Skip to main content

Advertisement

Log in

Should aortic stiffness parameters be used in MIS-C patient follow-up?

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

We evaluated the short- and long-term effects of multisystem inflammatory syndrome in children (MIS-C) on their cardiovascular system. The study population consisted of 38 MIS-C patients and 55 control patients. Standard echocardiographic measurements and aortic stiffness parameters were compared between the two groups at different time points. During the standard echocardiographic examination at the time of diagnosis, mitral valve insufficiency was detected in 42% of the cases, left ventricular systolic dysfunction in 36%, aortic valve insufficiency in 3%, tricuspid valve insufficiency in 13%, and coronary artery dilatation in 31%. The ejection fraction, pulse pressure of the experimental group were significantly lower than the control group (p < 0.01, p = 0.045, respectively). When aortic stiffness parameters were compared, it was seen that the parameters increased in the experimental group and the difference was significant for aortic distensibility. (p = 0.105, p = 0.029 respectively). When comparing the experimental group’s results at diagnosis and at the sixth month, there was a decrease in aortic stiffness parameters at the sixth month compared to the time of diagnosis, but the difference wasn’t significant (p = 0.514, p = 0.334). However, no statistically significant difference was detected when comparing the aortic distensibility results of the experimental group with the control group at the sixth month (p = 0.667). Our results showed that many pathological echocardiographic findings detected at diagnosis in MIS-C patients returned to normal within six months. Therefore, we believe that the cardiovascular follow-up period of MIS-C cases should be at least six months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Royal College of Paediatrics and Child Health, Health Policy Team. Paediatric multisystem inflammatory syndrome temporally associated with COVID-19–Guidance for clinicians. Accessed February 18 (2022) at: https://www.rcpch.ac.uk/resources/paediatric-multisystem-inflammatory-syndrome-temporally-associated-covid-19-pims-guidance

  2. Centers for Disease Control and Prevention Multisystem inflammatory syndrome in children (MIS-C) associated with coronavirus disease 2019 (COVID-19). Accessed February 18, 2022,at: https://www.cdc.gov/mis/mis-c.html

  3. World Health Organization. Multisystem inflammatory syndrome in children and adolescents with COVID-19. Accessed February 18 (2022) at: https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19

  4. Esposito S, Principi N (2021) Multisystem inflammatory syndrome in children related to SARS-CoV-2. Paediatr Drugs 23(2):119–129. https://doi.org/10.1007/s40272-020-00435-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Varga Z, Flammer AJ, Steiger P et al (2020) Endothelial cell infection and endotheliitis in COVID-19. Lancet 395(10234):1417–1418. https://doi.org/10.1016/S0140-6736(20)30937-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saeed S, Mancia G (2021) Arterial stiffness and COVID-19: a bidirectional cause-effect relationship. J Clin Hypertens (Greenwich) 23(6):1099–1103. https://doi.org/10.1111/jch.14259

    Article  CAS  PubMed  Google Scholar 

  7. Sperotto F, Friedman KG, Son MBF, VanderPluym CJ, Newburger JW, Dionne A (2021) Cardiac manifestations in SARS-CoV-2-associated multisystem inflammatory syndrome in children:Acomprehensive review and proposed clinical approach. Eur J Pediatr 180(2):307–322. https://doi.org/10.1007/s00431-020-03766-6

    Article  CAS  PubMed  Google Scholar 

  8. Gullu H, Erdogan D, Caliskan M et al (2006) Interrelationship between noninvasive predictors of atherosclerosis:transthoraciccoronary flow reserve, flow-mediated dilation, carotid intima-media thickness, aortic stiffness, aortic distensibility, elastic modulus, and brachial artery diameter. Echocardiography 23(10):835–842. https://doi.org/10.1111/j.1540-8175.2006.00342.x

    Article  PubMed  Google Scholar 

  9. Morrison KM, Dyal L, Conner W, Helden E, Newkirk L, Yusuf S, Lonn E (2010) Cardiovascular risk factors and non-invasive assessment of subclinical atherosclerosis in youth. Atherosclerosis 208(2):501–505. https://doi.org/10.1016/j.atherosclerosis.2009.07.034

