Skip to main content

Advertisement

Log in

Targeting endothelial and tumor cells with semaphorins

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Neuropilins (NRP) are receptors for the class 3 semaphorin (SEMA3) family of axon guidance molecules and the vascular endothelial growth factor (VEGF) family of angiogenesis factors. Although the seminal studies on SEMA3s and NRPs first showed them to be mediators of axon guidance, it has become very apparent that these proteins play an important role in vascular and tumor biology as well. Neuronal guidance and angiogenesis are regulated similarly at the molecular level. For example, SEMA3s not only repel neurons and collapse axon growth cones, but have similar effects on endothelial cells and tumor cells. Preclinical studies indicate that SEMA3F is a potent inhibitor of tumor angiogenesis and metastasis. In addition, neutralizing antibodies to NRP1 enhance the effects of anti-VEGF antibodies in suppressing tumor growth in xenograft models. This article reviews NRP and SEMA3 structural interactions and their role in developmental angiogenesis, tumor angiogenesis and metastasis based on cell culture, zebrafish and murine studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miao, H. Q., & Klagsbrun, M. (2000). Neuropilin is a mediator of angiogenesis. Cancer and Metastasis Reviews, 19(1–), 29–7.

    Article  PubMed  CAS  Google Scholar 

  2. Klagsbrun, M., Takashima, S., & Mamluk R. (2002). The role of neuropilin in vascular and tumor biology. Advances in Experimental Medicine and Biology, 515, 33–8.

    PubMed  CAS  Google Scholar 

  3. Neufeld, G., Kessler, O., & Herzog, Y. (2002). The interaction of Neuropilin-1 and Neuropilin-2 with tyrosine-kinase receptors for VEGF. Advances in Experimental Medicine and Biology, 515, 81–0.

    PubMed  CAS  Google Scholar 

  4. Romeo, P. H., Lemarchandel, V., & Tordjman, R. (2002). Neuropilin-1 in the immune system. Advances in Experimental Medicine and Biology, 515, 49–4.

    PubMed  CAS  Google Scholar 

  5. Neufeld, G., et al. (2005). Semaphorins in cancer. Frontiers in Bioscience, 10, 751–60.

    Article  PubMed  Google Scholar 

  6. Bielenberg, D. R., et al. (2006). Neuropilins in neoplasms: expression, regulation, and function. Experimental Cell Research, 312(5), 584–93.

    Article  PubMed  CAS  Google Scholar 

  7. Bussolino, F., et al. (2006). Semaphoring vascular morphogenesis. Endothelium, 13(2), 81–1.

    Article  PubMed  CAS  Google Scholar 

  8. Moretti, S., et al. (2006). Neuronal semaphorins regulate a primary immune response. Current Neurovascular Research, 3(4), 295–05.

    Article  PubMed  CAS  Google Scholar 

  9. Mukouyama, Y. S., et al. (2002). Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell, 109(6), 693–05.

    Article  PubMed  CAS  Google Scholar 

  10. Kutcher, M. E., Klagsbrun, M., & Mamluk R. (2004). VEGF is required for the maintenance of dorsal root ganglia blood vessels but not neurons during development. FASEB Journal, 18(15), 1952–954.

    PubMed  CAS  Google Scholar 

  11. Shima, D. T., & Mailhos, C. (2000). Vascular developmental biology: getting nervous. Current Opinion in Genetics & Development, 10(5), 536–42.

    Article  CAS  Google Scholar 

  12. Carmeliet, P. (2003). Blood vessels and nerves: common signals, pathways and diseases. Nature Reviews. Genetics, 4(9), 710–20.

    Article  PubMed  CAS  Google Scholar 

  13. Eichmann, A., Makinen, T., & Alitalo, K. (2005). Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes & Development, 19(9), 1013–021.

    Article  CAS  Google Scholar 

  14. Klagsbrun, M., & A. Eichmann (2005). A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Reviews, 16(4–), 535–48.

    Article  PubMed  CAS  Google Scholar 

  15. Miao, H. Q., et al. (1999). Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. Journal of Cell Biology, 146(1), 233–42.

    Article  PubMed  CAS  Google Scholar 

  16. Bachelder, R. E., et al. (2003). Competing autocrine pathways involving alternative neuropilin-1 ligands regulate chemotaxis of carcinoma cells. Cancer Research, 63(17), 5230–233.

    PubMed  CAS  Google Scholar 

  17. Bielenberg, D.R., et al. (2004). Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. Journal of Clinical Investigation, 114(9), 1260–271.

