Cancer and Metastasis Reviews

, Volume 25, Issue 4, pp 695–705 | Cite as

The signaling mechanism of ROS in tumor progression

NON-THEMATIC REVIEW

Abstract

Reactive oxygen species (ROS) are recently proposed to be involved in tumor metastasis which is a complicated processes including epithelial–mesenchymal transition (EMT), migration, invasion of the tumor cells and angiogenesis around the tumor lesion. ROS generation may be induced intracellularly, in either NADPH oxidase- or mitochondria-dependent manner, by growth factors and cytokines (such as TGFβ and HGF) and tumor promoters (such as TPA) capable of triggering cell adhesion, EMT and migration. As a signaling messenger, ROS are able to oxidize the critical target molecules such as PKC and protein tyrosine phosphates (PTPs), which are relevant to tumor cell invasion. PKC contain multiple cysteine residues that can be oxidized and activated by ROS. Inactivation of multiple PTPs by ROS may relieve the tyrosine phosphorylation-dependent signaling. Two of the down-stream molecules regulated by ROS are MAPK and PAK. MAPKs cascades were established to be a major signal pathway for driving tumor cell metastasis, which are mediated by PKC, TGF-beta/Smad and integrin-mediated signaling. PAK is an effector of Rac-mediated cytoskeletal remodeling that is responsible for cell migration and angiogenesis. There are several transcriptional factors such as AP1, Ets, Smad and Snail regulating a lot of genes relevant to metastasis. AP-1 and Smad can be activated by PKC activator and TGF-beta1, respectively, in a ROS dependent manner. On the other hand, Est-1 can be upregulated by H2O2 via an antioxidant response element in the promoter. The ROS-regulated genes relevant to EMT and metastasis include E-cahedrin, integrin and MMP. Comprehensive understanding of the ROS-triggered signaling transduction, transcriptional activation and regulation of gene expressions will help strengthen the critical role of ROS in tumor progression and devising strategy for chemo-therapeutic interventions.

Keywords

Reactive oxygen species Cell migration Tumor progression TGFβ PKC MAPK 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signalling. Current Medicinal Chemistry, 11, 1163–1182.PubMedGoogle Scholar
  2. 2.
    Aslan, M., & Ozben, T. (2003). Oxidants in receptor tyrosine kinase signal transduction pathways. Antioxidants & Redox Signalling, 5, 781–788.Google Scholar
  3. 3.
    Chiarugi, P. (2005). PTPs versus PTKs: The redox side of the coin. Free Radical Research, 39, 353–364.PubMedGoogle Scholar
  4. 4.
    Chiarugi, P. (2001). The redox regulation of LMW–PTP during cell proliferation or growth inhibition. IUBMB Life, 52, 55–59.CrossRefPubMedGoogle Scholar
  5. 5.
    Boonstra, J., & Post, J. A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene, 337, 1–13.PubMedGoogle Scholar
  6. 6.
    Gourlay, C. W., & Ayscough, K. R. (2005). The actin cytoskeleton: A key regulator of apoptosis and ageing? Nature Reviews. Molecular Cell Biology, 6, 583–589.PubMedGoogle Scholar
  7. 7.
    Johann, A. M., von Knethen, A., Lindemann, D., & Brune, B. (2005). Recognition of apoptotic cells by macrophages activates the peroxisome proliferator-activated receptor-gamma and attenuates the oxidative burst. Cell Death and Differentiation, 13, 1533–1540.PubMedGoogle Scholar
  8. 8.
    Otani, H. (2004). Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. Antioxidants & Redox Signalling, 6, 449–469.Google Scholar
  9. 9.
    Niedowicz, D. M., & Daleke, D. L. (2005). The role of oxidative stress in diabetic complications. Cell Biochemistry and Biophysics, 43, 289–330.PubMedGoogle Scholar
  10. 10.
    Okamoto, A., Iwamoto, Y., & Maru, Y. (2006). Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Molecular and Cellular Biology, 26, 1087–1097.PubMedGoogle Scholar
  11. 11.
    Ambrosone, C. B. (2000). Oxidants and antioxidants in breast cancer. Antioxidants & Redox Signalling, 2, 903–917.CrossRefGoogle Scholar
  12. 12.
    Klaunig, J. E., Xu, Y., Isenberg, J. S., Bachowski, S., Kolaja, K. L., Jiang, J., et al. (1998). The role of oxidative stress in chemical carcinogenesis. Environmental Health Perspectives, 106(Suppl. 1), 289–295.PubMedGoogle Scholar
  13. 13.
    Emerit, I. (1994). Reactive oxygen species, chromosome mutation, and cancer: Possible role of clastogenic factors in carcinogenesis. Free Radical Biology & Medicine, 16, 99–109.Google Scholar
  14. 14.
    Winter Toyokuni, S. (1999). Reactive oxygen species-induced molecular damage and its application in pathology. Pathology International, 49, 91–102, Review.Google Scholar
  15. 15.
    Storz, P. (2005). Reactive oxygen species in tumor progression. Frontiers in Bioscience, 10, 1881–1896.PubMedGoogle Scholar
  16. 16.
    Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.PubMedGoogle Scholar
  17. 17.
    Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.PubMedGoogle Scholar
  18. 18.
    Bogenrieder, T., & Herlyn, M. (2003). Axis of evil: Molecular mechanisms of cancer metastasis. Oncogene, 22, 6524–6536.PubMedGoogle Scholar
  19. 19.
    Harlozinska, A. (2005). Progress in molecular mechanisms of tumor metastasis and angiogenesis. Anticancer Research, 25, 3327–3333.PubMedGoogle Scholar
  20. 20.
    Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour–host interface. Nature, 411, 375–379.PubMedGoogle Scholar
  21. 21.
    Kassis, J., Klominek, J., & Kohn, E. C. (2005). Tumor microenvironment: What can effusions teach us? Diagnostic Cytopathology, 33, 316–319.PubMedGoogle Scholar
  22. 22.
    Tanaka, T., Bai, Z., Srinoulprasert, Y., Yang, B. G., Hayasaka, H., & Miyasaka, M. (2005). Chemokines in tumor progression and metastasis. Cancer Science, 96, 317–322.PubMedGoogle Scholar
  23. 23.
    Brinckerhoff, C. E., & Matrisian, L. M. (2002). Matrix metalloproteinases: A tail of a frog that became a prince. Nature Reviews. Molecular Cell Biology, 3, 207–214.PubMedGoogle Scholar
  24. 24.
    Cully, M., You, H., Levine, A. J., & Mak, T. W. (2006). Beyond PTEN mutations: The PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nature Reviews. Cancer, 6, 184–192.PubMedGoogle Scholar
  25. 25.
    Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine, 37, 768–784.Google Scholar
  26. 26.
    Matsuzawa, A., & Ichijo, H. (2005). Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxidants & Redox Signalling, 7, 472–481.Google Scholar
  27. 27.
    Hordijk, P. L. (2006). Regulation of NADPH oxidases: The role of Rac proteins. Circulation Research, 98, 453–462.PubMedGoogle Scholar
  28. 28.
    Bokoch, G. M., & Diebold, B. A. (2002). Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood, 100, 2692–2696.PubMedGoogle Scholar
  29. 29.
    Maulik, N., & Das, D. K. (2002). Redox signaling in vascular angiogenesis. Free Radical Biology & Medicine, 33, 1047–1460.Google Scholar
  30. 30.
    Eyries, M., Collins, T., & Khachigian, L. M. (2004). Modulation of growth factor gene expression in vascular cells by oxidative stress. Endothelium, 11, 133–139.PubMedGoogle Scholar
  31. 31.
    Lo, I. C., Shih, J. M., & Jiang, M. J. (2005). Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. Journal of Biomedical Science, 12, 377–388.PubMedGoogle Scholar
  32. 32.
    Wang, Z., Castresana, M. R., & Newman, W. H. (2001). Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 285, 669–674.PubMedGoogle Scholar
  33. 33.
    Tudor, K. S., Hess, K. L., & Cook-Mills, J. M. (2001). Cytokines modulate endothelial cell intracellular signal transduction required for VCAM-1-dependent lymphocyte transendothelial migration. Cytokine, 15, 196–211.PubMedGoogle Scholar
  34. 34.
    Datta, R., Yoshinaga, K., Kaneki, M., Pandey, P., & Kufe, D. (2000). Phorbol ester-induced generation of reactive oxygen species is protein kinase cbeta-dependent and required for SAPK activation. Journal of Biological Chemistry, 275, 41000–41003.PubMedGoogle Scholar
  35. 35.
    Mochizuki, T., Furuta, S., Mitsushita, J., Shang, W. H., Ito, M., Yokoo, Y., et al. (2006). Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene, 25(26), 3699–3707.Google Scholar
  36. 36.
    Landstrom, M., Heldin, N. E., Bu, S., Hermansson, A., Itoh, S., ten Dijke, P., et al. (2000). Smad7 mediates apoptosis induced by transforming growth factor beta in prostatic carcinoma cells. Current Biology, 10, 535–538.PubMedGoogle Scholar
  37. 37.
    Akhurst, R. J., & Derynck, R. (2001). TGF-beta signaling in cancer—a double-edged sword. Trends in Cell Biology, 11, S44–S51.PubMedGoogle Scholar
  38. 38.
    Yamamura, Y., Hua, X., Bergelson, S., & Lodish, H. F. (2000). Critical role of Smads and AP-1 complex in transforming growth factor-beta-dependent apoptosis. Journal of Biological Chemistry, 275, 36295–36302.PubMedGoogle Scholar
  39. 39.
    Chan, C. T., Li, S. H., & Verma, S. (2005). Nocturnal hemodialysis is associated with restoration of impaired endothelial progenitor cell biology in end-stage renal disease. American Journal of Physiology. Renal Physiology, 289, F679–F684.PubMedGoogle Scholar
  40. 40.
    Sithanandam, G., Fornwald, L. W., Fields, J., & Anderson, L. M. (2005). Inactivation of ErbB3 by siRNA promotes apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549. Oncogene, 24, 1847–1859.PubMedGoogle Scholar
  41. 41.
    Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.PubMedGoogle Scholar
  42. 42.
    Segarra, J., Balenci, L., Drenth, T., Maina, F., & Lamballe, F. (2006). Combined signaling through ERK, PI3K/AKT, and RAC1/p38 is required for met-triggered cortical neuron migration. Journal of Biological Chemistry, 281, 4771–4778.PubMedGoogle Scholar
  43. 43.
    Ren, Y., Cao, B., Law, S., Xie, Y., Lee, P. Y., Cheung, L., et al. (2005). Hepatocyte growth factor promotes cancer cell migration and angiogenic factors expression: A prognostic marker of human esophageal squamous cell carcinomas. Clinical Cancer Research, 11, 6190–6197.PubMedGoogle Scholar
  44. 44.
    Daveau, M., Scotte, M., Francois, A., Coulouarn, C., Ros, G., Tallet, Y., et al. (2003). Hepatocyte growth factor, transforming growth factor alpha, and their receptors as combined markers of prognosis in hepatocellular carcinoma. Molecular Carcinogenesis, 36, 130–141.PubMedGoogle Scholar
  45. 45.
