meta-analysis. Journal of the Royal Society of Medicine, 99(3), 132–140.PubMedGoogle Scholar
  164. 164.
    White, W. B., West, C. R., Borer, J. S., Gorelick, P. B., Lavange, L., Pan, S. X., et al. (2007). Risk of cardiovascular events in patients receiving celecoxib: A meta-analysis of randomized clinical trials. American Journal of Cardiology, 99(1), 91–98.PubMedGoogle Scholar
  165. 165.
    Chen, L. C., & Ashcroft, D. M. (2007). Risk of myocardial infarction associated with selective COX-2 inhibitors: Meta-analysis of randomised controlled trials. Pharmacoepidemiology and Drug Safety, 16(7), 762–772.PubMedGoogle Scholar
  166. 166.
    Kearney, P. M., Baigent, C., Godwin, J., Halls, H., Emberson, J. R., & Patrono, C. (2006). Do selective cyclooxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ, 332(7553), 1302–1308.PubMedGoogle Scholar
  167. 167.
    Chen, J., Ouyang, Z. G., Zhang, S. H., & Zhen, Y. S. (2007). Down-regulation of the nuclear factor-kappaB by lidamycin in association with inducing apoptosis in human pancreatic cancer cells and inhibiting xenograft growth. Oncology Reports, 17(6), 1445–1451.PubMedGoogle Scholar
  168. 168.
    Dhillon, N., Wolff, R. A., Abbruzzese, J. L., Hong, D. S., Camacho, L. H., Li, L., et al. (2006). Phase II clinical trial of curcumin in patients with advanced pancreatic cancer. Journal of Clinical Oncology (Meeting Abstracts), 24(18_suppl), 14151.Google Scholar
  169. 169.
    Kunnumakkara, A. B., Guha, S., Krishnan, S., Diagaradjane, P., Gelovani, J., & Aggarwal, B. B. (2007). Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB regulated gene products. Cancer Research, 67(8), 3853–3861.PubMedGoogle Scholar
  170. 170.
    Banerjee, S., Zhang, Y., Ali, S., Bhuiyan, M., Wang, Z., Chiao, P. J., et al. (2005). Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Research, 65(19), 9064–9072.PubMedGoogle Scholar
  171. 171.
    Li, Y., Ahmed, F., Ali, S., Philip, P. A., Kucuk, O., & Sarkar, F. H. (2005). Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Research, 65(15), 6934–6942.PubMedGoogle Scholar
  172. 172.
    Sclabas, G. M., Uwagawa, T., Schmidt, C., Hess, K. R., Evans, D. B., Abbruzzese, J. L., et al. (2005). Nuclear factor kappa B activation is a potential target for preventing pancreatic carcinoma by aspirin. Cancer, 103(12), 2485–2490.PubMedGoogle Scholar
  173. 173.
    Yip-Schneider, M. T., Nakshatri, H., Sweeney, C. J., Marshall, M. S., Wiebke, E. A., & Schmidt, C. M. (2005). Parthenolide and sulindac cooperate to mediate growth suppression and inhibit the nuclear factor-kappa B pathway in pancreatic carcinoma cells. Molecular Cancer Therapeutics, 4(4), 587–594.PubMedGoogle Scholar
  174. 174.
    Shiah, H. S., Gao, W., Baker, D. C., & Cheng, Y. C. (2006). Inhibition of cell growth and nuclear factor-kappaB activity in pancreatic cancer cell lines by a tylophorine analogue, DCB-3503. Molecular Cancer Therapeutics, 5(10), 2484–2493.PubMedGoogle Scholar
  175. 175.
    Shah, S. A., Potter, M. W., McDade, T. P., Ricciardi, R., Perugini, R. A., Elliott, P. J., et al. (2001). 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. Journal of Cellular Biochemistry, 82(1), 110–122.PubMedGoogle Scholar
  176. 176.
    Bold, R. J., Virudachalam, S., & McConkey, D. J. (2001). Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. Journal of Surgical Research, 100(1), 11–17.PubMedGoogle Scholar
  177. 177.
    Nawrocki, S. T., Bruns, C. J., Harbison, M. T., Bold, R. J., Gotsch, B. S., Abbruzzese, J. L., et al. (2002). Effects of the proteasome inhibitor PS-341 on apoptosis and angiogenesis in orthotopic human pancreatic tumor xenografts. Molecular Cancer Therapeutics, 1(14), 1243–1253.PubMedGoogle Scholar
  178. 178.