    PubMed  CAS  Google Scholar 

  18. Kessler, O., et al. (2004). Semaphorin-3F is an inhibitor of tumor angiogenesis. Cancer Research, 64(3), 1008–015.

    Article  PubMed  CAS  Google Scholar 

  19. Soker, S., et al. (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell, 92(6), 735–45.

    Article  PubMed  CAS  Google Scholar 

  20. Shibuya, M. (2006). Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. Journal of Biochemistry and Molecular Biology, 39 (5), 469–78.

    PubMed  CAS  Google Scholar 

  21. Olsson, A. K., et al. (2006). VEGF receptor signalling—in control of vascular function. Nature Reviews. Molecular Cell Biology, 7(5), 359–71.

    Article  PubMed  CAS  Google Scholar 

  22. Chen, H., et al. (1997). Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron, 9(3), 547–59.

    Article  Google Scholar 

  23. Rossignol, M., et al. (1999). Human neuropilin-1 and neuropilin-2 map to 10p12 and 2q34, respectively. Genomics, 57(3), 459–60.

    Article  PubMed  CAS  Google Scholar 

  24. Mamluk, R., et al. (2002). Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-2, and heparin via its b1b2 domain. Journal of Biological Chemistry, 277(27), 24818–4825

    Article  PubMed  CAS  Google Scholar 

  25. Gu, C., et al. (2002). Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. Journal of Biological Chemistry, 277(20), 18069–8076.

    Article  PubMed  CAS  Google Scholar 

  26. Vander Kooi, C. W., et al. (2007). Structural basis for ligand and heparin binding to neuropilin B domains. Proceedings of the National Academy of Sciences of the United States of America, 104(15), 6152–1527.

    Article  CAS  Google Scholar 

  27. Fujisawa, H. (2002). From the discovery of neuropilin to the determination of its adhesion sites. Advances in Experimental Medicine and Biology, 515, 1–2.

    PubMed  CAS  Google Scholar 

  28. Puschel, A. W. (2002). The function of neuropilin/plexin complexes. Advances in Experimental Medicine and Biology, 515, 71–0.

    PubMed  Google Scholar 

  29. Gagnon, M. L., et al. (2000). Identification of a natural soluble neuropilin-1 that binds vascular endothelial growth factor: In vivo expression and antitumor activity. Proceedings of the National Academy of Sciences of the United States of America, 97(6), 2573–578.

    Article  PubMed  CAS  Google Scholar 

  30. Rossignol, M., Gagnon, M. L., & Klagsbrun, M. (2000). Genomic organization of human neuropilin-1 and neuropilin-2 genes: identification and distribution of splice variants and soluble isoforms. Genomics, 70(2), 211–22.

    Article  PubMed  CAS  Google Scholar 

  31. Cackowski, F. C., et al.(2004). Identification of two novel alternatively spliced neuropilin-1 isoforms. Genomics, 84(1), 82–4.

    Article  PubMed  CAS  Google Scholar 

  32. Tischer, E., et al. (1991). The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. Journal of Biological Chemistry, 266(18), 11947–1954.

    PubMed  CAS  Google Scholar 

  33. Karpanen, T., et al. (2006). Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB Journal, 20(9), 1462–472.

    Article  PubMed  CAS  Google Scholar 

  34. Makinen, T., et al. (1999). Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1. Journal of Biological Chemistry, 274(30), 21217–1222.

    Article  PubMed  CAS  Google Scholar 

  35. Migdal, M., et al. (1998). Neuropilin-1 is a placenta growth factor-2 receptor. Journal of Biological Chemistry, 273(35), 22272–2278.

    Article  PubMed  CAS  Google Scholar 

  36. Wise, L. M., et al. (1999). Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proceedings of the National Academy of Sciences of the United States of America, 96(6), 3071–076.

    Article  PubMed  CAS  Google Scholar 

  37. Fuh, G., Garcia, K. C., & de Vos, A. M. (2000). The interaction of neuropilin-1 with vascular endothelial growth factor and its receptor flt-1. Journal of Biological Chemistry, 275(35), 26690–6695.

    PubMed  CAS  Google Scholar 

  38. Soker, S., et al. (2002). VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. Journal of Biological Chemistry, 85(2), 357–68.

    CAS  Google Scholar 

  39. Gluzman-Poltorak, Z., et al. (2001). Vascular endothelial growth factor receptor-1 and neuropilin-2 form complexes. Journal of Biological Chemistry, 276(22), 18688–8694.

    Article  PubMed  CAS  Google Scholar 

  40. Favier, B., et al. (2006). Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood, 108(4), 1243–250.

    Article  PubMed  CAS  Google Scholar 

  41. Nakamura, F., et al. (1998). Neuropilin-1 extracellular domains mediate semaphorin D/III-induced growth cone collapse. Neuron, 21(5), 1093–00.