    Ferraro, D., Corso, S., Fasano, E., Panieri, E., Santangelo, R., Borrello, S., et al. (2006). Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene, 25(26), 3689–3698.Google Scholar
  46. 46.
    Dietrich, S., Uppalapati, R., Seiwert, T. Y., & Ma, P. C. (2005). Role of c-MET in upper aerodigestive malignancies—from biology to novel therapies. Journal of Environmental Pathology, Toxicology and Oncology, 24(3), 149–162.PubMedGoogle Scholar
  47. 47.
    Shimao, Y., Nabeshima, K., Inoue, T., & Koono, M. (1999). TPA-enhanced motility and invasion in a highly metastatic variant (L-10) of human rectal adenocarcinoma cell line RCM-1: Selective role of PKC-alpha and its inhibition by a combination of PDBu-induced PKC downregulation and antisense oligonucleotides treatment. Clinical & Experimental Metastasis, 17, 351–360.Google Scholar
  48. 48.
    Aprikian, A. G., Tremblay, L., Han, K., & Chevalier, S. (1997). Bombesin stimulates the motility of human prostate-carcinoma cells through tyrosine phosphorylation of focal adhesion kinase and of integrin-associated proteins. International Journal of Cancer, 72, 498–504.Google Scholar
  49. 49.
    Schlingemann, J., Hess, J., Wrobel, G., Breitenbach, U., Gebhardt, C., Steinlein, P., et al. (2003). Profile of gene expression induced by the tumour promotor TPA in murine epithelial cells. International Journal of Cancer, 104, 699–708.Google Scholar
  50. 50.
    Woo, J. H., Lim, J. H., Kim, Y. H., Suh, S. I., Min do, S., Chang, J. S., et al. (2004). Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene, 23, 1845–1853.PubMedGoogle Scholar
  51. 51.
    Debidda, M., Sanna, B., Cossu, A., Posadino, A. M., Tadolini, B., Ventura, C., et al. (2003). NAMI-A inhibits the PMA-induced ODC gene expression in ECV304 cells: Involvement of PKC/Raf/Mek/ERK signalling pathway. International Journal of Oncology, 23, 477–482.PubMedGoogle Scholar
  52. 52.
    Woo, J. H., Park, J. W., Lee, S. H., Kim, Y. H., Lee, I. K., Gabrielson, E., et al. (2003). Dykellic acid inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting nuclear factor kappa B transcriptional activity. Cancer Research, 63, 3430–3434.PubMedGoogle Scholar
  53. 53.
    Wu, W. S., Tsai, R. K., Chang, C. H., Wang, S., Wu, J. R., & Chang, Y. X. (2006). Reactive oxygen species mediated sustained activation of protein kinase C α and ERK for migration of human hepatoma cell HepG2. Molecular Cancer Research, 4(10), 747–758.Google Scholar
  54. 54.
    Guo, W., & Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nature Reviews. Molecular Cell Biology, 5, 816–826.PubMedGoogle Scholar
  55. 55.
    Kuphal, S., Bauer, R., & Bosserhoff, A. K. (2005). Integrin signaling in malignant melanoma. Cancer Metastasis Reviews, 24, 195–222.PubMedGoogle Scholar
  56. 56.
    Sheppard, D. (2005). Integrin-mediated activation of latent transforming growth factor beta. Cancer Metastasis Reviews, 24, 395–402.PubMedGoogle Scholar
  57. 57.
    Rucci, N., DiGiacinto, C., Orru, L., Millimaggi, D., Baron, R., & Teti, A. (2005). A novel protein kinase C alpha-dependent signal to ERK1/2 activated by alphaVbeta3 integrin in osteoclasts and in Chinese hamster ovary (CHO) cells. Journal of Cell Science, 118(Pt. 15), 3263–3275.PubMedGoogle Scholar
  58. 58.
    Hall, A. (2005). Rho GTPases and the control of cell behaviour. Biochemical Society Transactions, 33(Pt. 5), 891–895.PubMedGoogle Scholar
  59. 59.
    Grande-Garcia, A., Echarri, A., & Del Pozo, M. A. (2005). Integrin regulation of membrane domain trafficking and Rac targeting. Biochemical Society Transactions, 33, 609–613.PubMedGoogle Scholar
  60. 60.
    Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions, 32(Pt. 3), 443–446.PubMedGoogle Scholar
  61. 61.
    Burridge, K., & Wennerberg, K. (2004). Rho and Rac take center stage. Cell, 116, 167–179.PubMedGoogle Scholar
  62. 62.
    Zhou, H., & Kramer, R. H. (2005). Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. Journal of Biological Chemistry, 280, 10624–10635.PubMedGoogle Scholar
  63. 63.
    Hamelers, I. H., Olivo, C., Mertens, A. E., Pegtel, D. M., van der Kammen, R. A., Sonnenberg, A., et al. (2005). The Rac activator Tiam1 is required for (alpha)3(beta)1-mediated laminin-5 deposition, cell spreading, and cell migration. Journal of Cell Biology, 171, 871–881.PubMedGoogle Scholar
  64. 64.
    Nimnual, A. S., Taylor, L. J., & Bar-Sagi, D. (2003). Redox-dependent downregulation of Rho by Rac. Nature Cell Biology, 5, 236–241.PubMedGoogle Scholar
  65. 65.
    Mori, K., Shibanuma, M., & Nose, K. (2004). Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Research, 64, 7464–7472.PubMedGoogle Scholar
  66. 66.
    Werner, E., & Werb, Z. (2002). Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. Journal of Cell Biology, 158, 357–368.PubMedGoogle Scholar
  67. 67.
    Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.PubMedGoogle Scholar
  68. 68.
