Skip to main content

Advertisement

Log in

The selectin–selectin ligand axis in tumor progression

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

This review will document that the selectin–selectin ligand axis is actively involved in tumor progression and drives this process. The involvement of selectins and their ligands in tumor progression takes place at three levels which will be reviewed: Interaction of tumor cells with platelets and leukocytes resulting in the formation of circulating emboli; interaction of tumor cells with endothelial cells leading to extravasation of the tumor cells; and utilization of reciprocal pro malignancy signals delivered by the selectins or by their ligands to interacting cells that express the corresponding co-receptor. We propose that the selectin–selectin ligand mediated interactions between cells in the tumor microenvironment constitute an axis of evil, that it be included in the list of pro malignancy factors, and that molecules associated with this axis serve as targets for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witz, I. P., & Levy-Nissenbaum, O. (2006). The tumor microenvironment in the post-PAGET era. Cancer Letters, 242(1), 1–10.

    PubMed  CAS  Google Scholar 

  2. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nature Reviews Cancer, 3(6), 453–458.

    PubMed  CAS  Google Scholar 

  3. Pantel, K., & Brakenhoff, R. H. (2004). Dissecting the metastatic cascade. Nature Reviews Cancer, 4(6), 448–456.

    PubMed  CAS  Google Scholar 

  4. Ahmad, A., & Hart, I. R. (1997). Mechanisms of metastasis. Critical Reviews in Oncology/Hematology, 26(3), 163–173.

    PubMed  CAS  Google Scholar 

  5. Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the “soil”: the premetastatic niche. Cancer Report, 66(23), 11089–11093.

    CAS  Google Scholar 

  6. Hart, I. R. (1982). ‘Seed and soil’ revisited: mechanisms of site-specific metastasis. Cancer and Metastasis Reviews, 1(1), 5–16.

    PubMed  CAS  Google Scholar 

  7. Radinsky, R., & Fidler, I. J. (1992). Regulation of tumor cell growth at organ-specific metastases. In Vivo, 6(4), 325–331.

    PubMed  CAS  Google Scholar 

  8. Zetter, B. R. (1990). The cellular basis of site-specific tumor metastasis. New England Journal of Medicine, 322(9), 605–612.

    Article  PubMed  CAS  Google Scholar 

  9. Peeters, C. F., Ruers, T. J., Westphal, J. R., & de Waal, R. M. (2005). Progressive loss of endothelial P-selectin expression with increasing malignancy in colorectal cancer. Laboratory Investigation, 85(2), 248–256.

    PubMed  CAS  Google Scholar 

  10. Khatib, A. M., Fallavollita, L., Wancewicz, E. V., Monia, B. P., & Brodt, P. (2002). Inhibition of hepatic endothelial E-selectin expression by C-raf antisense oligonucleotides blocks colorectal carcinoma liver metastasis. Cancer Research, 62(19), 5393–5398.

    PubMed  CAS  Google Scholar 

  11. Sawada, R., Tsuboi, S., & Fukuda, M. (1994). Differential E-selectin-dependent adhesion efficiency in sublines of a human colon cancer exhibiting distinct metastatic potentials. Journal of Biological Chemistry, 269(2), 1425–1431.

    PubMed  CAS  Google Scholar 

  12. Borsig, L., Wong, R., Feramisco, J., Nadeau, D. R., Varki, N. M., & Varki, A. (2001). Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proceedings of the National Academy of Science USA, 98(6), 3352–3357.

    CAS  Google Scholar 

  13. Borsig, L., Wong, R., Hynes, R. O., Varki, N. M., & Varki, A. (2002). Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proceedings of the National Academy of Science USA, 99(4), 2193–2198.

    CAS  Google Scholar 

  14. Borsig, L. (2004). Selectins facilitate carcinoma metastasis and heparin can prevent them. News in Physiological Sciences, 19, 16–21.

    PubMed  CAS  Google Scholar 

  15. Chen, M., & Geng, J. G. (2006). P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Archivum Immunologiae et Therapiae Experiments (Warsz), 54(2), 75–84.

    CAS  Google Scholar 

  16. Dimitroff, C. J., Lechpammer, M., Long-Woodward, D., & Kutok, J. L. (2004). Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Research, 64(15), 5261–5269.

    PubMed  CAS  Google Scholar 

  17. Eshel, R., Zanin, A., Sagi-Assif, O., Meshel, T., Smorodinsky, N. I., Dwir, O., et al. (2000). The GPI-linked Ly-6 antigen E48 regulates expression levels of the FX enzyme and of E-selectin ligands on head and neck squamous carcinoma cells. Journal of Biological Chemistry, 275(17), 12833–12840.

    PubMed  CAS  Google Scholar 

  18. Garcia, J., Callewaert, N., & Borsig, L. (2007). P-selectin mediates metastatic progression through binding to sulfatides on tumor cells. Glycobiology, 17(2), 185–196.

    PubMed  CAS  Google Scholar 

  19. Gassmann, P., Enns, A., & Haier, J. (2004). Role of tumor cell adhesion and migration in organ-specific metastasis formation. Onkologie, 27(6), 577–582.

    PubMed  CAS  Google Scholar 

  20. Hoff, S. D., Matsushita, Y., Ota, D. M., Cleary, K. R., Yamori, T., Hakomori, S., et al. (1989). Increased expression of sialyl-dimeric LeX antigen in liver metastases of human colorectal carcinoma. Cancer Research, 49(24 Pt 1), 6883–6888.

    PubMed  CAS  Google Scholar 

  21. Honn, K. V., Tang, D. G., & Crissman, J. D. (1992). Platelets and cancer metastasis: a causal relationship. Cancer and Metastasis Reviews, 11(3–4), 325–351.

