Skip to main content

Advertisement

Log in

Assessment of left ventricular global longitudinal strain in patients with hypertrophic cardiomyopathy and coronary artery disease

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Impaired left ventricular global longitudinal strain (GLS) and coronary artery disease (CAD) each confer adverse prognosis in hypertrophic cardiomyopathy (HCM). Despite their prevalence, data on GLS in co-existent HCM and CAD is lacking. Ninety-six patients with HCM and CAD were retrospectively identified between 2005 and 2021, and analyzed using 2D speckle-tracking echocardiography. Obstructive and non-obstructive CAD patients were compared, multivariate linear regression tested associations between clinical and echocardiographic variables with GLS, and Receiver Operating Characteristic Curve assessed the utility of GLS to predict all-cause mortality at follow-up. Mean age was 71 ± 12.2 years, 41% had obstructive HCM, 78% had obstructive CAD, and 75% had prior acute coronary syndrome. At 4.8-year follow-up, GLS decreased compared with baseline (− 12.5 ± 4.5 vs. − 14 ± 4.2%, p = 0.007), with basal segments experiencing the greatest impairment. GLS was lower in obstructive versus non-obstructive CAD patients at follow-up, although the magnitude was attenuated (baseline: − 13.2 vs. − 17.1%, p < 0.001; follow-up: − 12 vs. − 14.1%, p = 0.05). Interventricular septal thickness (β = 0.54), apical HCM (β = 0.48), and right ventricular systolic pressure (β = 0.39) were associated with more impaired GLS (all p < 0.001), independent of obstructive CAD (β = 0.09, p = 0.44). There were 9 follow-up deaths, with baseline GLS > − 13.5% being a good predictor of all-cause mortality (AUC 0.78, 95% CI 0.64–0.92, sensitivity 88%, specificity 57%, p = 0.01). Patients with HCM and CAD experience progressive GLS impairment over long-term follow-up, with GLS > − 13.5% appearing to be a threshold for predicting all-cause mortality. Apical HCM phenotype is independently associated with worse GLS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Semsarian C, Ingles J, Maron MS, Maron BJ (2015) New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol 65:1249–1254. https://doi.org/10.1016/j.jacc.2015.01.019

    Article  PubMed  Google Scholar 

  2. Sabater-Molina M, Pérez-Sánchez I, Hernández D, Rincón JP, Gimeno JR (2018) Genetics of hypertrophic cardiomyopathy: a review of current state. Clin Genet 93:3–14. https://doi.org/10.1111/cge.13027

    Article  CAS  PubMed  Google Scholar 

  3. Cui H, Schaff HV, Lentz Carvalho J, Nishimura RA, Geske JB, Dearani JA et al (2021) Myocardial histopathology in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 77:2159–2170. https://doi.org/10.1016/j.jacc.2021.03.008

    Article  PubMed  Google Scholar 

  4. Geske JB, Ommen SR, Gersh BJ (2018) Hypertrophic cardiomyopathy: clinical update. JACC Heart Fail 6:364–375. https://doi.org/10.1016/j.jchf.2018.02.010

    Article  PubMed  Google Scholar 

  5. Sorajja P, Ommen SR, Nishimura RA, Gersh BJ, Berger PB, Tajik AJ (2003) Adverse prognosis of patients with hypertrophic cardiomyopathy who have epicardial coronary artery disease. Circulation 108:2342–2348. https://doi.org/10.1161/01.CIR.0000097110.55312.BF

    Article  PubMed  Google Scholar 

  6. Rhee TM, Kim HK, Kim BS, Han KD, Lee HJ, Hwang IC et al (2023) Impact of coronary artery revascularization on long-term outcome in hypertrophic cardiomyopathy patients: a nationwide population-based cohort study. Sci Rep 13:6412. https://doi.org/10.1038/s41598-023-33344-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Shin YJ, Lee JH, Yoo JY, Kim JA, Jeon Y, Yoon YE et al (2019) Clinical significance of evaluating coronary atherosclerosis in adult patients with hypertrophic cardiomyopathy who have chest pain. Eur Radiol 29:4593–4602. https://doi.org/10.1007/s00330-018-5951-8