    Bai, J., Demirjian, A., Sui, J., Marasco, W., & Callery, M. P. (2006). Histone deacetylase inhibitor trichostatin A and proteasome inhibitor PS-341 synergistically induce apoptosis in pancreatic cancer cells. Biochemical and Biophysical Research Communications, 348(4), 1245–1253.PubMedGoogle Scholar
  179. 179.
    Alberts, S. R., Foster, N. R., Morton, R. F., Kugler, J., Schaefer, P., Wiesenfeld, M., et al. (2005). PS-341 and gemcitabine in patients with metastatic pancreatic adenocarcinoma: A North Central Cancer Treatment Group (NCCTG) randomized phase II study. Annals of Oncology, 16(10), 1654–1661.PubMedGoogle Scholar
  180. 180.
    Lutz, M. P., Esser, I. B., Flossmann-Kast, B. B., Vogelmann, R., Luhrs, H., Friess, H., et al. (1998). Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma. Biochemical and Biophysical Research Communications, 243(2), 503–508.PubMedGoogle Scholar
  181. 181.
    Ito, H., Gardner-Thorpe, J., Zinner, M. J., Ashley, S. W., & Whang, E. E. (2003). Inhibition of tyrosine kinase Src suppresses pancreatic cancer invasiveness. Surgery, 134(2), 221–226.PubMedGoogle Scholar
  182. 182.
    Duxbury, M. S., Ito, H., Zinner, M. J., Ashley, S. W., & Whang, E. E. (2004). Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clinical Cancer Research, 10(7), 2307–2318.PubMedGoogle Scholar
  183. 183.
    Trevino, J. G., Summy, J. M., Lesslie, D. P., Parikh, N. U., Hong, D. S., Lee, F. Y., et al. (2006). Inhibition of SRC expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model. American Journal of Pathology, 168(3), 962–972.PubMedGoogle Scholar
  184. 184.
    Hennequin, L. F., Allen, J., Breed, J., Curwen, J., Fennell, M., Green, T. P., et al. (2006). N-(5-chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5- (tetrahydro-2H-pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl kinase inhibitor. Journal of Medicinal Chemistry, 49(22), 6465–6488.PubMedGoogle Scholar
  185. 185.
    Baker, C. H., Trevino, J. G., Summy, J. M., Zhang, F., Caron, A., Nesbit, M., et al. (2006). Inhibition of PDGFR phosphorylation and Src and Akt activity by GN963 leads to therapy of human pancreatic cancer growing orthotopically in nude mice. International Journal of Oncology, 29(1), 125–138.PubMedGoogle Scholar
  186. 186.
    Yezhelyev, M. V., Koehl, G., Guba, M., Brabletz, T., Jauch, K. W., Ryan, A., et al. (2004). Inhibition of SRC tyrosine kinase as treatment for human pancreatic cancer growing orthotopically in nude mice. Clinical Cancer Research, 10(23), 8028–8036.PubMedGoogle Scholar
  187. 187.
    Hollingsworth, M. A., Strawhecker, J. M., Caffrey, T. C., & Mack, D. R. (1994). Expression of MUC1, MUC2, MUC3 and MUC4 mucin mRNAs in human pancreatic and intestinal tumor cell lines. International Journal of Cancer, 57(2), 198–203.Google Scholar
  188. 188.
    Swartz, M. J., Batra, S. K., Varshney, G. C., Hollingsworth, M. A., Yeo, C. J., Cameron, J. L., et al. (2002). MUC4 expression increases progressively in pancreatic intraepithelial neoplasia. American Journal of Clinical Pathology, 117(5), 791–796.PubMedGoogle Scholar
  189. 189.
    Chaturvedi, P., Singh, A. P., Moniaux, N., Senapati, S., Chakraborty, S., Meza, J. L., et al. (2007). MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Molecular Cancer Research, 5(4), 309–320.PubMedGoogle Scholar
  190. 190.
    Saitou, M., Goto, M., Horinouchi, M., Tamada, S., Nagata, K., Hamada, T., et al. (2005). MUC4 expression is a novel prognostic factor in patients with invasive ductal carcinoma of the pancreas. Journal of Clinical Pathology, 58(8), 845–852.PubMedGoogle Scholar
  191. 191.