    PubMed  CAS  Google Scholar 

  22. Idikio, H. A. (1997). Sialyl-Lewis-X, Gleason grade and stage in non-metastatic human prostate cancer. Glycoconjugate Journal, 14(7), 875–877.

    PubMed  CAS  Google Scholar 

  23. Ito, K., Ye, C. L., Hibi, K., Mitsuoka, C., Kannagi, R., Hidemura, K., et al. (2001). Paired tumor marker of soluble E-selectin and its ligand sialyl Lewis A in colorectal cancer. Journal of Gastroenterology, 36(12), 823–829.

    PubMed  CAS  Google Scholar 

  24. Kannagi, R., Izawa, M., Koike, T., Miyazaki, K., & Kimura, N. (2004). Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Science, 95(5), 377–384.

    PubMed  CAS  Google Scholar 

  25. Kim, Y. J., Borsig, L., Varki, N. M., & Varki, A. (1998). P-selectin deficiency attenuates tumor growth and metastasis. Proceedings of the National Academy of Science USA, 95(16), 9325–9330.

    CAS  Google Scholar 

  26. Kobayashi, H., Boelte, K. C., & Lin, P. C. (2007). Endothelial cell adhesion molecules and cancer progression. Current Medicinal Chemistry, 14(4), 377–386.

    PubMed  CAS  Google Scholar 

  27. Krause, T., & Turner, G. A. (1999). Are selectins involved in metastasis. Clinical & Experimental Metastasis, 17(3), 183–192.

    CAS  Google Scholar 

  28. Laferriere, J., Houle, F., & Huot, J. (2002). Regulation of the metastatic process by E-selectin and stress-activated protein kinase-2/p38. Annals of the New York Academy of Science, 973, 562–572.

    CAS  Google Scholar 

  29. Laubli, H., Stevenson, J. L., Varki, A., Varki, N. M., & Borsig, L. (2006). L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Research, 66(3), 1536–1542.

    PubMed  Google Scholar 

  30. Ley, K. (2003). The role of selectins in inflammation and disease. Trends in Molecular Medicine, 9(6), 263–268.

    PubMed  CAS  Google Scholar 

  31. Lim, S. C. (2005). CD24 and human carcinoma: tumor biological aspects. Biomedicine Pharmacotherapy, 59(Suppl 2), S351–S354.

    PubMed  CAS  Google Scholar 

  32. Mannori, G., Santoro, D., Carter, L., Corless, C., Nelson, R. M., & Bevilacqua, M. P. (1997). Inhibition of colon carcinoma cell lung colony formation by a soluble form of E-selectin. American Journal of Pathology, 151(1), 233–243.

    PubMed  CAS  Google Scholar 

  33. Mannori, G., Crottet, P., Cecconi, O., Hanasaki, K., Aruffo, A., Nelson, R. M., et al. (1995). Differential colon cancer cell adhesion to E-, P-, and L-selectin: role of mucin-type glycoproteins. Cancer Research, 55(19), 4425–4431.

    PubMed  CAS  Google Scholar 

  34. Matsushita, Y., Cleary, K. R., Ota, D. M., Hoff, S. D., & Irimura, T. (1990). Sialyl-dimeric Lewis-X antigen expressed on mucin-like glycoproteins in colorectal cancer metastases. Laboratory Investigation, 63(6), 780–791.

    PubMed  CAS  Google Scholar 

  35. Nakamori, S., Kameyama, M., Imaoka, S., Furukawa, H., Ishikawa, O., Sasaki, Y., et al. (1993). Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immunohistochemical study. Cancer Research, 53(15), 3632–3637.

    PubMed  CAS  Google Scholar 

  36. Nakamori, S., Kameyama, M., Imaoka, S., Furukawa, H., Ishikawa, O., Sasaki, Y., et al. (1997). Involvement of carbohydrate antigen sialyl Lewis(x) in colorectal cancer metastasis. Disease Colon Rectum, 40(4), 420–431.

    CAS  Google Scholar 

  37. Nakayama, T., Watanabe, M., Katsumata, T., Teramoto, T., & Kitajima, M. (1995). Expression of sialyl Lewis(a) as a new prognostic factor for patients with advanced colorectal carcinoma. Cancer, 75(8), 2051–2056.

    PubMed  CAS  Google Scholar 

  38. Nakayama, T., Watanabe, M., Teramoto, T., & Kitajima, M. (1997). CA19-9 as a predictor of recurrence in patients with colorectal cancer. Journal of Surgical Oncology, 66(4), 238–243.

    PubMed  CAS  Google Scholar 

  39. Insug, O., Otvos, L., Kieber-Emmons, T., & Blaszczyk-Thurin, M. (2002). Role of SA-Le(a) and E-selectin in metastasis assessed with peptide antagonist. Peptides, 23(5), 999–1010.

    Google Scholar 

  40. Thurin, M., & Kieber-Emmons, T. (2002). SA-Lea and tumor metastasis: the old prediction and recent findings. Hybrid Hybridomics, 21(2), 111–116.

    PubMed  CAS  Google Scholar 

  41. Witz, I. P. (2006). Tumor-microenvironment interactions: the selectin–selectin ligand axis in tumor–endothelium cross talk. Cancer Treatment and Research, 130, 125–140.

    PubMed  CAS  Google Scholar 

  42. Zipin, A., Israeli-Amit, M., Meshel, T., Sagi-Assif, O., Yron, I., Lifshitz, V., et al. (2004). Tumor-microenvironment interactions: the fucose-generating FX enzyme controls adhesive properties of colorectal cancer cells. Cancer Research, 64(18), 6571–6578.