    Article  PubMed  Google Scholar 

  8. Heydari B, Satriano A, Jerosch-Herold M, Kolm P, Kim DY, Cheng K et al (2023) 3-dimensional strain analysis of hypertrophic cardiomyopathy: insights from the NHLBI International HCM Registry. JACC Cardiovasc Imaging 16:478–491. https://doi.org/10.1016/j.jcmg.2022.10.005

    Article  PubMed  Google Scholar 

  9. Garcia Brás P, Rosa SA, Cardoso I, Branco LM, Galrinho A, Gonçalves AV et al (2023) Microvascular dysfunction is associated with impaired myocardial work in obstructive and nonobstructive hypertrophic cardiomyopathy: a multimodality study. J Am Heart Assoc 12:e028857. https://doi.org/10.1161/JAHA.122.028857

    Article  PubMed  PubMed Central  Google Scholar 

  10. Collier P, Phelan D, Klein A (2017) A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol 69:1043–1056. https://doi.org/10.1016/j.jacc.2016.12.012

    Article  PubMed  Google Scholar 

  11. Russo C, Jin Z, Elkind MS, Rundek T, Homma S, Sacco RL et al (2014) Prevalence and prognostic value of subclinical left ventricular systolic dysfunction by global longitudinal strain in a community-based cohort. Eur J Heart Fail 16:1301–1309. https://doi.org/10.1002/ejhf.154

    Article  PubMed  Google Scholar 

  12. Liu H, Pozios I, Haileselassie B, Nowbar A, Sorensen LL, Phillip S et al (2017) Role of global longitudinal strain in predicting outcomes in hypertrophic cardiomyopathy. Am J Cardiol 120:670–675. https://doi.org/10.1016/j.amjcard.2017.05.039

    Article  PubMed  Google Scholar 

  13. Hartlage GR, Kim JH, Strickland PT, Cheng AC, Ghasemzadeh N, Pernetz MA et al (2015) The prognostic value of standardized reference values for speckle-tracking global longitudinal strain in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 31:557–565. https://doi.org/10.1007/s10554-015-0590-5

    Article  PubMed  Google Scholar 

  14. Funabashi N, Takaoka H, Horie S, Ozawa K, Takahashi M, Yajima R et al (2013) Risk stratification using myocardial peak longitudinal-strain on speckle-tracking transthoracic-echocardiogram to predict major adverse cardiac events in non ischemic hypertrophic-cardiomyopathy subjects confirmed by MDCT. Int J Cardiol 168:4586–4589. https://doi.org/10.1016/j.ijcard.2013.06.056

    Article  PubMed  Google Scholar 

  15. Malagoli A, Fanti D, Albini A, Rossi A, Ribichini FL, Benfari G (2020) Echocardiographic strain imaging in coronary artery disease: the added value of a quantitative approach. Cardiol Clin 38:517–526. https://doi.org/10.1016/j.ccl.2020.06.005

    Article  PubMed  Google Scholar 

  16. Abou R, van der Bijl P, Bax JJ, Delgado V (2020) Global longitudinal strain: clinical use and prognostic implications in contemporary practice. Heart 106:1438–1444. https://doi.org/10.1136/heartjnl-2019-316215

    Article  PubMed  Google Scholar 

  17. Takeuchi M, Wu VC (2018) Application of left ventricular strain to patients with coronary artery disease. Curr Opin Cardiol 33:464–469. https://doi.org/10.1097/HCO.0000000000000536

    Article  PubMed  Google Scholar 

  18. Tower-Rader A, Mohananey D, To A, Lever HM, Popovic ZB, Desai MY (2019) Prognostic value of global longitudinal strain in hypertrophic cardiomyopathy: a systematic review of existing literature. JACC Cardiovasc Imaging 12:1930–1942. https://doi.org/10.1016/j.jcmg.2018.07.016

