Skip to main content

Advertisement

Log in

Hypoxia and adaptive landscapes in the evolution of carcinogenesis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Conceptual models of epithelial carcinogenesis typically depict a sequence of heritable changes that give rise to a population of cells possessing the hallmarks of invasive cancer. We propose the evolutionary dynamics that give rise to the phenotypic properties of malignant cells must be understood within the context of specific selection forces generated by the microenvironment. This can be accomplished by using an “inverse problem” approach in which we use observed typical phenotypic traits of primary and metastatic cancers to infer the evolutionary dynamics. This has led to the hypothesis that heritable changes in genes controlling cellular proliferation, apoptosis, and senescence, while necessary, are not usually sufficient to produce an invasive cancer. In addition to these evolutionary steps, we propose that the common observation of aerobic glycolysis in human cancers indicates, via the inverse problem analysis, that adaptation to hypoxia and acidosis must be a major component of the carcinogenic sequence. The details of the hypothesis are based on recognition that premalignant populations evolve within ducts and remain separated from their blood supply by a basement membrane. As tumor cells proliferate into the lumen, diffusion-reaction kinetics enforced by this separation result in hypoxia and acidosis in regions of the tumor the most distant from the basement membrane. This produces new evolutionary selection forces that promote constitutive upregulation of glycolysis and resistance to acid-induced toxicity. We hypothesize that these phenotypic adaptations are critical late steps in carcinogenesis conferring proliferative advantages even in normoxic conditions by allowing the population to produce an acidic environment (through aerobic glycolysis) which is toxic to other local cell populations and promotes extracellular matrix degradation, increasing invasiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fearon, E. R., & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell, 61, 759–767.

    Article  PubMed  CAS  Google Scholar 

  2. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson, A. R., Weaver, A. M., Cummings, P. T., & Quaranta, V. (2006). Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell, 127, 905–915.

    Article  PubMed  CAS  Google Scholar 

  4. Gatenby, R. A., & Vincent, T. L. (2003). An evolutionary model of carcinogenesis. Cancer Research, 63, 6212–6220.

    PubMed  CAS  Google Scholar 

  5. Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews. Cancer, 4, 891–899.

    Article  PubMed  CAS  Google Scholar 

  6. Gatenby, R. A., & Gawlinski, E. T. (2003). The glycolytic phenotype in carcinogenesis and tumor invasion: insights through mathematical models. Cancer Research, 63, 3847–3854.

    PubMed  CAS  Google Scholar 

  7. Gatenby, R. A., & Frieden, B. R. (2004). Information dynamics in carcinogenesis and tumor growth. Mutation Research, 568, 259–273.

    PubMed  CAS  Google Scholar 

  8. Bhujwalla, Z. M., Artemov, D., Ballesteros, P., Cerdan, S., Gillies, R. J. (2002). Solaiyappan M: Combined vascular and extracellular pH imaging of solid tumors. NMR in Biomedecine, 15, 114–119.

    Article  CAS  Google Scholar 

  9. Bhujwalla, Z. M., Artemov, D., Aboagye, E., Ackerstaff, E., Gillies, R. J., Natarajan, K., et al. (2001). The physiological environment in cancer vascularization, invasion and metastasis. Novartis Foundation Symposium, 240, 23–38.

    PubMed  CAS  Google Scholar 

  10. Gillies, R. J., Raghunand, N., Karczmar, G. S., & Bhujwalla, Z. M. (2002). MRI of the tumor microenvironment. Journal of Magnetic Resonance Imaging, 16, 430–450.

    Article  PubMed  Google Scholar 

  11. Raghunand, N., Gatenby, R. A., & Gillies, R. J. (2003). Microenvironmental and cellular consequences of altered blood flow in tumours. British Journal of Radiology, 76(1), S11–S22.

    Article  PubMed  Google Scholar 

  12. Tatum, J. L., Kelloff, G. J., Gillies, R. J., Arbeit, J. M., Brown, J. M., Chao, K. S., et al. (2006). Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. International Journal of Radiation Biology, 82, 699–757.

    Article  PubMed  CAS  Google Scholar 

  13. Smallbone, K., Gatenby, R. A., Gillies, R. J., Maini, P. K., & Gavaghan, D. J. (2007). Metabolic changes during carcinogenesis: Potential impact on invasiveness. Journal of Theoretical Biology, 244, 703–713.

    Article  PubMed  CAS  Google Scholar 

  14. Ishikawa, F. (1997). Telomere crisis, the driving force in cancer cell evolution. Biochemical and Biophysical Research Communications, 230, 1–6.

    Article  PubMed  CAS  Google Scholar 

  15. Chin, K., de Solorzano, C. O., Knowles, D., Jones, A., Chou, W., Rodriguez, E. G., et al. (2004). In situ analyses of genome instability in breast cancer. Nature Genetics, 36, 984–988.

    Article  PubMed  CAS  Google Scholar 

  16. Warburg, O. (1930). Über den Stoffwechsel der Tumoren.

  17. Kelloff, G. J., Hoffman, J. M., Johnson, B., Scher, H. I., Siegel, B. A., Cheng, E. Y., et al. (2005). Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clinical Cancer Research, 11, 2785–2808.