    Article  Google Scholar 

  42. Cai, H., & Reed, R. R. (1999). Cloning and characterization of neuropilin-1-interacting protein: a PSD-95/Dlg/ZO-1 domain-containing protein that interacts with the cytoplasmic domain of neuropilin-1. Journal of Neuroscience, 19(15), 6519–527.

    PubMed  CAS  Google Scholar 

  43. Gao, Y., et al. (2000). Synectin, syndecan-4 cytoplasmic domain binding PDZ protein, inhibits cell migration. Journal of Cellular Physiology, 184(3), 373–79.

    Article  PubMed  CAS  Google Scholar 

  44. Chittenden, T. W., et al. (2006). Selective regulation of arterial branching morphogenesis by synectin. Developmental Cell, 10(6), 783–95.

    Article  PubMed  CAS  Google Scholar 

  45. Yuan, L., et al. (2002). Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development, 129(20), 4797–806.

    PubMed  CAS  Google Scholar 

  46. Herzog, Y., et al. (2001). Differential expression of neuropilin-1 and neuropilin-2 in arteries and veins. Mechanisms of Development, 109(1), 115–19.

    Article  PubMed  CAS  Google Scholar 

  47. Hong, Y. K., et al. (2002). Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Developmental Dynamics, 225(3), 351–57.

    Article  PubMed  CAS  Google Scholar 

  48. You, L. R., et al. (2005). Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity. Nature, 435(7038), 98–04.

    Article  PubMed  CAS  Google Scholar 

  49. Mukouyama, Y. S., et al. (2005). Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 132(5), 941–52.

    Article  PubMed  CAS  Google Scholar 

  50. Lee, P., et al. (2002). Neuropilin-1 is required for vascular development and is a mediator of VEGF-dependent angiogenesis in zebrafish. Developmental Dynamics, 99(16), 10470–0475.

    CAS  Google Scholar 

  51. Kawasaki, T., et al. (1999). A requirement for neuropilin-1 in embryonic vessel formation. Development, 126(21), 4895–8902.

    PubMed  CAS  Google Scholar 

  52. Chen, H., et al. (2000). Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron, 25(1), 43–6.

    Article  PubMed  Google Scholar 

  53. Giger, R. J., et al. (2000). Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron, 25(1), 29–1.

    Article  PubMed  CAS  Google Scholar 

  54. Shen, J., et al. (2004). Deficiency of neuropilin 2 suppresses VEGF-induced retinal neovascularization. Molecular Medicine, 10(1–), 12–8.

    PubMed  CAS  Google Scholar 

  55. Takashima, S., et al. (2002). Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 99(6), 3657–662.

    Article  PubMed  CAS  Google Scholar 

  56. Pan, Q., et al. (2007). Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell, 11(1), 53–7.

    Article  PubMed  CAS  Google Scholar 

  57. Murga, M., Fernandez-Capetillo, O., & Tosato, G. (2005). Neuropilin-1 regulates attachment in human endothelial cells independently of vascular endothelial growth factor receptor-2. Blood, 105(5), 1992–999.

    Article  PubMed  CAS  Google Scholar 

  58. Matthies, A. M., et al. (2002). Neuropilin-1 participates in wound angiogenesis. American Journal of Pathology, 160(1), 289–96.

    PubMed  CAS  Google Scholar 

  59. Senger, D. R., et al. (1986). A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Research, 46(11), 5629–632.

    PubMed  CAS  Google Scholar 

  60. Dvorak, H. F. (2006). Discovery of vascular permeability factor (VPF). Experimental Cell Research, 312(5), 522–26.

    Article  PubMed  CAS  Google Scholar 

  61. Becker, P. M., et al. (2005). Neuropilin-1 regulates vascular endothelial growth factor-mediated endothelial permeability. Circulation Research, 96(12), 1257–265.

    Article  PubMed  CAS  Google Scholar 

  62. Mamluk, R., et al. (2005). Soluble neuropilin targeted to the skin inhibits vascular permeability. Angiogenesis, 8(3), 217–27.

    Article  PubMed  CAS  Google Scholar 

  63. Wey, J. S., Stoeltzing, O., & Ellis, L. M. (2004). Vascular endothelial growth factor receptors: expression and function in solid tumors. Clinical Advances in Hematology and Oncology, 2(1), 37–5.