    Yoon, S. O., Park, S. J., Yoon, S. Y., Yun, C. H., & Chung, A. S. (2002). Sustained production of H(2)O(2) activates pro-matrix metalloproteinase-2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF-kappa B pathway. Journal of Biological Chemistry, 277, 30271–30282.PubMedGoogle Scholar
  69. 69.
    Mori, K., Shibanuma, M., & Nose, K. (2004). Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Research, 64, 7464–7472.PubMedGoogle Scholar
  70. 70.
    Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., et al. (2005). Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature, 435, 347–353.PubMedGoogle Scholar
  71. 71.
    Arakaki, N., Kajihara, T., Arakaki, R., Ohnishi, T., Kazi, J. A., Nakashima, H., et al. (1999). Involvement of oxidative stress in tumor cytotoxic activity of hepatocyte growth factor/scatter factor. Journal of Biological Chemistry, 274, 13541–1356.PubMedGoogle Scholar
  72. 72.
    Colavitti, R., Pani, G., Bedogni, B., Anzevino, R., Borrello, S., Waltenberger, J., et al. (2002). Reactive oxygen species as downstream mediators of angiogenic signaling by vascular endothelial growth factor receptor-2/KDR. Journal of Biological Chemistry, 277, 3101–3108.PubMedGoogle Scholar
  73. 73.
    Honore, S., Kovacic, H., Pichard, V., Briand, C., & Rognoni, J. B. (2003). Alpha2beta1-integrin signaling by itself controls G1/S transition in a human adenocarcinoma cell line (Caco-2): Implication of NADPH oxidase-dependent production of ROS. Experimental Cell Research, 285, 59–71.PubMedGoogle Scholar
  74. 74.
    Groth, S., Schulze, M., Kalthoff, H., Fandrich, F., & Ungefroren, H. (2005). Adhesion and Rac1-dependent regulation of biglycan gene expression by transforming growth factor-beta. Evidence for oxidative signaling through NADPH oxidase. Journal of Biological Chemistry, 280, 33190–33199.PubMedGoogle Scholar
  75. 75.
    Hu, T., Ramachandrarao, S. P., Siva, S., Valancius, C., Zhu, Y., Mahadev, K., et al. (2005). Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. American Journal of Physiology. Renal Physiology, 289, F816–F825.PubMedGoogle Scholar
  76. 76.
    Deem, T. L., & Cook-Mills, J. M. (2004). Vascular cell adhesion molecule 1 (VCAM-1) activation of endothelial cell matrix metalloproteinases: Role of reactive oxygen species. Blood, 104, 2385–2393.PubMedGoogle Scholar
  77. 77.
    Yamazaki, D., Kurisu, S., & Takenawa, T. (2005). Regulation of cancer cell motility through actin reorganization. Cancer Science, 96, 379–386.PubMedGoogle Scholar
  78. 78.
    Bokoch, G. M., & Knaus, U. G. (2005). NADPH oxidases: Not just for leukocytes anymore! Trends in Biochemical Sciences, 28, 502–508.Google Scholar
  79. 79.
    Ushio-Fukai, M., & Alexander, R. W. (2004). Reactive oxygen species as mediators of angiogenesis signaling: Role of NAD(P)H oxidase. Molecular and Cellular Biochemistry, 264, 85–97.PubMedGoogle Scholar
  80. 80.
    Harfouche, R., Malak, N. A., Brandes, R. P., Karsan, A., Irani, K., & Hussain, S. N. (2005). Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB Journal, 19, 1728–1730.Google Scholar
  81. 81.
    Arnold, R. S., Shi, J., Murad, E., Whalen, A. M., Sun, C. Q., Polavarapu, R., et al. (2001). Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proceedings of the National Academy of Sciences of the United States of America, 98, 5550–5555.PubMedGoogle Scholar
  82. 82.
    Werner, E., & Werb, Z. (2002). Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases. Journal of Cell Biology, 158, 357–368.PubMedGoogle Scholar
  83. 83.
    Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine, 37, 768–784.Google Scholar
  84. 84.
    van Waveren, C., Sun, Y., Cheung, H. S., & Moraes, C. T. (2006). Oxidative phosphorylation dysfunction modulates expression of extracellular matrix—remodeling genes and invasion. Carcinogenesis, 27, 409–418.PubMedGoogle Scholar
  85. 85.
    Czarnecka, A. M., Golik, P., & Bartnik, E. (2006). Mitochondrial DNA mutations in human neoplasia. Journal of Applied Genetics, 47, 67–78.PubMedGoogle Scholar
  86. 86.
    Savaraj, N., Wei, Y., Unate, H., Liu, P. M., Wu, C. J., Wangpaichitr, M., et al. (2005). Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells. Free Radical Research, 39, 373–381.PubMedGoogle Scholar
  87. 87.
    Storz, G., & Polla, B. S. (1996). Transcriptional regulators of oxidative stress-inducible genes in prokaryotes and eukaryotes. EXS, 77, 239–254.PubMedGoogle Scholar
  88. 88.
    Rudolph, J. (2005). Redox regulation of the Cdc25 phosphatases. Antioxidants & Redox Signalling, 7, 761–767.Google Scholar
  89. 89.
    Poli, G., Leonarduzzi, G., Biasi, F., & Chiarpotto, E. (2004). Oxidative stress and cell signalling. Current Medicinal Chemistry, 11, 1163–1182.PubMedGoogle Scholar
  90. 90.
    Carter, C. A., & Kane, C. J. (2004). Therapeutic potential of natural compounds that regulate the activity of protein kinase C. Current Medicinal Chemistry, 11, 2883–2902.PubMedGoogle Scholar
  91. 91.