    Article  PubMed  CAS  Google Scholar 

  18. Braun, R. D., Lanzen, J. L., & Dewhirst, M. W. (1999). Fourier analysis of fluctuations of oxygen tension and blood flow in R3230Ac tumors and muscle in rats. American Journal of Physiology, 277, t-68.

    Google Scholar 

  19. Baudelet, C., Cron, G. O., Ansiaux, R., Crokart, N., DeWever, J., Feron, O., et al. (2006). The role of vessel maturation and vessel functionality in spontaneous fluctuations of T2*-weighted GRE signal within tumors. NMR in Biomedicine, 19, 69–76.

    Article  PubMed  Google Scholar 

  20. Martinive, P., Defresne, F., Bouzin, C., Saliez, J., Lair, F., Gregoire, V., et al. (2006). Preconditioning of the tumor vasculature and tumor cells by intermittent hypoxia: implications for anticancer therapies. Cancer Research, 66, 11736–11744.

    Article  PubMed  CAS  Google Scholar 

  21. Martinive, P., De, W. J., Bouzin, C., Baudelet, C., Sonveaux, P., Gregoire, V., et al. (2006). Reversal of temporal and spatial heterogeneities in tumor perfusion identifies the tumor vascular tone as a tunable variable to improve drug delivery. Mol Cancer Ther, 5, 1620–1627.

    Article  PubMed  CAS  Google Scholar 

  22. Zhou, J., Schmid, T., Schnitzer, S., Brune, B. (2006). Tumor hypoxia and cancer progression. Cancer Letter, 237, 10–21.

    Article  CAS  Google Scholar 

  23. Robey, I. F., Lien, A. D., Welsh, S. J., Baggett, B. K., & Gillies, R. J. (2005). Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia, 7, 324–330.

    Article  PubMed  CAS  Google Scholar 

  24. Schornack, P. A., & Gillies, R. J. (2003). Contributions of cell metabolism and H+ diffusion to the acidic pH of tumors. Neoplasia (New York), 5, 135–145.

    CAS  Google Scholar 

  25. Gillies, R. J., Raghunand, N., Garcia-Martin, M. L., & Gatenby, R. A. (2004). pH imaging. A review of pH measurement methods and applications in cancers. IEEE Engineering in Medicine and Biology Magazine, 23, 57–64.

    Article  PubMed  Google Scholar 

  26. Williams, A. C., Collard, T. J., & Paraskeva, C. (1999). An acidic environment leads to p53 dependent induction of apoptosis in human adenoma and carcinoma cell lines: Implications for clonal selection during colorectal carcinogenesis. Oncogene, 18, 3199–3204.

    Article  PubMed  CAS  Google Scholar 

  27. McLean, L. A., Roscoe, J., Jorgensen, N. K., Gorin, F. A., Cala, P. M. (2000). Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes. American Journal of Physiology, 278, C676–C688.

    PubMed  CAS  Google Scholar 

  28. Rozhin, J., Sameni, M., Ziegler, G., Sloane, B. F. (1994). Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Research, 54, 6517–6525.

    PubMed  CAS  Google Scholar 

  29. Martinez-Zaguilan, R., Seftor, E. A., Seftor, R. E., Chu, Y. W., Gillies, R. J., & Hendrix, M. J. (1996). Acidic pH enhances the invasive behavior of human melanoma cells. Clinical & Experimental Metastasis, 14, 176–186.

    Article  CAS  Google Scholar 

  30. Schlappack, O. K., Zimmermann, A., & Hill, R. P. (1991). Glucose starvation and acidosis: Effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. British Journal of Cancer, 64, 663–670.

    PubMed  CAS  Google Scholar 

  31. Rofstad, E. K., Mathiesen, B., Kindem, K., & Galappathi, K. (2006). Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Research, 66, 6699–6707.

    Article  PubMed  CAS  Google Scholar 

  32. Gilmore, A. P. (2005). Anoikis. Cell Death and Differentiation, 12(Suppl 2), 1473–1477.

    Article  PubMed  CAS  Google Scholar 

  33. Wang, P., Valentijn, A. J., Gilmore, A. P., & Streuli, C. H. (2003). Early events in the anoikis program occur in the absence of caspase activation. Journal of Biological Chemistry, 278, 19917–19925.

    Article  PubMed  CAS  Google Scholar 

  34. Bonnet, S., Archer, S. L., lalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., et al. (2007). A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell, 11, 37–51.

    Article  PubMed  CAS  Google Scholar 

  35. Jordan, B. F., Beghein, N., Crokart, N., Baudelet, C., Gregoire, V., Gallez, B. (2006). Preclinical safety and antitumor efficacy of insulin combined with irradiation. Radiotherapy and Oncology, 81, 112–117.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Gillies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillies, R.J., Gatenby, R.A. Hypoxia and adaptive landscapes in the evolution of carcinogenesis. Cancer Metastasis Rev 26, 311–317 (2007). https://doi.org/10.1007/s10555-007-9065-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9065-z

Keywords

Navigation