    PubMed  Google Scholar 

  64. Ellis, L. M., (2006). The role of neuropilins in cancer. Molecular Cancer Therapeutics, 5(5), 1099–107.

    Article  PubMed  CAS  Google Scholar 

  65. Guttmann-Raviv, N., et al. (2006). The neuropilins and their role in tumorigenesis and tumor progression. Cancer Letters, 231(1), 1–1.

    Article  PubMed  CAS  Google Scholar 

  66. Handa, A., et al. (2000). Neuropilin-2 expression affects the increased vascularization and is a prognostic factor in osteosarcoma. International Journal of Oncology, 17(2), 291–95.

    PubMed  CAS  Google Scholar 

  67. Latil, A., et al. (2000). VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms. International Journal of Oncology, 89(2), 167–71.

    CAS  Google Scholar 

  68. Cohen, T., et al. (2002). Neuropilin-2 is a novel marker expressed in pancreatic islet cells and endocrine pancreatic tumours. Journal of Pathology, 198(1), 77–2.

    Article  PubMed  CAS  Google Scholar 

  69. Fakhari, M., et al. (2002). Selective upregulation of vascular endothelial growth factor receptors neuropilin-1 and -2 in human neuroblastoma. Cancer, 94(1), 258–63.

    Article  PubMed  CAS  Google Scholar 

  70. Kawakami, T., et al. (2002). Neuropilin 1 and neuropilin 2 co-expression is significantly correlated with increased vascularity and poor prognosis in nonsmall cell lung carcinoma. Cancer, 95(10), 2196–201.

    Article  PubMed  CAS  Google Scholar 

  71. Stephenson, J. M., et al. (2002). Neuropilin-1 is differentially expressed in myoepithelial cells and vascular smooth muscle cells in preneoplastic and neoplastic human breast: a possible marker for the progression of breast cancer. International Journal of Cancer, 101(5), 409–14.

    Article  CAS  Google Scholar 

  72. Akagi, M., et al. (2003). Induction of neuropilin-1 and vascular endothelial growth factor by epidermal growth factor in human gastric cancer cells. British Journal of Cancer, 88(5), 796–02.

    Article  PubMed  CAS  Google Scholar 

  73. Parikh, A. A., et al. (2003). Expression and regulation of the novel vascular endothelial growth factor receptor neuropilin-1 by epidermal growth factor in human pancreatic carcinoma. Cancer, 98(4), 720–29.

    Article  PubMed  CAS  Google Scholar 

  74. Vanveldhuizen, P. J., et al. (2003). Differential expression of neuropilin-1 in malignant and benign prostatic stromal tissue. Oncology Reports, 10(5), 1067–071.

    PubMed  CAS  Google Scholar 

  75. Lantuejoul, S., et al. (2003). Expression of VEGF, semaphorin SEMA3F, and their common receptors neuropilins NP1 and NP2 in preinvasive bronchial lesions, lung tumours, and cell lines. Journal of Pathology, 200(3), 336–47.

    Article  PubMed  CAS  Google Scholar 

  76. Sorbello, V., et al. (2003). Quantitative real-time RT-PCR analysis of eight novel estrogen-regulated genes in breast cancer. International Journal of Biological Markers, 18(2), 123–29.

    PubMed  CAS  Google Scholar 

  77. Sanchez-Carbayo, M., et al. (2003). Gene discovery in bladder cancer progression using cDNA microarrays. American Journal of Pathology, 163(2), 505–16.

    PubMed  CAS  Google Scholar 

  78. Broholm, H., & Laursen, H. (2004). Vascular endothelial growth factor (VEGF) receptor neuropilin-1’s distribution in astrocytic tumors. APMIS, 112(4–), 257–63.

    Article  PubMed  CAS  Google Scholar 

  79. Fukahi, K., et al. (2004). Aberrant expression of neuropilin-1 and -2 in human pancreatic cancer cells. Clinical Cancer Research, 10(2), 581–90.

    Article  PubMed  CAS  Google Scholar 

  80. Hansel, D. E., et al. (2004). Expression of neuropilin-1 in high-grade dysplasia, invasive cancer, and metastases of the human gastrointestinal tract. American Journal of Surgical Pathology, 28(3), 347–56.

    Article  PubMed  Google Scholar 

  81. Li, M., et al. (2004). Pancreatic carcinoma cells express neuropilins and vascular endothelial growth factor, but not vascular endothelial growth factor receptors. Cancer, 101(10), 2341–350.

    Article  PubMed  CAS  Google Scholar 

  82. Osada, H., et al. (2004). Overexpression of the neuropilin 1 (NRP1) gene correlated with poor prognosis in human glioma. Anticancer Research, 24(2B), 547–52.