    PubMed  CAS  Google Scholar 

  43. Eshel, R., Zanin, A., Kapon, D., Sagi-Assif, O., Brakenhoff, R., van Dongen, G., et al. (2002). Human Ly-6 antigen E48 (Ly-6D) regulates important interaction parameters between endothelial cells and head-and-neck squamous carcinoma cells. International Journal of Cancer, 98(6), 803–810.

    CAS  Google Scholar 

  44. Vestweber, D. (1993). The selectins and their ligands. Current Topics in Microbiology and Immunology, 184, 65–75.

    PubMed  CAS  Google Scholar 

  45. Varki, A. (1992). Selectins and other mammalian sialic acid-binding lectins. Current Opinion in Cell Biology, 4(2), 257–266.

    PubMed  CAS  Google Scholar 

  46. Sperandio, M. (2006). Selectins and glycosyltransferases in leukocyte rolling in vivo. FEBS Journal, 273(19), 4377–4389.

    PubMed  CAS  Google Scholar 

  47. Kneuer, C., Ehrhardt, C., Radomski, M. W., & Bakowsky, U. (2006). Selectins – potential pharmacological targets. Drug Discovery Today, 11(21–22), 1034–1040.

    PubMed  CAS  Google Scholar 

  48. Cummings, R. D., & Smith, D. F. (1992). The selectin family of carbohydrate-binding proteins: structure and importance of carbohydrate ligands for cell adhesion. Bioessays, 14(12), 849–856.

    PubMed  CAS  Google Scholar 

  49. Lasky, L. A. (1992). Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science, 258(5084), 964–969.

    PubMed  CAS  Google Scholar 

  50. Vestweber, D., & Blanks, J. E. (1999). Mechanisms that regulate the function of the selectins and their ligands. Physiological Reviews, 79(1), 181–213.

    PubMed  CAS  Google Scholar 

  51. McEver, R. P. (1994). Selectins. Current Opinion in Immunology, 6(1), 75–84.

    PubMed  CAS  Google Scholar 

  52. Patel, K. D., Cuvelier, S. L., & Wiehler, S. (2002). Selectins: critical mediators of leukocyte recruitment. Seminars in Immunology, 14(2), 73–81.

    PubMed  CAS  Google Scholar 

  53. Zarbock, A., Polanowska-Grabowska, R. K., & Ley, K. (2007). Platelet–neutrophil-interactions: linking hemostasis and inflammation. Blood Review, 21(2), 99–111.

    CAS  Google Scholar 

  54. Gearing, A. J., & Newman, W. (1993). Circulating adhesion molecules in disease. Immunology Today, 14(10), 506–512.

    PubMed  CAS  Google Scholar 

  55. Ehrhardt, C., Kneuer, C., & Bakowsky, U. (2004). Selectins – an emerging target for drug delivery. Advanced Drug Delivery Reviews, 56(4), 527–549.

    PubMed  CAS  Google Scholar 

  56. Banks, R. E., Gearing, A. J., Hemingway, I. K., Norfolk, D. R., Perren, T. J., & Selby, P. J. (1993). Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies. British Journal of Cancer, 68(1), 122–124.

    PubMed  CAS  Google Scholar 

  57. Eichbaum, M. H., de Rossi, T. M., Kaul, S., & Bastert, G. (2004). Serum levels of soluble E-selectin are associated with the clinical course of metastatic disease in patients with liver metastases from breast cancer. Oncology Research, 14(11–12), 603–610.

    PubMed  CAS  Google Scholar 

  58. Lowe, J. B. (2002). Glycosyltransferases and glycan structures contributing to the adhesive activities of L-, E- and P-selectin counter-receptors. Biochemical Society Symposia, (69), 33–45.

  59. Kannagi, R. (2001). Transcriptional regulation of expression of carbohydrate ligands for cell adhesion molecules in the selectin family. Advances in Experimental Medicine and Biology, 491, 267–278.

    PubMed  CAS  Google Scholar 

  60. Kansas, G. S. (1996). Selectins and their ligands: current concepts and controversies. Blood, 88(9), 3259–3287.

    PubMed  CAS  Google Scholar 

  61. Lasky, L. A. (1994). Sialomucin ligands for selectins: a new family of cell adhesion molecules. Princess Takamatsu Symposium, 24, 81–90.

    CAS  Google Scholar 

  62. Swiedler, S. J. (1991). Reverse glycobiology: the LEC-CAMs and their carbohydrate ligands. Glycobiology, 1(3), 237–238.

    PubMed  CAS  Google Scholar 

  63. Varki, A. (1994). Selectin ligands. Proceedings of the National Academy of Science USA, 91(16), 7390–7397.

    CAS  Google Scholar 

  64. Vestweber, D. (1993). Glycoprotein ligands of the two endothelial selectins. Research in Immunology, 144(9), 704–708 discussion 754–762.

    PubMed  CAS  Google Scholar 

  65. Vestweber, D. (1996). Ligand-specificity of the selectins. Journal of Cellular Biochemistry, 61(4), 585–591.

    PubMed  CAS  Google Scholar 

  66. Brandley, B. K., Swiedler, S. J., & Robbins, P. W. (1990). Carbohydrate ligands of the LEC cell adhesion molecules. Cell, 63(5), 861–863.

    PubMed  CAS  Google Scholar 

  67. Burdick, M. M., Chu, J. T., Godar, S., & Sackstein, R. (2006). HCELL is the major E- and L-selectin ligand expressed on LS174T colon carcinoma cells. Journal of Biological Chemistry, 281(20), 13899–13905.

