Skip to main content

Advertisement

Log in

Biomechanical properties of the ascending aorta in patients with arterial hypertension by velocity vector imaging

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Aortic stiffness is an important risk factor for cardiovascular events and morbidity. Increased aortic stiffness is associated with an increase in cardiac and vascular hypertension-related organ damage. To evaluate the biomechanical properties of the ascending aorta (AA) in patients with arterial hypertension (AH) by velocity vector imaging (VVI). Ninety-five patients with AH and 53 normal healthy control participants were prospectively enrolled. AA biomechanical properties, i.e., ascending aortic global longitudinal strain (ALS), ascending aortic global circumferential strain (ACS), and fractional area change (FAC), were evaluated by VVI. Relative wall thickness (RWT) and left ventricular mass (LVM) were calculated. Pulsed Doppler early transmitral peak flow velocity (E), early diastolic mitral annular velocity (e′), left ventricular global longitudinal strain (GLS), distensibility (D) and stiffness index (SI) of AA were also obtained. The ALS, ACS and FAC were significantly lower in the AH patients, especially in those with ascending aorta dilatation (AAD), than in the normal healthy control subjects. The patients with AAD had a higher E/e′ ratio, RWT, LVM and SI and a lower GLS and D than patients without AAD and normal healthy volunteers (p < 0.05). There were significant associations between biomechanical properties and D, SI, E/e′ and GLS (ALS and D: r = 0.606, ALS and SI: r = − 0.645, ALS and E/e′: r = − 0.489, ALS and GLS: r = 0.466, ACS and D: r = 0.564, ACS and SI: r = − 0.567, ACS and E/e′: r = − 0.313, ACS and GLS: r = 0.320, FAC and D: r = 0.649, FAC and SI: r = − 0.601, FAC and E/e′: r = − 0.504, FAC and GLS: r = 0.524, respectively, p < 0.05). The biomechanical properties of AA were impaired in patients with AH, especially patients with ascending aorta dilatation. Hypertension is associated with a high prevalence of diastolic and systolic dysfunction and increased arterial stiffness. Further study is needed to evaluate the clinical application of AA biomechanical properties by VVI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Ascending aorta

AH:

Arterial hypertension

VVI:

Velocity vector imaging

ALS:

Ascending aortic global longitudinal strain

ACS:

Ascending aortic global circumferential strain

FAC:

Fractional area change

PP:

Pulse pressure

E:

Pulsed Doppler early transmitral peak flow velocity

e′:

Early diastolic mitral annular velocity

D:

Distensibility

SI:

Stiffness index

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

LAD:

Left atrial diameter

LVEDD:

LV end-diastolic diameter

RWT:

Relative wall thickness

LVM:

Left ventricular mass

HR:

Heart rate

EF:

Ejection fraction

SOV:

Sinus of valsalva

ASCs:

Ascending aorta

GLS:

The global longitudinal strain

References

  1. Milan A, Degli Esposti D, Salvetti M, Izzo R, Moreo A, Pucci G, Bruno G, Pareo I, Parini A, Paini A, Laurino FI, Sormani P, Sgariglia R, Avenatti E, De Luca N, Working Group on Heart and Hypertension of the Italian Society of Hypertension (2019) Prevalence of proximal ascending aorta and target organ damage in hypertensive patients: the multicentric ARGO-SIIA project (Aortic remodeling in hypertension of the Italian society of hypertension). J Hypertens 37:57–64

    Article  CAS  PubMed  Google Scholar 

  2. Mattace-Raso FU, van der Cammen TJ, Hofman A (2006) Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam study. Circulation 113:657e63

    Article  Google Scholar 

  3. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365:217–223

    Article  PubMed  Google Scholar 

  4. Mitchell GF (2018) Aortic stiffness, pressure and flow pulsatility, and target organ damage. J Appl Physiol 125:1871–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Laurent S, Alivon M, Beaussier H, Boutouyrie P (2012) Aortic stiffness as a tissue biomarker for predicting future cardiovascular events in asymptomatic hypertensive subjects. Ann Med 44:S93–S97