    Singh, A. P., Moniaux, N., Chauhan, S. C., Meza, J. L., & Batra, S. K. (2004). Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Research, 64(2), 622–630.PubMedGoogle Scholar
  192. 192.
    Furuyama, K., Doi, R., Mori, T., Toyoda, E., Ito, D., Kami, K., et al. (2006). Clinical significance of focal adhesion kinase in resectable pancreatic cancer. World Journal of Surgery, 30(2), 219–226.PubMedGoogle Scholar
  193. 193.
    Sawai, H., Okada, Y., Funahashi, H., Matsuo, Y., Takahashi, H., Takeyama, H., et al. (2005). Activation of focal adhesion kinase enhances the adhesion and invasion of pancreatic cancer cells via extracellular signal-regulated kinase-1/2 signaling pathway activation. Molecular Cancer, 4, 37.PubMedGoogle Scholar
  194. 194.
    Huang, Y. T., Lee, L. T., Lee, P. P., Lin, Y. S., & Lee, M. T. (2005). Targeting of focal adhesion kinase by flavonoids and small-interfering RNAs reduces tumor cell migration ability. Anticancer Research, 25(3B), 2017–2025.PubMedGoogle Scholar
  195. 195.
    Duxbury, M. S., Ito, H., Benoit, E., Zinner, M. J., Ashley, S. W., & Whang, E. E. (2003). RNA interference targeting focal adhesion kinase enhances pancreatic adenocarcinoma gemcitabine chemosensitivity. Biochemical and Biophysical Research Communications, 311(3), 786–792.PubMedGoogle Scholar
  196. 196.
    Duxbury, M. S., Ito, H., Zinner, M. J., Ashley, S. W., & Whang, E. E. (2004). Focal adhesion kinase gene silencing promotes anoikis and suppresses metastasis of human pancreatic adenocarcinoma cells. Surgery, 135(5), 555–562.PubMedGoogle Scholar
  197. 197.
    Grewe, M., Gansauge, F., Schmid, R. M., Adler, G., & Seufferlein, T. (1999). Regulation of cell growth and cyclin D1 expression by the constitutively active FRAP-p70s6K pathway in human pancreatic cancer cells. Cancer Research, 59(15), 3581–3587.PubMedGoogle Scholar
  198. 198.
    Shah, S. A., Potter, M. W., Ricciardi, R., Perugini, R. A., & Callery, M. P. (2001). FRAP-p70s6K signaling is required for pancreatic cancer cell proliferation. Journal of Surgical Research, 97(2), 123–130.PubMedGoogle Scholar
  199. 199.
    Asano, T., Yao, Y., Zhu, J., Li, D., Abbruzzese, J. L., & Reddy, S. A. (2005). The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation. Biochemical and Biophysical Research Communications, 331(1), 295–302.PubMedGoogle Scholar
  200. 200.
    Ito, D., Fujimoto, K., Mori, T., Kami, K., Koizumi, M., Toyoda, E., et al. (2006). In vivo antitumor effect of the mTOR inhibitor CCI-779 and gemcitabine in xenograft models of human pancreatic cancer. International Journal of Cancer, 118(9), 2337–2343.Google Scholar
  201. 201.
    Kobayashi, S., Kishimoto, T., Kamata, S., Otsuka, M., Miyazaki, M., & Ishikura, H. (2007). Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Science, 98(5), 726–733.PubMedGoogle Scholar
  202. 202.
    Ozawa, F., Friess, H., Kleeff, J., Xu, Z. W., Zimmermann, A., Sheikh, M. S., et al. (2001). Effects and expression of TRAIL and its apoptosis-promoting receptors in human pancreatic cancer. Cancer Letters, 163(1), 71–81.PubMedGoogle Scholar
  203. 203.
    Matsuzaki, H., Schmied, B. M., Ulrich, A., Standop, J., Schneider, M. B., Batra, S. K., et al. (2001). Combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and actinomycin D induces apoptosis even in TRAIL-resistant human pancreatic cancer cells. Clinical Cancer Research, 7(2), 407–414.PubMedGoogle Scholar
  204. 204.
    Xu, Z. W., Kleeff, J., Friess, H., Buchler, M. W., & Solioz, M. (2003). Synergistic cytotoxic effect of TRAIL and gemcitabine in pancreatic cancer cells. Anticancer Research, 23(1A), 251–258.PubMedGoogle Scholar
  205. 205.