    PubMed  CAS  Google Scholar 

  68. Napier, S. L., Healy, Z. R., Schnaar, R. L., & Konstantopoulos, K. (2007). Selectin ligand expression regulates the initial vascular interactions of colon carcinoma cells: the roles of CD44v and alternative sialofucosylated selectin ligands. Journal of Biological Chemistry, 282(6), 3433–3441.

    PubMed  CAS  Google Scholar 

  69. Laudanna, C., Constantin, G., Baron, P., Scarpini, E., Scarlato, G., Cabrini, G., et al. (1994). Sulfatides trigger increase of cytosolic free calcium and enhanced expression of tumor necrosis factor-alpha and interleukin-8 mRNA in human neutrophils. Evidence for a role of L-selectin as a signaling molecule. Journal of Biological Chemistry, 269(6), 4021–4026.

    PubMed  CAS  Google Scholar 

  70. Tomlinson, J., Wang, J. L., Barsky, S. H., Lee, M. C., Bischoff, J., & Nguyen, M. (2000). Human colon cancer cells express multiple glycoprotein ligands for E-selectin. International Journal of Oncology, 16(2), 347–353.

    PubMed  CAS  Google Scholar 

  71. Hanley, W. D., Burdick, M. M., Konstantopoulos, K., & Sackstein, R. (2005). CD44 on LS174T colon carcinoma cells possesses E-selectin ligand activity. Cancer Research, 65(13), 5812–5817.

    PubMed  CAS  Google Scholar 

  72. Varki, A. (1997). Selectin ligands: will the real ones please stand up. Journal of Clinical Investigation, 99(2), 158–162.

    PubMed  CAS  Google Scholar 

  73. Lowe, J. B. (1997). Selectin ligands, leukocyte trafficking, and fucosyltransferase genes. Kidney International, 51(5), 1418–1426.

    PubMed  CAS  Google Scholar 

  74. Smith, P. L., Myers, J. T., Rogers, C. E., Zhou, L., Petryniak, B., Becker, D. J., et al. (2002). Conditional control of selectin ligand expression and global fucosylation events in mice with a targeted mutation at the FX locus. Journal of Cellular Biochemistry, 158(4), 801–815.

    CAS  Google Scholar 

  75. Becker, D. J., & Lowe, J. B. (2003). Fucose: biosynthesis and biological function in mammals. Glycobiology, 13(7), 41R–53R.

    PubMed  CAS  Google Scholar 

  76. Eshel, R., Besser, M., Zanin, A., Sagi-Assif, O., & Witz, I. P. (2001). The FX enzyme is a functional component of lymphocyte activation. Cellular Immunology, 213(2), 141–148.

    PubMed  CAS  Google Scholar 

  77. Matsusako, T., Muramatsu, H., Shirahama, T., Muramatsu, T., & Ohi, Y. (1991). Expression of a carbohydrate signal, sialyl dimeric Le(x) antigen, is associated with metastatic potential of transitional cell carcinoma of the human urinary bladder. Biochemical Biophysical Research Communications, 181(3), 1218–1222.

    CAS  Google Scholar 

  78. Magnani, J. L. (2004). The discovery, biology, and drug development of sialyl Lea and sialyl Lex. Archives Biochemistry and Biophysics, 426(2), 122–131.

    CAS  Google Scholar 

  79. Gupta, G. P., & Massague, J. (2004). Platelets and metastasis revisited: a novel fatty link. Journal of Clinical Investigation, 114(12), 1691–1693.

    PubMed  CAS  Google Scholar 

  80. Varki, N. M., & Varki, A. (2002). Heparin inhibition of selectin-mediated interactions during the hematogenous phase of carcinoma metastasis: rationale for clinical studies in humans. Seminars in Thrombosis Hemostasis, 28(1), 53–66.

    CAS  Google Scholar 

  81. Ludwig, R. J., Schon, M. P., & Boehncke, W. H. (2007). P-selectin. Expert Opinion on Therapeutic Targets, 11(8), 1103–1117.

    PubMed  CAS  Google Scholar 

  82. Rosen, S. D. (2004). Ligands for L-selectin: homing, inflammation, and beyond. Annual Review Immunology, 22, 129–156.

    CAS  Google Scholar 

  83. Petri, B., & Bixel, M. G. (2006). Molecular events during leukocyte diapedesis. FEBS Journal, 273(19), 4399–4407.

    PubMed  CAS  Google Scholar 

  84. Johnston, B., & Butcher, E. C. (2002). Chemokines in rapid leukocyte adhesion triggering and migration. Seminars in Immunology, 14(2), 83–92.

    PubMed  CAS  Google Scholar 

  85. Butcher, E. C. (1991). Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell, 67(6), 1033–1036.

    PubMed  CAS  Google Scholar 

  86. Springer, T. A. (1994). Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell, 76(2), 301–314.

    PubMed  CAS  Google Scholar 

  87. Vestweber, D. (2003). Lymphocyte trafficking through blood and lymphatic vessels: more than just selectins, chemokines and integrins. European Journal of Immunology, 33(5), 1361–1364.

    PubMed  Google Scholar 

  88. Muller, W. A. (2003). Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends in Immunology, 24(6), 327–334.

    PubMed  CAS  Google Scholar 

  89. Vestweber, D. (2002). Regulation of endothelial cell contacts during leukocyte extravasation. Current Opinion in Cell Biology, 14(5), 587–593.

    PubMed  CAS  Google Scholar 

  90. Middleton, J., Patterson, A. M., Gardner, L., Schmutz, C., & Ashton, B. A. (2002). Leukocyte extravasation: chemokine transport and presentation by the endothelium. Blood, 100(12), 3853–3860.