    PubMed  CAS  Google Scholar 

  83. Parikh, A. A., et al. (2004). Neuropilin-1 in human colon cancer: expression, regulation, and role in induction of angiogenesis. American Journal of Pathology, 164(6), 2139–151.

    PubMed  CAS  Google Scholar 

  84. Hall, G. H., et al. (2005). Neuropilin-1 and VEGF correlate with somatostatin expression and microvessel density in ovarian tumours. International Journal of Oncology, 27(5), 1283–288.

    PubMed  CAS  Google Scholar 

  85. Kreuter, M., et al. (2006). Correlation of neuropilin-1 overexpression to survival in acute myeloid leukemia. Leukemia, 20(11), 1950–954.

    Article  PubMed  CAS  Google Scholar 

  86. Ochiumi, T., et al. (2006). Neuropilin-1 is involved in regulation of apoptosis and migration of human colon cancer. American Journal of Pathology, 29(1), 105–16.

    CAS  Google Scholar 

  87. Osada, R., et al. (2006). Expression of semaphorins, vascular endothelial growth factor, and their common receptor neuropilins and alleic loss of semaphorin locus in epithelial ovarian neoplasms: increased ratio of vascular endothelial growth factor to semaphorin is a poor prognostic factor in ovarian carcinomas. Human Pathology, 37(11), 1414–425.

    Article  PubMed  CAS  Google Scholar 

  88. Baba, T., et al. (2007). Neuropilin-1 promotes unlimited growth of ovarian cancer by evading contact inhibition. Gynecologic Oncology, 105(3), 703–11.

    Google Scholar 

  89. Miao, H. Q., et al. (2000). Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. FASEB Journal, 14(15), 2532–539.

    Article  PubMed  CAS  Google Scholar 

  90. Bachelder, R. E., et al. (2001). Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer Research, 61(15), 5736–740.

    PubMed  CAS  Google Scholar 

  91. Qi, L., et al. (2003). Migration and invasion of human prostate cancer cells is related to expression of VEGF and its receptors. Anticancer Research, 23(5A), 3917–922.

    PubMed  CAS  Google Scholar 

  92. Kamiya, T., et al. (2006). The preserved expression of neuropilin (NRP) 1 contributes to a better prognosis in colon cancer. Oncology Reports, 15(2), 369–73.

    PubMed  CAS  Google Scholar 

  93. Gray, M. J., et al. (2005). Neuropilin-1 suppresses tumorigenic properties in a human pancreatic adenocarcinoma cell line lacking neuropilin-1 coreceptors. Cancer Research, 65(9), 3664–670.

    Article  PubMed  CAS  Google Scholar 

  94. Liang, W. C., et al. (2007). Function blocking antibodies to neuropilin-1 generated from a designed human synthetic antibody phage library. Journal of Molecular Biology, 366(3), 815–29.

    Article  PubMed  CAS  Google Scholar 

  95. Starzec, A., et al. (2006). Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1. Life Science, 79(25), 2370–381.

    Article  CAS  Google Scholar 

  96. Raper, J. A. (2000). Semaphorins and their receptors in vertebrates and invertebrates. Current Opinion in Neurobiology, 10(1), 88–4.

    Article  PubMed  CAS  Google Scholar 

  97. Yazdani, U., & Terman, J. R. (2006). The semaphorins. Genome Biology, 7(3), 211.

    Article  PubMed  CAS  Google Scholar 

  98. He, Z., & Tessier-Lavigne, M. (1997). Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell, 90(4), 739–51.

    Article  PubMed  CAS  Google Scholar 

  99. Giger, R. J., et al. (1998). Neuropilin-2 is a receptor for semaphorin IV: insight into the structural basis of receptor function and specificity. Neuron, 21(5), 1079–092.

    Article  PubMed  CAS  Google Scholar 

  100. Kolodkin, A. L., et al. (1997). Neuropilin is a semaphorin III receptor. Cell, 90(4), 753–62.

    Article  PubMed  CAS  Google Scholar 

  101. Taniguchi, M., et al. (2005). Identification and characterization of a novel member of murine semaphorin family. Genes Cells, 10(8), 785–92.

    Article  PubMed  CAS  Google Scholar 

  102. Chen, H., et al. (1998). Semaphorin’neuropilin interactions underlying sympathetic axon responses to class III semaphorins. Neuron, 21(6), 1283–290.

    Article  PubMed  CAS  Google Scholar 

  103. Feiner, L., et al. (1997). Secreted chick semaphorins bind recombinant neuropilin with similar affinities but bind different subsets of neurons in situ. Neuron, 19(3), 539–45.