    Mori, T., Doi, R., Toyoda, E., Koizumi, M., Ito, D., Kami, K., et al. (2005). Regulation of the resistance to TRAIL-induced apoptosis as a new strategy for pancreatic cancer. Surgery, 138(1), 71–77.PubMedGoogle Scholar
  206. 206.
    Wang, P., Zhang, J., Bellail, A., Jiang, W., Hugh, J., Kneteman, N. M., et al. (2007). Inhibition of RIP and c- FLIP enhances TRAIL-induced apoptosis in pancreatic cancer cells. Cell Signal, 19(11), 2237–2246.PubMedGoogle Scholar
  207. 207.
    Vogler, M., Durr, K., Jovanovic, M., Debatin, K. M., & Fulda, S. (2007). Regulation of TRAIL-induced apoptosis by XIAP in pancreatic carcinoma cells. Oncogene, 26(2), 248–257.PubMedGoogle Scholar
  208. 208.
    Khanbolooki, S., Nawrocki, S. T., Arumugam, T., Andtbacka, R., Pino, M. S., Kurzrock, R., et al. (2006). Nuclear factor-kappaB maintains TRAIL resistance in human pancreatic cancer cells. Molecular Cancer Therapeutics, 5(9), 2251–2260.PubMedGoogle Scholar
  209. 209.
    Braeuer, S. J., Buneker, C., Mohr, A., & Zwacka, R. M. (2006). Constitutively activated nuclear factor-kappaB, but not induced NF-kappaB, leads to TRAIL resistance by up-regulation of X-linked inhibitor of apoptosis protein in human cancer cells. Molecular Cancer Research, 4(10), 715–728.PubMedGoogle Scholar
  210. 210.
    Koschny, R., Ganten, T. M., Sykora, J., Haas, T. L., Sprick, M. R., Kolb, A., et al. (2007). TRAIL/bortezomib cotreatment is potentially hepatotoxic but induces cancer-specific apoptosis within a therapeutic window. Hepatology, 45(3), 649–658.PubMedGoogle Scholar
  211. 211.
    Hylander, B. L., Pitoniak, R., Penetrante, R. B., Gibbs, J. F., Oktay, D., Cheng, J., et al. (2005). The anti-tumor effect of Apo2L/TRAIL on patient pancreatic adenocarcinomas grown as xenografts in SCID mice. Journal of Translational Medicine, 3(1), 22.PubMedGoogle Scholar
  212. 212.
    Katz, M. H., Spivack, D. E., Takimoto, S., Fang, B., Burton, D. W., Moossa, A. R., et al. (2003). Gene therapy of pancreatic cancer with green fluorescent protein and tumor necrosis factor-related apoptosisinducing ligand fusion gene expression driven by a human telomerase reverse transcriptase promoter. Annals of Surgical Oncology, 10(7), 762–772.PubMedGoogle Scholar
  213. 213.
    Jacob, D., Davis, J., Zhu, H., Zhang, L., Teraishi, F., Wu, S., et al. (2004). Suppressing orthotopic pancreatic tumor growth with a fiber-modified adenovector expressing the TRAIL gene from the human telomerase reverse transcriptase promoter. Clinical Cancer Research, 10(10), 3535–3541.PubMedGoogle Scholar
  214. 214.
    Nozawa, F., Itami, A., Saruc, M., Kim, M., Standop, J., Picha, K. S., et al. (2004). The combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) and Genistein is effective in inhibiting pancreatic cancer growth. Pancreas, 29(1), 45–52.PubMedGoogle Scholar
  215. 215.
    Fulda, S., & Debatin, K. M. (2004). Sensitization for tumor necrosis factor-related apoptosis-inducing ligandinduced apoptosis by the chemopreventive agent resveratrol. Cancer Research, 64(1), 337–346.PubMedGoogle Scholar
  216. 216.
    Retzer-Lidl, M., Schmid, R. M., & Schneider, G. (2007). Inhibition of CDK4 impairs proliferation of pancreatic cancer cells and sensitizes towards TRAIL-induced apoptosis via downregulation of survivin. International Journal of Cancer, 121(1), 66–75.Google Scholar
  217. 217.
    Trauzold, A., Siegmund, D., Schniewind, B., Sipos, B., Egberts, J., Zorenkov, D., et al. (2006). TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene, 25(56), 7434–7439.PubMedGoogle Scholar
  218. 218.