    Gomez, D. E., Skilton, G., Alonso, D. F., & Kazanietz, M. G. (1999). The role of protein kinase C and novel phorbol ester receptors in tumor cell invasion and metastasis (Review). Oncology Reports, 6, 1363–1370.PubMedGoogle Scholar
  92. 92.
    Petit, I., Goichberg, P., Spiegel, A., Peled, A., Brodie, C., Seger, R., et al. (2005). Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. Journal of Clinical Investigation, 115, 168–176.PubMedGoogle Scholar
  93. 93.
    Su, S., DiBattista, J. A., Sun, Y., Li, W. Q., & Zafarullah, M. (1998). Up-regulation of tissue inhibitor of metalloproteinases-3 gene expression by TGF-beta in articular chondrocytes is mediated by serine/threonine and tyrosine kinases. Journal of Cellular Biochemistry, 70, 517–527.PubMedGoogle Scholar
  94. 94.
    Disatnik, M. H., & Rando, T. A. (1999). Integrin-mediated muscle cell spreading. The role of protein kinase c in outside-in and inside-out signaling and evidence of integrin cross-talk. Journal of Biological Chemistry, 274, 32486–32492.PubMedGoogle Scholar
  95. 95.
    Parsons, M., Keppler, M. D., Kline, A., Messent, A., Humphries, M. J., Gilchrist, R., et al. (2002). Site-directed perturbation of protein kinase C–integrin interaction blocks carcinoma cell chemotaxis. Molecular and Cellular Biology, 22, 5897–5911.PubMedGoogle Scholar
  96. 96.
    Sliva, D. (2004). Signaling pathways responsible for cancer cell invasion as targets for cancer therapy. Current Cancer Drug Targets, 4, 327–336.PubMedGoogle Scholar
  97. 97.
    Shackelford, R. E., Kaufmann, W. K., & Paules, R. S. (2000). Oxidative stress and cell cycle checkpoint function. Free Radical Biology & Medicine, 28, 1387–1404.Google Scholar
  98. 98.
    Lin, D., & Takemoto, D. J. (2005). Oxidative activation of protein kinase Cgamma through the C1 domain. Effects on gap junctions. Journal of Biological Chemistry, 280, 13682–13693.PubMedGoogle Scholar
  99. 99.
    Inoguchi, T., Sonta, T., Tsubouchi, H., Etoh, T., Kakimoto, M., Sonoda, N., et al. (2003). Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: Role of vascular NAD(P)H oxidase. Journal of the American Society of Nephrology, 14, S227–232.PubMedGoogle Scholar
  100. 100.
    Lee, H. B., Yu, M. R., Yang, Y., Jiang, Z., & Ha, H. (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of the American Society of Nephrology, 14, S241–S245.PubMedGoogle Scholar
  101. 101.
    Velarde, V., de la Cerda, P. M., Duarte, C., Arancibia, F., Abbott, E., Gonzalez, A., et al. (2004). Role of reactive oxygen species in bradykinin-induced proliferation of vascular smooth muscle cells. Biological Research, 37, 419–430.PubMedCrossRefGoogle Scholar
  102. 102.
    Greene, E. L., Lu, G., Zhang, D., & Egan, B. M. (2001). Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension, 37, 308–312.PubMedGoogle Scholar
  103. 103.
    Srivastava, A. K. (2002). High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: A potential role in the pathogenesis of vascular dysfunction in diabetes (review). International Journal of Molecular Medicine, 9, 85–89.PubMedGoogle Scholar
  104. 104.
    Srivastava, A. K. (2002). High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: A potential role in the pathogenesis of vascular dysfunction in diabetes (review). International Journal of Molecular Medicine, 9(1), 85–89.PubMedGoogle Scholar
  105. 105.
    Chiarugi, P. (2005). PTPs versus PTKs: The redox side of the coin. Free Radical Research, 39, 353–364.PubMedGoogle Scholar
  106. 106.
    Lee, K., & Esselman, W. J. (2002). Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways. Free Radical Biology & Medicine, 33, 1121–1132.Google Scholar
  107. 107.
    Meng, T. C., Fukada, T., & Tonks, N. K. (2002). Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Molecular Cell, 9, 387–399.PubMedGoogle Scholar
  108. 108.
    Goldstein, B. J., Mahadev, K., & Wu, X. (2005). Redox paradox: Insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes, 54, 311–321.PubMedGoogle Scholar
  109. 109.
    Chiarugi, P. (2003). Reactive oxygen species as mediators of cell adhesion. Italian Journal of Biochemistry, 2, 28–32.Google Scholar
  110. 110.
    Wu, R. F., Xu, Y. C., Ma, Z., Nwariaku, F. E., Sarosi, G. A. Jr, & Terada, L. S. (2005). Subcellular targeting of oxidants during endothelial cell migration. Journal of Cell Biology, 171, 893–904.PubMedGoogle Scholar
  111. 111.
    Schonwasser, D. C., Marais, R. M., Marshall, C. J., & Parker, P. J. (1998). Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Molecular and Cellular Biology, 18(2), 790–798.PubMedGoogle Scholar
  112. 112.
    Berra, E., Diaz-Meco, M. T., Lozano, J., Frutos, S., Municio, M. M., Sanchez, P., et al. (1995). Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta. EMBO Journal, 14, 6157–6163.PubMedGoogle Scholar
  113. 113.
    Chernyavsky, A. I., Arredondo, J., Karlsson, E., Wessler, I., & Grando, S. A. (2005). The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. Journal of Biological Chemistry, 280, 39220–39228.PubMedGoogle Scholar
  114. 114.