    Article  CAS  PubMed  Google Scholar 

  10. Ceponiene I, Klumbiene J, Tamuleviciute-Prasciene E et al (2015) Associations between risk factors in childhood (12–13 years) and adulthood (48–49 years) and subclinical atherosclerosis:TheKaunascardiovascular risk cohort study. BMC Cardiovasc Disord 15(1):89. https://doi.org/10.1186/s12872-015-0087-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zanoli L, Boutouyrie P, Fatuzzo P et al (2017) Inflammation and aortic stiffness:anindividual participant data meta-analysis in patients with inflammatory bowel disease. J Am Heart Assoc 6(10):e007003. https://doi.org/10.1161/JAHA.117.007003

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jiang L, Tang K, Levin M et al (2020) COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect Dis 20(11):e276–e288. https://doi.org/10.1016/S1473-3099(20)30651-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arı H, Kahraman F, Türker Y, Güler S, Baş HA, Erdoğan D (2018) Aortic propagation velocity does not correlate with classical aortic stiffness parameters in healthy individuals. Anatol J Cardiol 18(5):340–346. https://doi.org/10.14744/AnatolJCardiol.2017.7306

    Article  PubMed  Google Scholar 

  14. Feldstein LR, Rose EB, Horwitz SM et al (2020) Multisystem inflammatory syndrome in U.S. children and adolescents.N Engl. J Med 383(4):334–346. https://doi.org/10.1056/NEJMoa2021680

    Article  CAS  Google Scholar 

  15. Whittaker E, Bamford A, Kenny J et al (2020) Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA 324(3):259–269. https://doi.org/10.1001/jama.2020.10369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee PY, Day-Lewis M, Henderson LA et al (2020) Distinct clinical and immunological features of SARS-CoV-2-induced multisystem inflammatory syndrome in children. J Clin Invest 130(11):5942–5950. https://doi.org/10.1172/JCI141113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Verduci E, Risé P, Di Profio E et al (2021) Blood fatty acids Profile in MIS-C children. Metabolites 11(11):721. https://doi.org/10.3390/metabo11110721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matsubara D, Kauffman HL, Wang Y et al (2020) Echocardiographic findings in pediatric multisystem inflammatory syndrome associated with COVID-19 in the United States. J Am Coll Cardiol 76(17):1947–1961. https://doi.org/10.1016/j.jacc.2020.08.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alsaied T, Tremoulet AH, Burns JC et al (2021) Review of cardiac involvement in multisystem inflammatory syndrome in children. Circulation 143(1):78–88. https://doi.org/10.1161/CIRCULATIONAHA.120.049836

    Article  CAS  PubMed  Google Scholar 

  20. Blondiaux E, Parisot P, Redheuil A et al (2020) Cardiac MRI in children with multisystem inflammatory syndrome associated with COVID-19. Radiology 297(3):E283–E288. https://doi.org/10.1148/radiol.2020202288

    Article  PubMed  Google Scholar 

  21. Feldstein LR, Tenforde MW, Friedman KG et al (2021) Characteristics and outcomes of US children and adolescents with multisystem inflammatory syndrome in children (MIS-C) compared with severe acute COVID-19. JAMA 325(11):1074–1087. https://doi.org/10.1001/jama.2021.2091

    Article  CAS  PubMed  Google Scholar 

  22. Valverde I, Singh Y, Sanchez-de-Toledo J et al (2021) Acute cardiovascular manifestations in 286 children with multisystem inflammatory syndrome associated with COVID-19 infection in Europe. Circulation 143(1):21–32. https://doi.org/10.1161/CIRCULATIONAHA.120.050065

    Article  CAS  PubMed  Google Scholar 

  23. Fox SE, Lameira FS, Rinker EB, Vander Heide RS (2020) Cardiac endotheliitis and multisystem inflammatory syndrome after COVID-19. Ann Intern Med 173(12):1025–1027. https://doi.org/10.7326/L20-0882