    PubMed  CAS  Google Scholar 

  91. Engelhardt, B., & Wolburg, H. (2004). Mini-review: Transendothelial migration of leukocytes: through the front door or around the side of the house. European Journal of Immunology, 34(11), 2955–2963.

    PubMed  CAS  Google Scholar 

  92. Tantivejkul, K., Kalikin, L. M., & Pienta, K. J. (2004). Dynamic process of prostate cancer metastasis to bone. Journal of Cellular Biochemistry, 91(4), 706–717.

    PubMed  CAS  Google Scholar 

  93. Takenaka, Y., Fukumori, T., & Raz, A. (2004). Galectin-3 and metastasis. Glycoconjugate Journal, 19(7–9), 543–549.

    PubMed  Google Scholar 

  94. MacDonald, I. C., Groom, A. C., & Chambers, A. F. (2002). Cancer spread and micrometastasis development: quantitative approaches for in vivo models. Bioessays, 24(10), 885–893.

    PubMed  CAS  Google Scholar 

  95. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.

    PubMed  CAS  Google Scholar 

  96. Chambers, A. F., MacDonald, I. C., Schmidt, E. E., Koop, S., Morris, V. L., Khokha, R., et al. (1995). Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer and Metastasis Reviews, 14(4), 279–301.

    PubMed  CAS  Google Scholar 

  97. Al-Mehdi, A. B., Tozawa, K., Fisher, A. B., Shientag, L., Lee, A., & Muschel, R. J. (2000). Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nature Medicine, 6(1), 100–102.

    CAS  Google Scholar 

  98. Kebers, F., Lewalle, J. M., Desreux, J., Munaut, C., Devy, L., Foidart, J. M., et al. (1998). Induction of endothelial cell apoptosis by solid tumor cells. Experimental Cell Research, 240(2), 197–205.

    PubMed  CAS  Google Scholar 

  99. Burdick, M. M., McCaffery, J. M., Kim, Y. S., Bochner, B. S., & Konstantopoulos, K. (2003). Colon carcinoma cell glycolipids, integrins, and other glycoproteins mediate adhesion to HUVECs under flow. American Journal of Physiology Cell Physiology, 284(4), C977–C987.

    PubMed  CAS  Google Scholar 

  100. Renkonen, R., Mattila, P., Majuri, M. L., Rabina, J., Toppila, S., Renkonen, J., et al. (1997). In vitro experimental studies of sialyl Lewis x and sialyl Lewis a on endothelial and carcinoma cells: crucial glycans on selectin ligands. Glycoconjugate Journal, 14(5), 593–600.

    PubMed  CAS  Google Scholar 

  101. Ohrlein, R. (2001). Carbohydrates and derivatives as potential drug candidates with emphasis on the selectin and linear-B area. Mini Reviews in Medicinal Chemistry, 1(4), 349–361.

    PubMed  CAS  Google Scholar 

  102. Mathieu, S., Prorok, M., Benoliel, A. M., Uch, R., Langlet, C., Bongrand, P., et al. (2004). Transgene expression of alpha(1,2)-fucosyltransferase-I (FUT1) in tumor cells selectively inhibits sialyl-Lewis x expression and binding to E-selectin without affecting synthesis of sialyl-Lewis a or binding to P-selectin. American Journal of Pathology, 164(2), 371–383.

    PubMed  CAS  Google Scholar 

  103. Haroun-Bouhedja, F., Lindenmeyer, F., Lu, H., Soria, C., Jozefonvicz, J., & Boisson-Vidal, C. (2002). In vitro effects of fucans on MDA-MB231 tumor cell adhesion and invasion. Anticancer Research, 22(4), 2285–2292.

    PubMed  CAS  Google Scholar 

  104. Nubel, T., Dippold, W., Kleinert, H., Kaina, B., & Fritz, G. (2004). Lovastatin inhibits Rho-regulated expression of E-selectin by TNFalpha and attenuates tumor cell adhesion. FASEB Journal, 18(1), 140–142.

    PubMed  CAS  Google Scholar 

  105. Kobayashi, K., Matsumoto, S., Morishima, T., Kawabe, T., & Okamoto, T. (2000). Cimetidine inhibits cancer cell adhesion to endothelial cells and prevents metastasis by blocking E-selectin expression. Cancer Research, 60(14), 3978–3984.

    PubMed  CAS  Google Scholar 

  106. Hiller, K. M., Mayben, J. P., Bendt, K. M., Manousos, G. A., Senger, K., Cameron, H. S., et al. (2000). Transfection of alpha(1,3)fucosyltransferase antisense sequences impairs the proliferative and tumorigenic ability of human colon carcinoma cells. Molecular Carcinogenesis, 27(4), 280–288.

    PubMed  CAS  Google Scholar 

  107. Weston, B. W., Hiller, K. M., Mayben, J. P., Manousos, G. A., Bendt, K. M., Liu, R., et al. (1999). Expression of human alpha(1,3)fucosyltransferase antisense sequences inhibits selectin-mediated adhesion and liver metastasis of colon carcinoma cells. Cancer Research, 59(9), 2127–2135.

    PubMed  CAS  Google Scholar 

  108. Koop, S., Schmidt, E. E., MacDonald, I. C., Morris, V. L., Khokha, R., Grattan, M., et al. (1996). Independence of metastatic ability and extravasation: metastatic ras-transformed and control fibroblasts extravasate equally well. Proceedings of the National Academy of Science USA, 93(20), 11080–11084.