    Article  PubMed  Google Scholar 

  19. Shenouda R, Bytyçi I, Sobhy M, Henein MY (2019) Early recovery of left ventricular function after revascularization in acute coronary syndrome. J Clin Med 9:24. https://doi.org/10.3390/jcm9010024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Solomon SD, Glynn RJ, Greaves S, Ajani U, Rouleau JL, Menapace F et al (2001) Recovery of ventricular function after myocardial infarction in the reperfusion era: the healing and early afterload reducing therapy study. Ann Intern Med 134:451–4588. https://doi.org/10.7326/0003-4819-134-6-200103200-00009

    Article  CAS  PubMed  Google Scholar 

  21. Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P et al (2020) 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. J Am Coll Cardiol 76:3022–3055. https://doi.org/10.1016/j.jacc.2020.08.044

    Article  PubMed  Google Scholar 

  22. Nagueh SF, Phelan D, Abraham T, Armour A, Desai MY, Dragulescu A et al (2022) Recommendations for multimodality cardiovascular imaging of patients with hypertrophic cardiomyopathy: an update from the American Society of Echocardiography, in collaboration with the American Society of Nuclear Cardiology, the society for cardiovascular magnetic resonance, and the society of cardiovascular computed tomography. J Am Soc Echocardiogr 35:533–569. https://doi.org/10.1016/j.echo.2022.03.012

    Article  PubMed  Google Scholar 

  23. Lawton JS, Tamis-Holland JE, Bangalore S, Bates ER, Beckie TM, Bischoff JM et al (2021) 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. J Am Coll Cardiol 79:197–215. https://doi.org/10.1016/j.jacc.2021.09.005

    Article  PubMed  Google Scholar 

  24. Farooq V, Brugaletta S, Serruys PW (2011) The SYNTAX score and SYNTAX-based clinical risk scores. Semin Thorac Cardiovasc Surg 23:99–105. https://doi.org/10.1053/j.semtcvs.2011.08.001

    Article  PubMed  Google Scholar 

  25. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39. https://doi.org/10.1016/j.echo.2014.10.003

    Article  PubMed  Google Scholar 

  26. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314. https://doi.org/10.1016/j.echo.2016.01.011

    Article  PubMed  Google Scholar 

  27. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G et al (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 24:277–313. https://doi.org/10.1016/j.echo.2011.01.015

    Article  PubMed  Google Scholar 

  28. Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R et al (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiogr 28:183–193. https://doi.org/10.1016/j.echo.2014.11.003

    Article  PubMed  Google Scholar 

  29. Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA et al (2017) Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the society for cardiovascular magnetic resonance. J Am Soc Echocardiogr 30:303–371. https://doi.org/10.1016/j.echo.2017.01.007

    Article  PubMed  Google Scholar 

  30. Liu F, Ma Y, Ge H, Zhao Y, Shen H, Zhang D et al (2018) Long-term outcomes of acute myocardial infarction in patients with hypertrophic cardiomyopathy. Angiology 69:900–908. https://doi.org/10.1177/0003319718778418

    Article  PubMed  Google Scholar 

  31. Yang YJ, Fan CM, Yuan JQ, Zhang HB, Duan FJ, Wang ZM et al (2017) Long-term survival after acute myocardial infarction in patients with hypertrophic cardiomyopathy. Clin Cardiol 40:26–31. https://doi.org/10.1002/clc.22601

    Article  PubMed  Google Scholar 

  32. Rothman RD, Baggish AL, O’Callaghan C, Lowry PA, Bhatt AB, MacRae CA et al (2012) Management strategy in 249 consecutive patients with obstructive hypertrophic cardiomyopathy referred to a dedicated program. Am J Cardiol 110:1169–1174. https://doi.org/10.1016/j.amjcard.2012.05.056

    Article  PubMed  Google Scholar 

  33. Wells S, Rowin EJ, Boll G, Rastegar H, Wang W, Maron MS et al (2018) Clinical profile of nonresponders to surgical myectomy with obstructive hypertrophic cardiomyopathy. Am J Med 131:e235–e239. https://doi.org/10.1016/j.amjmed.2017.12.031

    Article  PubMed  Google Scholar 

  34. Capota R, Militaru S, Ionescu AA, Rosca M, Baicus C, Popescu BA et al (2020) Quality of life status determinants in hypertrophic cardiomyopathy as evaluated by the Kansas city cardiomyopathy questionnaire. Health Qual Life Outcomes 18:351. https://doi.org/10.1186/s12955-020-01604-9