    Article  PubMed  CAS  Google Scholar 

  104. Wolman, M. A., et al. (2004). Repulsion and attraction of axons by semaphorin3D are mediated by different neuropilins in vivo. Journal of Neuroscience, 24(39), 8428–435.

    Article  PubMed  CAS  Google Scholar 

  105. Castro-Rivera, E., et al. (2004). Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast cancer, whereas VEGF165 antagonizes this effect. Proceedings of the National Academy of Sciences of the United States of America, 101(31), 11432–1437.

    Article  PubMed  CAS  Google Scholar 

  106. Gu, C., et al. (2005). Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science, 307(5707), 265–68.

    Article  PubMed  CAS  Google Scholar 

  107. Klostermann, A., et al. (1998). The chemorepulsive activity of the axonal guidance signal semaphorin D requires dimerization. Journal of Biological Chemistry, 273(13), 7326–331.

    Article  PubMed  CAS  Google Scholar 

  108. Koppel, A. M., & Raper, J. A. (1998). Collapsin-1 covalently dimerizes, and dimerization is necessary for collapsing activity. Journal of Biological Chemistry, 273(25), 15708–5713.

    Article  PubMed  CAS  Google Scholar 

  109. Adams, R. H., et al. (1997). The chemorepulsive activity of secreted semaphorins is regulated by furin-dependent proteolytic processing. EMBO Journal, 16(20), 6077–086.

    Article  PubMed  CAS  Google Scholar 

  110. Christensen, C., et al. (2005). Proteolytic processing converts the repelling signal Sema3E into an inducer of invasive growth and lung metastasis. Cancer Research, 65(14), 6167–177.

    Article  PubMed  CAS  Google Scholar 

  111. Chedotal, A., et al. (1998). Semaphorins III and IV repel hippocampal axons via two distinct receptors. Development, 125(21), 4313–323.

    PubMed  CAS  Google Scholar 

  112. Serini, G., et al. (2003). Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature, 424(6947), 391–97.

    Article  PubMed  CAS  Google Scholar 

  113. Narazaki, M., & Tosato, G. (2006). Ligand-induced internalization selects use of common receptor neuropilin-1 by VEGF165 and semaphorin3A. Blood, 107(10), 3892–901.

    Article  PubMed  CAS  Google Scholar 

  114. Banu, N., et al. (2006). Semaphorin 3C regulates endothelial cell function by increasing integrin activity. FASEB Journal, 20(12), 2150–152.

    Article  PubMed  CAS  Google Scholar 

  115. Gu, C., et al. (2003). Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Developmental Cell, 5(1), 45–7.

    Article  PubMed  CAS  Google Scholar 

  116. Behar, O., et al. (1996). Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature, 383(6600), 525–28.

    Article  PubMed  CAS  Google Scholar 

  117. Bates, D., et al. (2003). Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin-1. Developments in Biologicals, 255(1), 77–8.

    Article  CAS  Google Scholar 

  118. Shoji, W., et al. (2003). Semaphorin3a1 regulates angioblast migration and vascular development in zebrafish embryos. Development, 130(14), 3227–236.

    Article  PubMed  CAS  Google Scholar 

  119. Gitler, A. D., Lu, M. M., & Epstein, J. A. (2004). PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Developmental Cell, 7(1), 107–16.

    Article  PubMed  CAS  Google Scholar 

  120. van der Zwaag, B., et al. (2002). PLEXIN-D1, a novel plexin family member, is expressed in vascular endothelium and the central nervous system during mouse embryogenesis. Developmental Dynamics, 225(3), 336–43.

    Article  PubMed  CAS  Google Scholar 

  121. Torres-Vazquez, J., et al. (2004). Semaphorin-plexin signaling guides patterning of the developing vasculature. Developmental Cell, 7(1), 117–23.

    Article  PubMed  CAS  Google Scholar 

  122. Roodink, I., et al. (2005). Plexin D1 expression is induced on tumor vasculature and tumor cells: a novel target for diagnosis and therapy? Cancer Research, 65(18), 8317–323.

    Article  PubMed  CAS  Google Scholar 

  123. Xiang, R. H., et al. (1996). Isolation of the human semaphorin III/F gene (SEMA3F) at chromosome 3p21, a region deleted in lung cancer. Genomics, 32(1), 39–8.

    Article  PubMed  CAS  Google Scholar 

  124. Roche, J., et al. (1996). Distinct 3p21.3 deletions in lung cancer and identification of a new human semaphorin. Oncogene, 12(6), 1289–297.

    PubMed  CAS  Google Scholar 

  125. Sekido, Y., et al. (1996). Human semaphorins A(V) and IV reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 93(9), 4120–125.