    CAS  Google Scholar 

  109. Collins, T., Read, M. A., Neish, A. S., Whitley, M. Z., Thanos, D., & Maniatis, T. (1995). Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB Journal, 9(10), 899–909.

    PubMed  CAS  Google Scholar 

  110. Gaucher, C., Devaux, C., Boura, C., Lacolley, P., Stoltz, J. F., & Menu, P. (2007). In vitro impact of physiological shear stress on endothelial cells gene expression profile. Clinical Hemorheology and Microcirculation, 37(1–2), 99–107.

    PubMed  CAS  Google Scholar 

  111. Stannard, A. K., Khurana, R., Evans, I. M., Sofra, V., Holmes, D. I., & Zachary, I. (2007). Vascular endothelial growth factor synergistically enhances induction of E-selectin by tumor necrosis factor-alpha. Arteriosclerosis Thrombosis and Vascular Biology, 27(3), 494–502.

    CAS  Google Scholar 

  112. Treutiger, C. J., Mullins, G. E., Johansson, A. S., Rouhiainen, A., Rauvala, H. M., Erlandsson-Harris, H., et al. (2003). High mobility group 1 B-box mediates activation of human endothelium. Journal of Internal Medicine, 254(4), 375–385.

    PubMed  CAS  Google Scholar 

  113. Rainger, G. E., Wautier, M. P., Nash, G. B., & Wautier, J. L. (1996). Prolonged E-selectin induction by monocytes potentiates the adhesion of flowing neutrophils to cultured endothelial cells. British Journal of Haematology, 92(1), 192–199.

    PubMed  CAS  Google Scholar 

  114. Yao, L., Pan, J., Setiadi, H., Patel, K. D., & McEver, R. P. (1996). Interleukin 4 or oncostatin M induces a prolonged increase in P-selectin mRNA and protein in human endothelial cells. Journal of Experimental Medicine, 184(1), 81–92.

    PubMed  CAS  Google Scholar 

  115. Cernuda-Morollon, E., & Ridley, A. J. (2006). Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circulation Research, 98(6), 757–767.

    PubMed  CAS  Google Scholar 

  116. Andre, P. (2004). P-selectin in haemostasis. British Journal of Haematology, 126(3), 298–306.

    PubMed  CAS  Google Scholar 

  117. Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7(3), 211–217.

    PubMed  CAS  Google Scholar 

  118. Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow. Lancet, 357(9255), 539–545.

    PubMed  CAS  Google Scholar 

  119. Balkwill, F. R. (1992). Tumour necrosis factor and cancer. Progress in Growth Factor Research, 4(2), 121–137.

    PubMed  CAS  Google Scholar 

  120. Ben-Baruch, A. (2006). Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Seminars in Cancer Biology, 16(1), 38–52.

    PubMed  CAS  Google Scholar 

  121. Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124(2), 263–266.

    PubMed  CAS  Google Scholar 

  122. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867.

    PubMed  CAS  Google Scholar 

  123. de Visser, K. E., & Coussens, L. M. (2006). The inflammatory tumor microenvironment and its impact on cancer development. Contributions to Microbiology, 13, 118–137.

    Article  PubMed  Google Scholar 

  124. Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature, 441(7092), 431–436.

    PubMed  CAS  Google Scholar 

  125. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549–555.

    PubMed  CAS  Google Scholar 

  126. Nickoloff, B. J., Ben-Neriah, Y., & Pikarsky, E. (2005). Inflammation and cancer: is the link as simple as we think. Journal of Investigative Dermatology, 124(6), x–xiv.

    PubMed  CAS  Google Scholar 

  127. Philip, M., Rowley, D. A., & Schreiber, H. (2004). Inflammation as a tumor promoter in cancer induction. Seminars in Cancer Biology, 14(6), 433–439.

    PubMed  CAS  Google Scholar 

  128. Pikarsky, E., Porat, R. M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., et al. (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 431(7007), 461–466.

    PubMed  CAS  Google Scholar 

  129. Schmidt, A., & Weber, O. F. (2006). In memoriam of Rudolf virchow: a historical retrospective including aspects of inflammation, infection and neoplasia. Contributions to Microbiology, 13, 1–15.

    PubMed  CAS  Google Scholar 

  130. Szlosarek, P., Charles, K. A., & Balkwill, F. R. (2006). Tumour necrosis factor-alpha as a tumour promoter. European Journal of Cancer, 42(6), 745–750.

    PubMed  CAS  Google Scholar 

  131. Tan, T. T., & Coussens, L. M. (2007). Humoral immunity, inflammation and cancer. Current Opinion in Immunology, 19(2), 209–216.

    PubMed  CAS  Google Scholar 

  132. Ye, C., Kiriyama, K., Mistuoka, C., Kannagi, R., Ito, K., Watanabe, T., et al. (1995). Expression of E-selectin on endothelial cells of small veins in human colorectal cancer. International Journal of Cancer, 61(4), 455–460.

    CAS  Google Scholar 

  133. Weyrich, A. S., Elstad, M. R., McEver, R. P., McIntyre, T. M., Moore, K. L., Morrissey, J. H., et al. (1996). Activated platelets signal chemokine synthesis by human monocytes. Journal of Clinical Investigation, 97(6), 1525–1534.

    PubMed  CAS  Google Scholar 

  134. Khatib, A. M., Auguste, P., Fallavollita, L., Wang, N., Samani, A., Kontogiannea, M., et al. (2005). Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. American Journal of Pathology, 167(3), 749–759.

    PubMed  CAS  Google Scholar 

  135. Auguste, P., Fallavollita, L., Wang, N., Burnier, J., Bikfalvi, A., & Brodt, P. (2007). The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. American Journal of Pathology, 170(5), 1781–1792.