    Article  PubMed  Google Scholar 

  24. Diorio C, McNerney KO, Lambert M et al (2020) Evidence of thrombotic microangiopathy in children with SARS-CoV-2 across the spectrum of clinical presentations. Blood Adv 4(23):6051–6063. https://doi.org/10.1182/bloodadvances.2020003471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zuchi C, Tritto I, Carluccio E, Mattei C, Cattadori G, Ambrosio G (2020) Role of endothelial dysfunction in heart failure. Heart Fail Rev 25(1):21–30. https://doi.org/10.1007/s10741-019-09881-3

    Article  CAS  PubMed  Google Scholar 

  26. Leask RL, Jain N, Butany J (2003) Endothelium and valvular diseases of the heart. Microsc Res Tech 60(2):129–137. https://doi.org/10.1002/jemt.10251

    Article  PubMed  Google Scholar 

  27. Çiftel M, Ateş N (2022) Yılmaz O.Investigation ofendothelial dysfunction and arterial stiffness in multisystem inflammatory syndrome in children. Eur J Pediatr 181(1):91–97. https://doi.org/10.1007/s00431-021-04136-6

    Article  CAS  PubMed  Google Scholar 

  28. Kaess BM, Rong J, Larson MG et al (2012) Aortic stiffness, blood pressure progression, and incident hypertension.JAMA. 308(9):875–881. https://doi.org/10.1001/2012.jama.10503

  29. Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness:Asystematic review and meta-analysis. J Am Coll Cardiol 55(13):1318–1327. https://doi.org/10.1016/j.jacc.2009.10.061

    Article  PubMed  Google Scholar 

  30. Yang X, Chang Y, Wei W (2016) Endothelial dysfunction and inflammation:Immunityin rheumatoid arthritis. Mediat Inflam 2016:6813016. https://doi.org/10.1155/2016/6813016

    Article  CAS  Google Scholar 

  31. Safar ME (2018) Arterial stiffness as a risk factor for clinical hypertension. Nat Rev Cardiol 15(2):97–105. https://doi.org/10.1038/nrcardio.2017.155

    Article  PubMed  Google Scholar 

  32. Nabati M, Namazi SS, Yazdani J, Sharif Nia H (2020) Relation between aortic stiffness index and distensibility with age in hypertensive patients. Int J Gen Med 13:297–303. https://doi.org/10.2147/IJGM.S253357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Urbina EM, Kimball TR, Khoury PR, Daniels SR, Dolan LM (2010) Increased arterial stiffness is found in adolescents with obesity or obesity-related type 2 diabetes mellitus. J Hypertens 28(8):1692–1698. https://doi.org/10.1097/HJH.0b013e32833a6132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zachariah JP, Wang Y, Newburger JW, deFerranti SD, Mitchell GF, Vasan RS (2021) Biological pathways in adolescent aortic stiffness. J Am Heart Assoc 10(6):e018419. https://doi.org/10.1161/JAHA.120.018419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lieb W, Larson MG, Benjamin EJ et al (2009) Multimarker approach to evaluate correlates of vascular stiffness: the Framingham Heart Study. Circulation 119(1):37–43. https://doi.org/10.1161/CIRCULATIONAHA.108.816108

    Article  PubMed  Google Scholar 

  36. Zuckerberg JC, Matsubara D, Kauffman HL et al (2023) Left atrial stiffness and strain are novel indices of left ventricular diastolic function in children: validation followed by application in multisystem inflammatory syndrome in children due to COVID-19. Eur Heart J Cardiovasc Imaging 24(9):1241–1251. https://doi.org/10.1093/ehjci/jead087

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declared that this study has received no financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [HU], [CV], [CK], [NE], [TGK] and [MT]. The first draft of the manuscript was written by [HU] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hatice Uygun.

Ethics declarations

Ethical approval

Ethics approval for the conduct of the study was obtained from the Institutional Review Board (approval no: 2022/1-14).

Patient consent statement

It is not necessary as it is a retrospective study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uygun, H., Varan, C., Konca, C. et al. Should aortic stiffness parameters be used in MIS-C patient follow-up?. Int J Cardiovasc Imaging (2024). https://doi.org/10.1007/s10554-024-03133-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10554-024-03133-8

Keywords

Navigation