    Shin, I., Kim, S., Song, H., Kim, H. R., & Moon, A. (2005). H-Ras-specific activation of Rac-MKK3/6-p38 pathway: Its critical role in invasion and migration of breast epithelial cells. Journal of Biological Chemistry, 280, 14675–14683.PubMedGoogle Scholar
  115. 115.
    Huang, C., Jacobson, K., & Schaller, M. D. (2004). MAP kinases and cell migration. Journal of Cell Science, 117(Pt. 20), 4619–4628.PubMedGoogle Scholar
  116. 116.
    Javelaud, D., & Mauviel, A. (2005). Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: Implications for carcinogenesis. Oncogene, 24, 5742–5750.PubMedGoogle Scholar
  117. 117.
    Nawshad, A., Lagamba, D., Polad, A., & Hay, E. D. (2005). Transforming growth factor-beta signaling during epithelial–mesenchymal transformation: Implications for embryogenesis and tumor metastasis. Cells, Tissues, Organs, 179, 11–23.PubMedGoogle Scholar
  118. 118.
    Howe, A. K., Aplin, A. E., & Juliano, R. L. (2002). Anchorage-dependent ERK signaling—mechanisms and consequences. Current Opinion in Genetics & Development, 12, 30–35.Google Scholar
  119. 119.
    Gupta, A., Rosenberger, S. F., & Bowden, G. T. (1999). Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis, 20, 2063–2073.PubMedGoogle Scholar
  120. 120.
    Lin, S. J., Shyue, S. K., Liu, P. L., Chen, Y. H., Ku, H. H., Chen, J. W., et al. (2004). Adenovirus-mediated overexpression of catalase attenuates oxLDL-induced apoptosis in human aortic endothelial cells via AP-1 and C-Jun N-terminal kinase/extracellular signal-regulated kinase mitogen-activated protein kinase pathways. Journal of Molecular and Cellular Cardiology, 36, 129–139.PubMedGoogle Scholar
  121. 121.
    Greene, E. L., Lu, G., Zhang, D., & Egan, B. M. (2001). Signaling events mediating the additive effects of oleic acid and angiotensin II on vascular smooth muscle cell migration. Hypertension, 37, 308–312.Google Scholar
  122. 122.
    Lo, I. C., Shih, J. M., & Jiang, M. J. (2005). Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. Journal of Biomedical Science, 12, 377–388.PubMedGoogle Scholar
  123. 123.
    Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.PubMedGoogle Scholar
  124. 124.
    Kruger, J. S., & Reddy, K. B. (2003). Distinct mechanisms mediate the initial and sustained phases of cell migration in epidermal growth factor receptor-overexpressing cells. Molecular Cancer Research, 1, 801–809.PubMedGoogle Scholar
  125. 125.
    Kermorgant, S., Zicha, D., & Parker, P. J. (2004). PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO Journal, 23, 3721–3734.PubMedGoogle Scholar
  126. 126.
    Wang, J., Frost, J. A., Cobb, M. H., & Ross, E. M. (1999). Reciprocal signaling between heterotrimeric G proteins and the p21-stimulated protein kinase. Journal of Biological Chemistry, 274, 31641–31647.PubMedGoogle Scholar
  127. 127.
    Juliano, R. L., Reddig, P., Alahari, S., Edin, M., Howe, A., & Aplin, A. (2004). Integrin regulation of cell signalling and motility. Biochemical Society Transactions, 32(Pt. 3), 443–446.PubMedGoogle Scholar
  128. 128.
    Fryer, B. H., & Field J. (2005). Rho, Rac, Pak and angiogenesis: Old roles and newly identified responsibilities in endothelial cells. Cancer Letters, 229, 13–23.PubMedGoogle Scholar
  129. 129.
    Schmitz, U., Thommes, K., Beier, I., & Vetter, H. (2002). Lysophosphatidic acid stimulates p21-activated kinase in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 291, 687–691.PubMedGoogle Scholar
  130. 130.
    Harfouche, R., Malak, N. A., Brandes, R. P., Karsan, A., Irani, K., & Hussain, S. N. (2005). Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB Journal, 19, 1728–1730.PubMedGoogle Scholar
  131. 131.
    Weber, D. S., Taniyama, Y., Rocic, P., Seshiah, P. N., Dechert, M. A., Gerthoffer, W. T., et al. (2004). Phosphoinositide-dependent kinase 1 and p21-activated protein kinase mediate reactive oxygen species-dependent regulation of platelet-derived growth factor-induced smooth muscle cell migration. Circulation Research, 94, 1219–1226.PubMedGoogle Scholar
  132. 132.
    Liu, J. W., Chandra, D., Rudd, M. D., Butler, A. P., Pallotta, V., Brown, D., et al. (2005). Induction of prosurvival molecules by apoptotic stimuli: Involvement of FOXO3a and ROS. Oncogene, 24, 2020–2031.PubMedGoogle Scholar
  133. 133.
    Fujii, T., Onohara, N., Maruyama, Y., Tanabe, S., Kobayashi, H., Fukutomi, M., et al. (2005). Galpha12/13-mediated production of reactive oxygen species is critical for angiotensin receptor-induced NFAT activation in cardiac fibroblasts. Journal of Biological Chemistry, 280, 23041–23047.PubMedGoogle Scholar
  134. 134.
    Okamoto, A., Iwamoto, Y., & Maru, Y. (2006). Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy. Molecular and Cellular Biology, 26, 108710–108797.Google Scholar
  135. 135.
    Hsu, T. C., Young, M. R., Cmarik, J., & Colburn, N. H. (2000). Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radical Biology & Medicine, 28, 1338–1348.Google Scholar
  136. 136.