    Wack, S., Rejiba, S., Parmentier, C., Aprahamian, M., & Hajri, A. (2008). Telomerase transcriptional targeting of inducible Bax/TRAIL gene therapy improves gemcitabine treatment of pancreatic cancer. Molecular Therapy, 16(2), 252–260.PubMedGoogle Scholar
  219. 219.
    Gysin, S., Lee, S. H., Dean, N. M., & McMahon, M. (2005). Pharmacologic inhibition of RAF→MEK→ERK signaling elicits pancreatic cancer cell cycle arrest through induced expression of p27Kip1. Cancer Research, 65(11), 4870–4880.PubMedGoogle Scholar
  220. 220.
    Lorusso, P. M., Adjei, A. A., Varterasian, M., Gadgeel, S., Reid, J., Mitchell, D. Y., et al. (2005). Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. Journal of Clinical Oncology, 23(23), 5281–5293.PubMedGoogle Scholar
  221. 221.
    Rinehart, J., Adjei, A. A., Lorusso, P. M., Waterhouse, D., Hecht, J. R., Natale, R. B., et al. (2004). Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. Journal of Clinical Oncology, 22(22), 4456–4462.PubMedGoogle Scholar
  222. 222.
    Moore, P. S., Barbi, S., Donadelli, M., Costanzo, C., Bassi, C., Palmieri, M., et al. (2004). Gene expression profiling after treatment with the histone deacetylase inhibitor trichostatin A reveals altered expression of both pro- and anti-apoptotic genes in pancreatic adenocarcinoma cells. Biochim Biophys Acta, 1693(3), 167–176.PubMedGoogle Scholar
  223. 223.
    Donadelli, M., Costanzo, C., Faggioli, L., Scupoli, M. T., Moore, P. S., Bassi, C., et al. (2003). Trichostatin A, an inhibitor of histone deacetylases, strongly suppresses growth of pancreatic adenocarcinoma cells. Molecular Carcinogenesis, 38(2), 59–69.PubMedGoogle Scholar
  224. 224.
    Ryu, J. K., Lee, W. J., Lee, K. H., Hwang, J. H., Kim, Y. T., Yoon, Y. B., et al. (2006). SK-7041, a new histone deacetylase inhibitor, induces G2-M cell cycle arrest and apoptosis in pancreatic cancer cell lines. Cancer Letters, 237(1), 143–154.PubMedGoogle Scholar
  225. 225.
    Sato, N., Ohta, T., Kitagawa, H., Kayahara, M., Ninomiya, I., Fushida, S., et al. (2004). FR901228, a novel histone deacetylase inhibitor, induces cell cycle arrest and subsequent apoptosis in refractory human pancreatic cancer cells. International Journal of Oncology, 24(3), 679–685.PubMedGoogle Scholar
  226. 226.
    Piacentini, P., Donadelli, M., Costanzo, C., Moore, P. S., Palmieri, M., & Scarpa, A. (2006). Trichostatin A enhances the response of chemotherapeutic agents in inhibiting pancreatic cancer cell proliferation. Virchows Archiv, 448(6), 797–804.PubMedGoogle Scholar
  227. 227.
    Donadelli, M., Costanzo, C., Beghelli, S., Scupoli, M. T., Dandrea, M., Bonora, A., et al. (2007). Synergistic inhibition of pancreatic adenocarcinoma cell growth by trichostatin A and gemcitabine. Biochimica Et Biophysica Acta, 1773(7), 1095–1106.PubMedGoogle Scholar
  228. 228.
    Arnold, N. B., Arkus, N., Gunn, J., & Korc, M. (2007). The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances gemcitabine-induced cell death in pancreatic cancer. Clinical Cancer Research, 13(1), 18–26.PubMedGoogle Scholar
  229. 229.
    Kumagai, T., Wakimoto, N., Yin, D., Gery, S., Kawamata, N., Takai, N., et al. (2007). Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (Vorinostat, SAHA) profoundly inhibits the growth of human pancreatic cancer cells. International Journal of Cancer, 121(3), 656–665.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Alexios Strimpakos
    • 1
  • Muhammad W. Saif
    • 2
  • Kostas N. Syrigos
    • 2
  1. 1.Department of MedicineRoyal Marsden HospitalSurreyUK
  2. 2.Department of Clinical Oncology, Yale Cancer CenterYale School of MedicineNew HavenUSA

Personalised recommendations