Skip to main content

Advertisement

Log in

Multimodality coronary imaging to predict non-culprit territory unrecognized myocardial infarction in Non-ST-Elevation acute coronary syndrome

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Purpose: Unrecognized myocardial infarction (UMI) detected by cardiac magnetic resonance (CMR) imaging is associated with adverse outcomes in patients with acute and chronic coronary syndrome. This study aimed to assess the predictors of optical coherence tomography (OCT) and coronary computed tomography angiography (CCTA) findings for non-infarct-related (non-IR) territory UMI in patients presenting with non-ST-elevation acute coronary syndrome (NSTE-ACS). Methods: We investigated 69 patients with a first clinical episode of NSTE-ACS who underwent pre-percutaneous coronary intervention (PCI) 320-slice CCTA, uncomplicated urgent PCI with OCT assessment within 24 h of admission, and post-PCI CMR. UMI was assessed using late gadolinium enhancement to identify regions of hyperenhancement with an ischemic distribution pattern in non-IR territories. Results: Non-IR UMI was detected in 11 patients (15.9%). Lower ejection fraction, higher Gensini score, higher Agatston score, high pericoronary adipose tissue attenuation (PCATA), OCT-defined culprit lesion plaque rupture, and OCT-defined culprit lesion cholesterol crystal were significantly associated with the presence of non-IR UMI. On dividing the total cohort was divided into five groups according to the numbers of two OCT-derived risk factors and two CCTA-derived risk factors, the frequency of non-IR UMI frequency significantly increased according to the number of these relevant risk features (p < 0.001). Patients with all of the non-IR UMI risk factors showed 50% prevalence of non-IR UMI, compared with 2.2% of patients with low risk factors (≤ 2). Conclusions: Integrated CCTA and culprit lesion OCT assessment may help identify the presence of non-IR UMI, potentially providing prognostic information in patients with first NSTE-ACS episode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

5 References

  1. Antiochos P, Ge Y, Steel K, Bingham S, Abdullah S, Mikolich JR et al (2020) Imaging of clinically unrecognized myocardial fibrosis in patients with suspected coronary artery disease. J Am Coll Cardiol 76:945–957. https://doi.org/10.1016/j.jacc.2020.06.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Acharya T, Aspelund T, Jonasson TF, Schelbert EB, Cao JJ, Sathya B et al (2018) Association of unrecognized myocardial infarction with long-term outcomes in community-dwelling older adults: the ICELAND MI study. JAMA Cardiol 3:1101–1106. https://doi.org/10.1001/jamacardio.2018.3285

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ishihara M, Nakao K, Ozaki Y, Kimura K, Ako J, Noguchi T et al (2017) Long-term outcomes of Non-ST-Elevation myocardial infarction without creatine kinase Elevation - The J-MINUET study. Circ J 81:958–965. https://doi.org/10.1253/circj.CJ-17-0033

    Article  PubMed  Google Scholar 

  4. Ingkanisorn WP, Rhoads KL, Aletras AH, Kellman P, Arai AE (2004) Gadolinium delayed enhancement cardiovascular magnetic resonance correlates with clinical measures of myocardial infarction. J Am Coll Cardiol 43:2253–2259. https://doi.org/10.1016/j.jacc.2004.02.046

    Article  PubMed  Google Scholar 

  5. Omori T, Kurita T, Dohi K, Takasaki A, Nakata T, Nakamori S et al (2018) Prognostic impact of unrecognized myocardial scar in the non-culprit territories by cardiac magnetic resonance imaging in patients with acute myocardial infarction. Eur Heart J Cardiovasc Imaging 19:108–116. https://doi.org/10.1093/ehjci/jex194

    Article  PubMed  Google Scholar 

  6. Burke AP, Kolodgie FD, Farb A, Weber DK, Malcom GT, Smialek J et al (2001) Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103:934–940. https://doi.org/10.1161/01.cir.103.7.934

    Article  CAS  PubMed  Google Scholar 

  7. Cao M, Zhao L, Ren X, Wu T, Yang G, Du Z et al (2021) Pancoronary plaque characteristics in STEMI caused by culprit plaque erosion versus rupture: 3-Vessel OCT study. JACC Cardiovasc Imaging 14:1235–1245. https://doi.org/10.1016/j.jcmg.2020.07.047