    Kim, M. H., Cho, H. S., Jung, M., Hong, M. H., Lee, S. K., Shin, B. A., et al. (2005). Extracellular signal-regulated kinase and AP-1 pathways are involved in reactive oxygen species-induced urokinase plasminogen activator receptor expression in human gastric cancer cells. International Journal of Oncology, 26, 1669–1674.PubMedGoogle Scholar
  137. 137.
    Seth, A., & Watson, D. K. (2005). ETS transcription factors and their emerging roles in human cancer. European Journal of Cancer, 41, 2462–2478.PubMedGoogle Scholar
  138. 138.
    Feldman, R. J., Sementchenko, V. I., Gayed, M., Fraig, M. M., & Watson, D. K. (2003). Pdef expression in human breast cancer is correlated with invasive potential and altered gene expression. Cancer Research, 63, 4626–4631.PubMedGoogle Scholar
  139. 139.
    Hahne, J. C., Okuducu, A. F., Kaminski, A., Florin, A., Soncin, F., & Wernert, N. (2005). Ets-1 expression promotes epithelial cell transformation by inducing migration, invasion and anchorage-independent growth. Oncogene, 24, 5384–5388.PubMedGoogle Scholar
  140. 140.
    Huang, H. C., Liu, S. Y., Liang, Y., Liu, Y., Li, J. Z., & Wang, H. Y. (2005). [Transforming growth factor-beta1 stimulates matrix metalloproteinase-9 production through ERK activation pathway and upregulation of Ets-1 protein]. Zhonghua Yi Xue Za Zhi, 85, 328–331.PubMedGoogle Scholar
  141. 141.
    Chakraborti, S., Mandal, M., Das, S., Mandal, A., & Chakraborti, T. (2003). Regulation of matrix metalloproteinases: An overview. Molecular and Cellular Biochemistry, 253, 269–285.PubMedGoogle Scholar
  142. 142.
    White, L. A., Maute, C., & Brinckerhoff, C. E. (1997). ETS sites in the promoters of the matrix metalloproteinases collagenase (MMP-1) and stromelysin (MMP-3) are auxiliary elements that regulate basal and phorbol-induced transcription. Connective Tissue Research, 36, 321–335.PubMedCrossRefGoogle Scholar
  143. 143.
    Wilson, L. A., Gemin, A., Espiritu, R., & Singh, G. (2005). Ets-1 is transcriptionally up-regulated by H2O2 via an antioxidant response element. FASEB Journal, 19, 2085–2087.PubMedGoogle Scholar
  144. 144.
    Roberts, A. B., Russo, A., Felici, A., & Flanders, K. C. (2003). Smad3: A key player in pathogenetic mechanisms dependent on TGF-beta. Annals of the New York Academy of Sciences, 995, 1–10.PubMedCrossRefGoogle Scholar
  145. 145.
    Leivonen, S. K., Ala-Aho, R., Koli, K., Grenman, R., Peltonen, J., & Kahari, V. M. (2006). Activation of Smad signaling enhances collagenase-3 (MMP-13) expression and invasion of head and neck squamous carcinoma cells. Oncogene, 25, 2588–2600.PubMedGoogle Scholar
  146. 146.
    Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.PubMedGoogle Scholar
  147. 147.
    Huber, M. A., Kraut, N., & Beug, H. (2005). Molecular requirements for epithelial–mesenchymal transition during tumor progression. Current Opinion in Cell Biology, 17, 548–558.PubMedGoogle Scholar
  148. 148.
    Zavadil, J., & Bottinger, E. P. (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 24, 5764–5774.PubMedGoogle Scholar
  149. 149.
    Barrallo-Gimeno, A., & Nieto, M. A. (2005). The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development, 132, 3151–3161.PubMedGoogle Scholar
  150. 150.
    Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.PubMedGoogle Scholar
  151. 151.
    Boonstra, J., & Post, J. A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene, 337, 1–13.PubMedGoogle Scholar
  152. 152.
    Lai, W. L., & Wong, N. S. (2005). ROS mediates 4HPR-induced posttranscriptional expression of the Gadd153 gene. Free Radical Biology & Medicine, 38, 1585–1593.Google Scholar
  153. 153.
    Nelson, K. K., & Melendez, J. A. (2004). Mitochondrial redox control of matrix metalloproteinases. Free Radical Biology & Medicine, 37, 768–784.Google Scholar
  154. 154.
    Westermarck, J., Li, S. P., Kallunki, T., Han, J., & Kahari, V. M. (2001). p38 mitogen-activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP-1) gene expression. Molecular and Cellular Biology, 21, 2373–2383.PubMedGoogle Scholar
  155. 155.
    Savaraj, N., Wei, Y., Unate, H., Liu, P. M., Wu, C. J., Wangpaichitr, M., et al. (2005). Redox regulation of matrix metalloproteinase gene family in small cell lung cancer cells. Free Radical Research, 39, 373–381.PubMedGoogle Scholar
  156. 156.
    Lipscomb, E. A., & Mercurio, A. M. (2005). Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Reviews, 24, 413–423.PubMedGoogle Scholar
  157. 157.
    Kuphal, S., Bauer, R., & Bosserhoff, A. K. (2005). Integrin signaling in malignant melanoma. Cancer Metastasis Reviews, 24, 195–222.PubMedGoogle Scholar
  158. 158.
    Danen, E. H. (2005). Integrins: Regulators of tissue function and cancer progression. Current Pharmaceutical Design, 11, 881–891.PubMedGoogle Scholar
  159. 159.
    Playford, M. P., & Schaller, M. D. (2004). The interplay between Src and integrins in normal and tumor biology. Oncogene, 23, 7928–7946.PubMedGoogle Scholar
  160. 160.