    Article  PubMed  Google Scholar 

  6. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F, Redon J, Dominiczak A, Narkiewicz K, Nilsson PM, Burnier M, Viigimaa M, Ambrosioni E, Caufield M, Coca A, Olsen MH, Schmieder RE, Tsioufis C, van de Borne P, Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol C, Fagard R, Ferrari R, Hasdai D, Hoes AW, Kirchhof P, Knuuti J, Kolh P, Lancellotti P, Linhart A, Nihoyannopoulos P, Piepoli MF, Ponikowski P, Sirnes PA, Tamargo JL, Tendera M, Torbicki A, Wijns W, Windecker S, Clement DL, Coca A, Gillebert TC, Tendera M, Rosei EA, Ambrosioni E, Anker SD, Bauersachs J, Hitij JB, Caulfield M, De Buyzere M, De Geest S, Derumeaux GA, Erdine S, Farsang C, Funck-Brentano C, Gerc V, Germano G, Gielen S, Haller H, Hoes AW, Jordan J, Kahan T, Komajda M, Lovic D, Mahrholdt H, Olsen MH, Ostergren J, Parati G, Perk J, Polonia J, Popescu BA, Reiner Z, Rydén L, Sirenko Y, Stanton A, Struijker-Boudier H, Tsioufis C, van de Borne P, Vlachopoulos C, Volpe M, Wood DA (2013) 2013 ESH/ESC guidelines for the management of arterial Hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34:2159–2219

    Article  PubMed  Google Scholar 

  7. Bell V, Mitchell WA, Sigurðsson S, Westenberg JJ, Gotal JD, Torjesen AA et al (2014) Longitudinal and circumferential strain of the proximal aorta. J Am Heart Assoc 3:e001536

    Article  PubMed  PubMed Central  Google Scholar 

  8. Guala A, Teixidó-Tura G, Rodríguez-Palomares J, Ruiz-Muñoz A, Dux-Santoy L, Villalva N et al (2019) Proximal aorta longitudinal strain predicts aortic root dilation rate and aortic events in marfan syndrome. Eur Heart J 40:2047–2055

    Article  PubMed  Google Scholar 

  9. Bjallmark A, Lind B, Peolsson M, Shahgaldi K, Brodin LA et al (2010) (2010) Ultrasonographic strain imaging is superior to conventional noninvasive measures of vascular stiffness in the detection of age-dependent differences in the mechanical properties of the common carotid artery. Eur J Echocardiogr 11:630–636

    Article  PubMed  Google Scholar 

  10. Kim KH, Park JC, Yoon HJ, Yoon NS, Hong YJ, Park HW et al (2009) Usefulness of aortic strain analysis by velocity vector imaging as a new echocardiographic measure of arterial stiffness. J Am Soc Echocardiogr 22:1382–1388

    Article  PubMed  Google Scholar 

  11. An HS, Baek JS, Kim GB, Lee YA, Song MK, Kwon BS et al (2017) Impaired vascular function of the aorta in adolescents with turner syndrome. Pediatr Cardiol 38:20–26

    Article  PubMed  Google Scholar 

  12. Gao J, Lee J, Phan A, Fowlkes JB (2021) Velocity vector imaging to assess longitudinal wall motion of adult carotid arteries. J Ultrasound Med 40:1195–1207

    Article  PubMed  Google Scholar 

  13. Mancia G, De Backer G, Dominiczak A (2007) Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 25:1105–1187

    Article  CAS  PubMed  Google Scholar 

  14. Mancia G, Laurent S, Agabiti-Rosei E, Ambrosioni E, Burnier M, Caulfield MJ et al (2009) Reappraisal of European guidelines on hypertension management: a European society of hypertension task force document. J Hypertens 27:2121–2158

    Article  CAS  PubMed  Google Scholar 

  15. Lang RM, Bierig M, Devereux RB et al (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7:79–108

    Article  PubMed  Google Scholar 

  16. Nistri S, Grande-Allen J, Noale M (2008) Aortic elasticity and size in bicuspid aortic valve syndrome. Eur Heart J 29:472–479

    Article  PubMed  Google Scholar 

  17. You BA, Shen L, Li JF, Chen YG, Gu XH, Gao HQ (2012) The correlation between carotid-femoral pulse wave velocity and composition of the aortic media in CAD patients with or without hypertension. Swiss Med Wkly 142:w13546

    PubMed  Google Scholar 

  18. Zhang Y, Lacolley P, Protogerou AD, Safar ME (2020) Arterial stiffness in hypertension and function of large arteries. Am J Hypertens 33:291–296

    Article  PubMed  Google Scholar 

  19. Korneva A, Humphrey JD (2019) Maladaptive aortic remodeling in hypertension associates with dysfunctional smooth muscle contractility. Am J Physiol Heart Circ Physiol 316:H265–H278

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Wang J, Xie M, Wang X, Lv Q, Chen M et al (2009) Clinical study of the ascending aorta wall motion by velocity vector imaging in patients with primary hypertension. J Huazhong Univ Sci Technol Med Sci 29:127–130