    Article  PubMed  CAS  Google Scholar 

  126. Tomizawa, Y., et al. (2001). Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 13954–3959.

    Article  PubMed  CAS  Google Scholar 

  127. Tse, C., et al. (2002). Human Semaphorin 3B (SEMA3B) located at chromosome 3p21.3 suppresses tumor formation in an adenocarcinoma cell line. Cancer Research, 62(2), 542–46.

    PubMed  CAS  Google Scholar 

  128. Xiang, R., et al. (2002). Semaphorin 3F gene from human 3p21.3 suppresses tumor formation in nude mice. Cancer Research, 62(9), 2637–643.

    PubMed  CAS  Google Scholar 

  129. Kusy, S., et al. (2005). Selective suppression of in vivo tumorigenicity by semaphorin SEMA3F in lung cancer cells. Neoplasia, 7(5), 457–65.

    Article  PubMed  CAS  Google Scholar 

  130. Futamura, M., et al. (2007). Possible role of semaphorin 3F, a candidate tumor suppressor gene at 3p21.3, in p53-regulated tumor angiogenesis suppression. Cancer Research, 67(4), 1451–460.

    Article  PubMed  CAS  Google Scholar 

  131. Xiang, R. H., et al. (1996). Isolation of the human semaphorin III/F gene (SEMA3F) at chromosome 3p21, a region deleted in lung cancer. Genomics, 32, 39–8.

    Google Scholar 

  132. Roche, J., et al. (1996). Distinct 3p21.3 deletions in lung cancer and identification of a new human semaphorin. Oncogene, 12, 1289–297.

    PubMed  CAS  Google Scholar 

  133. Tse, C., et al. (2002). Human Semaphorin 3B (SEMA3B) located at chromosome 3p21.3 suppresses tumor formation in an adenocarcinoma cell line. Cancer Research, 62, 542–46.

    PubMed  CAS  Google Scholar 

  134. Xiang, R., et al. (2002). Semaphorin 3F gene from human 3p21.3 suppresses tumor formation in nude mice. Cancer Research, 62, 2637–643.

    PubMed  CAS  Google Scholar 

  135. Brambilla, E., et al. (2000). Semaphorin SEMA3F localization in malignant human lung and cell lines: A suggested role in cell adhesion and cell migration. American Journal of Pathology, 156(3), 939–50.

    PubMed  CAS  Google Scholar 

  136. Nasarre, P., et al. (2003). Semaphorin SEMA3F and VEGF have opposing effects on cell attachment and spreading. Neoplasia, 5(1), 83–2.

    PubMed  CAS  Google Scholar 

  137. Nasarre, P., et al. (2005). Semaphorin SEMA3F has a repulsing activity on breast cancer cells and inhibits E-cadherin-mediated cell adhesion. Neoplasia, 7(2), 180–89.

    Article  PubMed  CAS  Google Scholar 

  138. Herman, J. G., & Meadows, G. G. (2007). Increased class 3 semaphorin expression modulates the invasive and adhesive properties of prostate cancer cells. International Journal of Oncology, 30(5), 1231–238.

    PubMed  CAS  Google Scholar 

  139. Christensen, C. R., et al. (1998). Transcription of a novel mouse semaphorin gene, M-semaH, correlates with the metastatic ability of mouse tumor cell lines. Cancer Research, 58(6), 1238–244.

    PubMed  CAS  Google Scholar 

  140. Shih, J. Y., et al. (2001). Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. Journal of the National Cancer Institute, 93(18), 1392–400.

    Article  PubMed  CAS  Google Scholar 

  141. Shih, J. Y., et al. (2003). Collapsin response mediator protein-1: a novel invasion-suppressor gene. Clinical & Experimental Metastasis, 20(1), 69–6.

    Article  CAS  Google Scholar 

  142. Liu, B. P., & Strittmatter, S. M. (2001). Semaphorin-mediated axonal guidance via Rho-related G proteins. Current Opinion in Cell Biology, 13(5), 619–26.

    Article  PubMed  CAS  Google Scholar 

  143. Vikis, H. G., et al. (2000). The semaphorin receptor plexin-B1 specifically interacts with active Rac in a ligand-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 97(23), 12457–2462.

    Article  PubMed  CAS  Google Scholar 

  144. Driessens, M. H., et al. (2001). Plexin-B semaphorin receptors interact directly with active Rac and regulate the actin cytoskeleton by activating Rho. Current Biology, 11(5), 339–44.

    Article  PubMed  CAS  Google Scholar 

  145. Zanata, S. M., et al. (2002). Antagonistic effects of Rnd1 and RhoD GTPases regulate receptor activity in Semaphorin 3A-induced cytoskeletal collapse. Journal of Neuroscience, 22(2), 471–77.