    Zhu, H. J., Ross, F. P., Cao, X., & Teitelbaum, S. L. (1996). Phorbol myristate acetate transactivates the avian beta 3 integrin gene and induces alpha v beta 3 integrin expression. Journal of Cellular Biochemistry, 61, 420–429.PubMedGoogle Scholar
  161. 161.
    Lai, C. F., Feng, X., Nishimura, R., Teitelbaum, S. L., Avioli, L. V., Ross, F. P., et al. (2000). Transforming growth factor-beta up-regulates the beta 5 integrin subunit expression via Sp1 and Smad signaling. Journal of Biological Chemistry, 275, 36400–36406.PubMedGoogle Scholar
  162. 162.
    Katabami, K., Mizuno, H., Sano, R., Saito, Y., Ogura, M., Itoh, S., et al. (2005). Transforming growth factor-beta1 upregulates transcription of alpha3 integrin gene in hepatocellular carcinoma cells via Ets-transcription factor-binding motif in the promoter region. Clinical & Experimental Metastasis, 22, 539–548.Google Scholar
  163. 163.
    Reynolds, A. B., & Roczniak-Ferguson, A. (2004). Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene, 23, 7947–7956.PubMedGoogle Scholar
  164. 164.
    Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., et al. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.PubMedGoogle Scholar
  165. 165.
    Turcotte, S., Desrosiers, R. R., & Beliveau, R. (2003). HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. Journal of Cell Science, 116(Pt. 11), 2247–2260.PubMedGoogle Scholar
  166. 166.
    Wells, A. (2000). Tumor invasion: Role of growth factor-induced cell motility. Advances in Cancer Research, 78, 31–101.PubMedGoogle Scholar
  167. 167.
    Kataoka, H., Tanaka, H., Nagaike, K., Uchiyama, S., & Itoh, H. (2003). Role of cancer cell–stroma interaction in invasive growth of cancer cells. Human Cell, 16, 1–14.PubMedCrossRefGoogle Scholar
  168. 168.
    Miura, Y., Kozuki, Y., & Yagasaki, K. (2003). Potentiation of invasive activity of hepatoma cells by reactive oxygen species is mediated by autocrine/paracrine loop of hepatocyte growth factor. Biochemical and Biophysical Research Communications, 305, 160–165.PubMedGoogle Scholar
  169. 169.
    Hu, T., Ramachandrarao, S. P., Siva, S., Valancius, C., Zhu, Y., Mahadev, K., et al. (2005). Reactive oxygen species production via NADPH oxidase mediates TGF-beta-induced cytoskeletal alterations in endothelial cells. American Journal of Physiology. Renal Physiology, 289, F816–F825.PubMedGoogle Scholar
  170. 170.
    Perez, L. M., Milkiewicz, P., Ahmed-Choudhury, J., Elias, E., Ochoa, J. E., Sanchez Pozzi, E. J., et al. (2006). Oxidative stress induces actin-cytoskeletal and tight-junctional alterations in hepatocytes by a Ca2+-dependent, PKC-mediated mechanism: Protective effect of PKA. Free Radical Biology & Medicine, 40, 2005–2017.Google Scholar
  171. 171.
    Fiaschi, T., Cozzi, G., Raugei, G., Formigli, L., Ramponi, G., & Chiarugi, P. (2006). Redox regulation of beta-actin during integrin-mediated cell adhesion. Journal of Biological Chemistry, 281(32), 22983–22991.Google Scholar
  172. 172.
    Pathak, S. K., Sharma, R. A., Steward, W. P., Mellon, J. K., Griffiths, T. R., & Gescher, A. J. (2005). Oxidative stress and cyclooxygenase activity in prostate carcinogenesis: Targets for chemopreventive strategies. European Journal of Cancer, 41, 61–70.PubMedGoogle Scholar
  173. 173.
    Sikka, S. C. (2003). Role of oxidative stress response elements and antioxidants in prostate cancer pathobiology and chemoprevention—a mechanistic approach. Current Medicinal Chemistry, 10, 2679–2692.PubMedGoogle Scholar
  174. 174.
    Nishikawa, M., Hyoudou, K., Kobayashi, Y., Umeyama, Y., Takakura, Y., & Hashida, M. (2005). Inhibition of metastatic tumor growth by targeted delivery. Journal of Controlled Release, 109, 101–107.PubMedGoogle Scholar
  175. 175.
    Gupta, A., Butts, B., Kwei, K. A., Dvorakova, K., Stratton, S. P., Briehl M. M., et al. (2001). Attenuation of catalase activity in the malignant phenotype plays a functional role in an in vitro model for tumor progression. Cancer Letters, 173, 115–125.PubMedGoogle Scholar
  176. 176.
    Nishino, H., Tokuda, H., Satomi, Y., Masuda, M., Osaka, Y., Yogosawa, S., et al. (2004). Cancer prevention by antioxidants. Biofactors, 22, 57–61.PubMedGoogle Scholar
  177. 177.
    Lin, J. K., Liang, Y. C., & Lin-Shiau, S. Y. (1999). Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochemical Pharmacology, 58, 911–915.PubMedGoogle Scholar
  178. 178.
    Taki, M., Verschueren, K., Yokoyama, K., Nagayama, M., & Kamata N. (2006). Involvement of Ets-1 transcription factor in inducing matrix metalloproteinase-2 expression by epithelial–mesenchymal transition in human squamous carcinoma cells. International Journal of Oncology, 28, 487–496.PubMedGoogle Scholar
  179. 179.
    Chakraborti, S., Mandal, M., Das, S., Mandal, A., & Chakraborti, T. (2003). Regulation of matrix metalloproteinases: An overview. Molecular and Cellular Biochemistry, 253(1–2), 269–285.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Medical TechnologyTzu Chi UniversityHualienTaiwan

Personalised recommendations