    PubMed  Google Scholar 

  136. Lowe, J. B. (2002). Glycosylation in the control of selectin counter-receptor structure and function. Immunological Reviews, 186, 19–36.

    PubMed  CAS  Google Scholar 

  137. Maly, P., Thall, A., Petryniak, B., Rogers, C. E., Smith, P. L., Marks, R. M., et al. (1996). The alpha(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell, 86(4), 643–653.

    PubMed  CAS  Google Scholar 

  138. Noda, K., Miyoshi, E., Gu, J., Gao, C. X., Nakahara, S., Kitada, T., et al. (2003). Relationship between elevated FX expression and increased production of GDP-L-fucose, a common donor substrate for fucosylation in human hepatocellular carcinoma and hepatoma cell lines. Cancer Research, 63(19), 6282–6289.

    PubMed  CAS  Google Scholar 

  139. Niittymaki, J., Mattila, P., Roos, C., Huopaniemi, L., Sjoblom, S., & Renkonen, R. (2004). Cloning and expression of murine enzymes involved in the salvage pathway of GDP-L-fucose. European Journal of Biochemistry, 271(1), 78–86.

    PubMed  Google Scholar 

  140. Syrbe, U., Hoffmann, U., Schlawe, K., Liesenfeld, O., Erb, K., & Hamann, A. (2006). Microenvironment-dependent requirement of STAT4 for the induction of P-selectin ligands and effector cytokines on CD4+ T cells in healthy and parasite-infected mice. Journal of Immunology, 177(11), 7673–7679.

    CAS  Google Scholar 

  141. Lim, Y. C., Henault, L., Wagers, A. J., Kansas, G. S., Luscinskas, F. W., & Lichtman, A. H. (1999). Expression of functional selectin ligands on Th cells is differentially regulated by IL-12 and IL-4. Journal of Immunology, 162(6), 3193–3201.

    CAS  Google Scholar 

  142. Carlow, D. A., Williams, M. J., & Ziltener, H. J. (2005). Inducing P-selectin ligand formation in CD8 T cells: IL-2 and IL-12 are active in vitro but not required in vivo. Journal Immunology, 174(7), 3959–3966.

    CAS  Google Scholar 

  143. Wagers, A. J., & Kansas, G. S. (2000). Potent induction of alpha(1,3)-fucosyltransferase VII in activated CD4+ T cells by TGF-beta 1 through a p38 mitogen-activated protein kinase-dependent pathway. Journal of Immunology, 165(9), 5011–5016.

    CAS  Google Scholar 

  144. Dagia, N. M., Gadhoum, S. Z., Knoblauch, C. A., Spencer, J. A., Zamiri, P., Lin, C. P., et al. (2006). G-CSF induces E-selectin ligand expression on human myeloid cells. Nature Medicine, 12(10), 1185–1190.

    CAS  Google Scholar 

  145. Simon, S. I., Cherapanov, V., Nadra, I., Waddell, T. K., Seo, S. M., Wang, Q., et al. (1999). Signaling functions of L-selectin in neutrophils: alterations in the cytoskeleton and colocalization with CD18. Journal of Immunology, 163(5), 2891–2901.

    CAS  Google Scholar 

  146. Yoshida, M., Szente, B. E., Kiely, J. M., Rosenzweig, A., & Gimbrone Jr., M. A. (1998). Phosphorylation of the cytoplasmic domain of E-selectin is regulated during leukocyte-endothelial adhesion. Journal of Immunology, 161(2), 933–941.

    CAS  Google Scholar 

  147. Lorenzon, P., Vecile, E., Nardon, E., Ferrero, E., Harlan, J. M., Tedesco, F., et al. (1998). Endothelial cell E- and P-selectin and vascular cell adhesion molecule-1 function as signaling receptors. Journal of Cell Biology, 142(5), 1381–1391.

    PubMed  CAS  Google Scholar 

  148. Kaplanski, G., Farnarier, C., Benoliel, A. M., Foa, C., Kaplanski, S., & Bongrand, P. (1994). A novel role for E- and P-selectins: shape control of endothelial cell monolayers. Journal of Cell Science, 107(Pt 9), 2449–2457.

    PubMed  CAS  Google Scholar 

  149. Yoshida, M., Westlin, W. F., Wang, N., Ingber, D. E., Rosenzweig, A., Resnick, N., et al. (1996). Leukocyte adhesion to vascular endothelium induces E-selectin linkage to the actin cytoskeleton. Journal of Cell Biology, 133(2), 445–455.

    PubMed  CAS  Google Scholar 

  150. Hu, Y., Kiely, J. M., Szente, B. E., Rosenzweig, A., & Gimbrone Jr., M. A. (2000). E-selectin-dependent signaling via the mitogen-activated protein kinase pathway in vascular endothelial cells. Journal of Immunology, 165(4), 2142–2148.

    CAS  Google Scholar 

  151. Kuijpers, T. W., Hakkert, B. C., Hoogerwerf, M., Leeuwenberg, J. F., & Roos, D. (1991). Role of endothelial leukocyte adhesion molecule-1 and platelet-activating factor in neutrophil adherence to IL-1-prestimulated endothelial cells. Endothelial leukocyte adhesion molecule-1-mediated CD18 activation. Journal of Immunology, 147(4), 1369–1376.

    CAS  Google Scholar 

  152. Lo, S. K., Lee, S., Ramos, R. A., Lobb, R., Rosa, M., Chi-Rosso, G., et al. (1991). Endothelial-leukocyte adhesion molecule 1 stimulates the adhesive activity of leukocyte integrin CR3 (CD11b/CD18, Mac-1, alpha m beta 2) on human neutrophils. Journal of Experimental Medicine, 173(6), 1493–1500.