    PubMed  CAS  Google Scholar 

  146. Aizawa, H., et al. (2001). Phosphorylation of cofilin by LIM-kinase is necessary for semaphorin 3A-induced growth cone collapse. Nature Neuroscience, 4(4), 367–73.

    Article  PubMed  CAS  Google Scholar 

  147. Tordjman, R., et al. (2002). A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nature Immunology, 3(5), 477–82.

    PubMed  CAS  Google Scholar 

  148. Bruder, D., et al. (2004). Neuropilin-1: a surface marker of regulatory T cells. European Journal of Immunology, 34(3), 623–30.

    Article  PubMed  Google Scholar 

  149. Bourbie-Vaudaine, S., et al. (2006). Dendritic cells can turn CD4+ T lymphocytes into vascular endothelial growth factor-carrying cells by intercellular neuropilin-1 transfer. Journal of Immunology, 177(3), 1460–469.

    CAS  Google Scholar 

  150. Catalano, A., et al. (2006). Semaphorin-3A is expressed by tumor cells and alters T-cell signal transduction and function. Blood, 107(8), 3321–329.

    Article  PubMed  CAS  Google Scholar 

  151. Lepelletier, Y., et al. (2006). Immunosuppressive role of semaphorin-3A on T cell proliferation is mediated by inhibition of actin cytoskeleton reorganization. European Journal of Immunology, 36(7), 1782–793.

    Article  PubMed  CAS  Google Scholar 

  152. Lepelletier, Y., et al. (2007). Control of human thymocyte migration by Neuropilin-1/Semaphorin-3A-mediated interactions. Proceedings of the National Academy of Sciences of the United States of America, 104(13), 5545–550.

    Article  PubMed  CAS  Google Scholar 

  153. Kashiwagi, H., et al. (2005). Negative regulation of platelet function by a secreted cell repulsive protein, semaphorin 3A. Blood, 106(3), 913–21.

    Article  PubMed  CAS  Google Scholar 

  154. Villegas, G., & Tufro, A. (2002). Ontogeny of semaphorins 3A and 3F and their receptors neuropilins 1 and 2 in the kidney. Mechanisms of Development, 119(Suppl 1), S149’S153.

    Article  PubMed  Google Scholar 

  155. Ito, T., et al. (2000). Repulsive axon guidance molecule Sema3A inhibits branching morphogenesis of fetal mouse lung. Mechanisms of Development, 97(1–), 35–5.

    Article  PubMed  CAS  Google Scholar 

  156. Kagoshima, M., & Ito, T. (2001). Diverse gene expression and function of semaphorins in developing lung: positive and negative regulatory roles of semaphorins in lung branching morphogenesis. Genes Cells, 6(6), 559–71.

    Article  PubMed  CAS  Google Scholar 

  157. Bielenberg, D. R., et al. (1999). Progressive growth of infantile cutaneous hemangiomas is directly correlated with hyperplasia and angiogenesis of adjacent epidermis and inversely correlated with expression of the endogenous angiogenesis inhibitor, IFN-beta. International Journal of Oncology, 14(3), 401–08.

    PubMed  CAS  Google Scholar 

  158. McCarty, M. F., et al. (2003). Epidermal hyperplasia overlying human melanoma correlates with tumour depth and angiogenesis. Melanoma Research, 13(4), 379–87.

    Article  PubMed  CAS  Google Scholar 

  159. Harper, J., Gerstenfeld, L. C., & Klagsbrun, M. (2001). Neuropilin-1 expression in osteogenic cells: down-regulation during differentiation of osteoblasts into osteocytes. Journal of Cellular Biochemistry, 81(1), 82–2.

    Article  PubMed  CAS  Google Scholar 

  160. Gomez, C., et al. (2005). Expression of Semaphorin-3A and its receptors in endochondral ossification: potential role in skeletal development and innervation. Developmental Dynamics, 234(2), 393–03.

    Article  PubMed  CAS  Google Scholar 

  161. Geretti, E., et al. (2007). Site-directed mutagenesis in the B-neuropilin-2 domain selectively enhances its affinity to VEGF165, but not to SEMA3F. Journal of Biological Chemistry, 282, 25698–5707.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diane R. Bielenberg or Michael Klagsbrun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bielenberg, D.R., Klagsbrun, M. Targeting endothelial and tumor cells with semaphorins. Cancer Metastasis Rev 26, 421–431 (2007). https://doi.org/10.1007/s10555-007-9097-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9097-4

Keywords

Navigation