    Article  Google Scholar 

  21. Ahmed MK, El-Shafey WE, Adam KF (2019) Assessment of aortic root mechanics in hypertensive patients by speckle tracking echocardiography. World J Cardiovasc Dis 09:212–222

    Article  Google Scholar 

  22. Wu J, Pei Y, Wang Y, Ji J, Gong M, Gu W et al (2022) Evaluation of ascending aortic longitudinal strain via two-dimensional speckle tracking echocardiography in hypertensive patients complicated by type A aortic dissection. J Ultrasound Med 41:925–933

    Article  PubMed  Google Scholar 

  23. Teixeira R, Monteiro R, Baptista R, Pereira T, Ribeiro MA, Gonçalves A et al (2017) Aortic arch mechanics measured with two-dimensional speckle tracking echocardiography. J Hypertens 35:1402–1410

    Article  CAS  PubMed  Google Scholar 

  24. Song XT, Fan L, Yan ZN, Rui YF (2021) Echocardiographic evaluation of the elasticity of the ascending aorta in patients with essential hypertension. J Clin Ultrasound 49:351–357

    Article  PubMed  Google Scholar 

  25. Nabati M, Namazi S, Yazdani J (2021) Aortic wall elasticity and left ventricular function in hypertensive patients with nonsignificant coronary artery disease. Ultrasound 29:162–171

    Article  PubMed  Google Scholar 

  26. Vitarelli A, Giordano M, Germanò G, Pergolini M, Cicconetti P, Tomei F et al (2010) Assessment of ascending aorta wall stiffness in hypertensive patients by tissue doppler imaging and strain doppler echocardiography. Heart 96:1469–1474

    Article  PubMed  Google Scholar 

  27. Kim SA, Lee KH, Won HY, Park S, Chung JH, Jang Y et al (2013) Quantitative assessment of aortic elasticity with aging using velocity-vector imaging and its histologic correlation. Arterioscler Thromb Vasc Biol 33:1306–1312

    Article  CAS  PubMed  Google Scholar 

  28. Etrini J, Eriksson MJ, Caidahl K, Larsson M (2018) Circumferential strain by velocity vector imaging and speckle-tracking echocardiography: validation against sonomicrometry in an aortic phantom. Clin Physiol Funct Imaging 38:269–277

    Article  Google Scholar 

  29. Longobardo L, Carerj ML, Pizzino G, Bitto A, Piccione MC, Zucco M et al (2018) Impairment of elastic properties of the aorta in bicuspid aortic valve: relationship between biomolecular and aortic strain patterns. Eur Heart J Cardiovasc Imaging 19:879–887

    Article  PubMed  Google Scholar 

  30. Bell V, Sigurdsson S, Westenberg JJ, Gotal JD, Torjesen AA, Aspelund T, Launer LJ, Harris TB, Gudnason V, de Roos A, Mitchell GF (2015) Relations between aortic stiffness and left ventricular structure and function in older participants in the age, gene/environment susceptibility–Reykjavik study. Circ Cardiovasc Imaging 8(4):e003039

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the patients and control subjects for their participation in this study.

Funding

This work was supported by the State Natural Sciences Foundation of China (Nos. 81871372 and 81801721) and the Natural Science Foundation of Hunan Province (Nos. 2019JJ40425 and 2019JJ50880).

Author information

Authors and Affiliations

Authors

Contributions

GQ, X and ZR, Y collected general clinical data of the patients and measured blood pressure. SZ and LY consulted the relevant literature. LY performed ultrasound ex-amination and analyzed the patient data. LY was the main contributor to the manuscripts. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shi Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10554_2023_3003_MOESM1_ESM.jpg

In figure A, the velocity vector image of the traced ascending aorta is shown in the parasternal long-axis view. In figure B, green and white represent the anterior wall of the ascending aorta, and blue and yellow represent the posterior wall of the ascending aorta. In figure C, the velocity vector image of the traced ascending aorta is shown in the great artery short-axis view. In figure D, green represents the anterior wall of the ascending aorta, white represents the left lateral wall of the ascending aorta, blue represents the posterior wall of the ascending aorta, and purple represents the right lateral wall of the ascending aorta. Supplementary material 1 (JPG 8124.7 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Xu, G., Zhou, Q. et al. Biomechanical properties of the ascending aorta in patients with arterial hypertension by velocity vector imaging. Int J Cardiovasc Imaging 40, 397–405 (2024). https://doi.org/10.1007/s10554-023-03003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-023-03003-9

Keywords

Navigation