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ong KC, Geske JB, Hebl VB, Nishimura RA, Schaff HV, Ackerman MJ et al (2016) Pulmonary hypertension is associated with worse survival in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 17:604–610. https://doi.org/10.1093/ehjci/jew024

    Article  PubMed  Google Scholar 

  36. Eriksson MJ, Sonnenberg B, Woo A, Rakowski P, Parker TG, Wigle ED et al (2002) Long-term outcome in patients with apical hypertrophic cardiomyopathy. J Am Coll Cardiol 39:638–645. https://doi.org/10.1016/s0735-1097(01)01778-8

    Article  PubMed  Google Scholar 

  37. Moon J, Shim CY, Ha JW, Cho IJ, Kang MK, Yang WI et al (2011) Clinical and echocardiographic predictors of outcomes in patients with apical hypertrophic cardiomyopathy. Am J Cardiol 108:1614–1619. https://doi.org/10.1016/j.amjcard.2011.07.024

    Article  PubMed  Google Scholar 

  38. Klarich KW, Attenhofer Jost CH, Binder J, Connolly HM, Scott CG, Freeman WK et al (2013) Risk of death in long-term follow-up of patients with apical hypertrophic cardiomyopathy. Am J Cardiol 111:1784–1791. https://doi.org/10.1016/j.amjcard.2013.02.040

    Article  PubMed  Google Scholar 

  39. Mihos CG, Escolar E, Fernandez R (2023) Right ventricular hypertrophy in apical hypertrophic cardiomyopathy. Echocardiography. https://doi.org/10.1111/echo.15588

    Article  PubMed  Google Scholar 

  40. Hughes RK, Knott KD, Malcolmson J, Augusto JB, Mohiddin SA, Kellman P et al (2020) Apical hypertrophic cardiomyopathy: the variant less known. J Am Heart Assoc 9:e015294. https://doi.org/10.1161/JAHA.119.015294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hughes RK, Augusto JB, Knott K, Davies R, Shiwani H, Seraphim A et al (2023) Apical ischemia is a universal feature of apical hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 16:e014907. https://doi.org/10.1161/CIRCIMAGING.122.014907

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stephenson E, Monney P, Pugliese F, Malcolmson J, Petersen SE, Knight C et al (2018) Ineffective and prolonged apical contraction is associated with chest pain and ischaemia in apical hypertrophic cardiomyopathy. Int J Cardiol 251:65–70

    Article  PubMed  Google Scholar 

  43. Mihos CG, Horvath SA, Fernandez R, Escolar E (2023) Left ventricular strain and myocardial work in apical hypertrophic cardiomyopathy. J Thorac Dis 15:3197–3207. https://doi.org/10.21037/jtd-23-202

    Article  PubMed  PubMed Central  Google Scholar 

  44. Karlsen S, Dahlslett T, Grenne B, Sjøli B, Smiseth O, Edvardsen T et al (2019) Global longitudinal strain is a more reproducible measure of left ventricular function than ejection fraction regardless of echocardiographic training. Cardiovasc Ultrasound 17:18. https://doi.org/10.1186/s12947-019-0168-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MG and CGM The first draft of the manuscript was written by MG and CGM, and all authors commented on previous versions of the manuscript. All authors read, edited, and approved the final manuscript.

Corresponding author

Correspondence to Christos G. Mihos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This retrospective study protocol was drafted in accordance with institutional regulations and the ethical guidelines of the 1975 declaration of Helsinki (revised in 2013), and waiver of consent was approved by the Mount Sinai Medical Center Institutional Review Board in Miami Beach, Florida.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gjergjindreaj, M., Escolar, E., Papadopoulos, K. et al. Assessment of left ventricular global longitudinal strain in patients with hypertrophic cardiomyopathy and coronary artery disease. Int J Cardiovasc Imaging 40, 361–372 (2024). https://doi.org/10.1007/s10554-023-02994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-023-02994-9

Keywords

Navigation