    PubMed  CAS  Google Scholar 

  153. Cuvelier, S. L., Paul, S., Shariat, N., Colarusso, P., & Patel, K. D. (2005). Eosinophil adhesion under flow conditions activates mechanosensitive signaling pathways in human endothelial cells. Journal of Experimental Medicine, 202(6), 865–876.

    PubMed  CAS  Google Scholar 

  154. Green, C. E., Pearson, D. N., Camphausen, R. T., Staunton, D. E., & Simon, S. I. (2004). Shear-dependent capping of L-selectin and P-selectin glycoprotein ligand 1 by E-selectin signals activation of high-avidity beta2-integrin on neutrophils. Journal of Immunology, 172(12), 7780–7790.

    CAS  Google Scholar 

  155. Urzainqui, A., Serrador, J. M., Viedma, F., Yanez-Mo, M., Rodriguez, A., Corbi, A. L., et al. (2002). ITAM-based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL-1. Immunity, 17(4), 401–412.

    PubMed  CAS  Google Scholar 

  156. Blanks, J. E., Moll, T., Eytner, R., & Vestweber, D. (1998). Stimulation of P-selectin glycoprotein ligand-1 on mouse neutrophils activates beta 2-integrin mediated cell attachment to ICAM-1. European Journal of Immunology, 28(2), 433–443.

    PubMed  CAS  Google Scholar 

  157. Atarashi, K., Hirata, T., Matsumoto, M., Kanemitsu, N., & Miyasaka, M. (2005). Rolling of Th1 cells via P-selectin glycoprotein ligand-1 stimulates LFA-1-mediated cell binding to ICAM-1. Journal of Immunology, 174(3), 1424–1432.

    CAS  Google Scholar 

  158. Celi, A., Pellegrini, G., Lorenzet, R., De Blasi, A., Ready, N., Furie, B. C., et al. (1994). P-selectin induces the expression of tissue factor on monocytes. Proceedings of the National Academy of Science USA, 91(19), 8767–8771.

    CAS  Google Scholar 

  159. Soltesz, S. A., Powers, E. A., Geng, J. G., & Fisher, C. (1997). Adhesion of HT-29 colon carcinoma cells to E-selectin results in increased tyrosine phosphorylation and decreased activity of c-src. International Journal of Cancer, 71(4), 645–653.

    CAS  Google Scholar 

  160. Laferriere, J., Houle, F., Taher, M. M., Valerie, K., & Huot, J. (2001). Transendothelial migration of colon carcinoma cells requires expression of E-selectin by endothelial cells and activation of stress-activated protein kinase-2 (SAPK2/p38) in the tumor cells. Journal of Biological Chemistry, 276(36), 33762–33772.

    PubMed  CAS  Google Scholar 

  161. Reyes-Reyes, M. E., George, M. D., Roberts, J. D., & Akiyama, S. K. (2006). P-selectin activates integrin-mediated colon carcinoma cell adhesion to fibronectin. Experimental Cell Research, 312(20), 4056–4069.

    PubMed  CAS  Google Scholar 

  162. Chinnaiyan, A. M., O’Rourke, K., Yu, G. L., Lyons, R. H., Garg, M., Duan, D. R., et al. (1996). Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science, 274(5289), 990–992.

    PubMed  CAS  Google Scholar 

  163. Gout, S., Morin, C., Houle, F., & Huot, J. (2006). Death receptor-3, a new E-Selectin counter-receptor that confers migration and survival advantages to colon carcinoma cells by triggering p38 and ERK MAPK activation. Cancer Research, 66(18), 9117–9124.

    PubMed  CAS  Google Scholar 

  164. Tremblay, P. L., Auger, F. A., & Huot, J. (2006). Regulation of transendothelial migration of colon cancer cells by E-selectin-mediated activation of p38 and ERK MAP kinases. Oncogene, 25(50), 6563–6573.

    PubMed  CAS  Google Scholar 

  165. Mayer, B., Spatz, H., Funke, I., Johnson, J. P., & Schildberg, F. W. (1998). De novo expression of the cell adhesion molecule E-selectin on gastric cancer endothelium. Langenbeck’s Archives of Surgery, 383(1), 81–86.

    PubMed  CAS  Google Scholar 

  166. Listinsky, J. J., Listinsky, C. M., Alapati, V., & Siegal, G. P. (2001). Cell surface fucose ablation as a therapeutic strategy for malignant neoplasms. Advances in Anatomic Pathology, 8(6), 330–337.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I wish to thank the former and present members of my team for their devotion, talent, creativity and diligence.

I thank the following foundations and individuals for generous grant support: The Jacqueline Seroussi Memorial Foundation for Cancer Research; The Ela Kodesz Institute for Research on Cancer Development and Prevention, Tel Aviv University; The Fainbarg Family Fund (Orange County, CA); Bonnie and Steven Stern (New York, NY); The Fred August and Adele Wolpers Charitable Fund (Clifton, NJ); Natan Blutinger (West Orange, NJ), Arnold and Ruth Feuerstein (Orange County, CA); The Pikovsky Fund (Jerusalem, Israel); and James J. Leibman and Rita S. Leibman Endowment Fund for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac P. Witz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witz, I.P. The selectin–selectin ligand axis in tumor progression. Cancer Metastasis Rev 27, 19–30 (2008). https://doi.org/10.1007/s10555-007-9101-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9101-z

Keywords

Navigation