    Article  PubMed  Google Scholar 

  8. Rioufol G, Finet G, Ginon I, André-Fouët X, Rossi R, Vialle E et al (2002) Multiple atherosclerotic plaque rupture in acute coronary syndrome: a three-vessel intravascular ultrasound study. Circulation 106:804–808. https://doi.org/10.1161/01.cir.0000025609.13806.31

    Article  CAS  PubMed  Google Scholar 

  9. Sugiyama T, Yamamoto E, Bryniarski K, Xing L, Lee H, Isobe M et al (2018) Nonculprit plaque characteristics in patients with acute coronary syndrome caused by plaque erosion vs plaque rupture: a 3-vessel optical coherence tomography study. JAMA Cardiol 3:207–214. https://doi.org/10.1001/jamacardio.2017.5234

    Article  PubMed  PubMed Central  Google Scholar 

  10. Linde JJ, Kelbæk H, Hansen TF, Sigvardsen PE, Torp-Pedersen C, Bech J et al (2020) Coronary CT angiography in patients with non-ST-Segment elevation acute coronary syndrome. J Am Coll Cardiol 75:453–463. https://doi.org/10.1016/j.jacc.2019.12.012

    Article  PubMed  Google Scholar 

  11. Kofoed KF, Kelbæk H, Hansen PR, Torp-Pedersen C, Høfsten D, Kløvgaard L et al (2018) Early versus standard care invasive examination and treatment of patients with non-ST-segment elevation acute coronary syndrome. Circulation 138:2741–2750. https://doi.org/10.1161/CIRCULATIONAHA.118.037152

    Article  PubMed  Google Scholar 

  12. Matsuda K, Hoshino M, Kanaji Y, Sugiyama T, Misawa T, Hada M et al (2021) Coronary computed tomography angiographic predictors of non-culprit territory unrecognized myocardial infarction assessed by cardiac magnetic resonance in non-ST-elevation acute coronary syndrome. Front Cardiovasc Med 8:825523. https://doi.org/10.3389/fcvm.2021.825523

    Article  PubMed  Google Scholar 

  13. Nakajima A, Sugiyama T, Araki M, Seegers LM, Dey D, McNulty I et al (2022) Plaque rupture, compared with plaque erosion, is associated with a higher level of pancoronary inflammation. JACC Cardiovasc Imaging 15:828–839. https://doi.org/10.1016/j.jcmg.2021.10.014

    Article  PubMed  Google Scholar 

  14. Puymirat E, Taldir G, Aissaoui N, Lemesle G, Lorgis L, Cuisset T et al (2012) Use of invasive strategy in non-ST-segment elevation myocardial infarction is a major determinant of improved long-term survival: FAST-MI (French Registry of Acute Coronary Syndrome). JACC Cardiovasc Interv 5:893–902. https://doi.org/10.1016/j.jcin.2012.05.008

    Article  PubMed  Google Scholar 

  15. Kanaji Y, Yonetsu T, Hamaya R, Murai T, Usui E, Hoshino M et al (2019) Prognostic value of phase-contrast cine-magnetic resonance imaging-derived global coronary flow reserve in patients with non-ST-segment elevation acute coronary syndrome treated with urgent percutaneous coronary intervention. Circ J 83:1220–1228. https://doi.org/10.1253/circj.CJ-18-1196

    Article  CAS  PubMed  Google Scholar 

  16. Abbara S, Blanke P, Maroules CD, Cheezum M, Choi AD, Han BK et al (2016) SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the society of cardiovascular computed tomography Guidelines Committee: endorsed by the North American Society for Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr 10:435–449. https://doi.org/10.1016/j.jcct.2016.10.002

    Article  PubMed  Google Scholar 

  17. Hoshino M, Yang S, Sugiyama T, Zhang J, Kanaji Y, Hamaya R et al (2021) Characteristic findings of microvascular dysfunction on coronary computed tomography angiography in patients with intermediate coronary stenosis. Eur Radiol 31:9198–9210. https://doi.org/10.1007/s00330-021-07909-7

    Article  PubMed  Google Scholar 

  18. Puchner SB, Liu T, Mayrhofer T, Truong QA, Lee H, Fleg JL et al (2014) High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: results from the ROMICAT-II trial. J Am Coll Cardiol 64:684–692. https://doi.org/10.1016/j.jacc.2014.05.039

    Article  PubMed  PubMed Central  Google Scholar 

  19. Goeller M, Achenbach S, Cadet S, Kwan AC, Commandeur F, Slomka PJ et al (2018) Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease. JAMA Cardiol 3:858–863. https://doi.org/10.1001/jamacardio.2018.1997

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hoshino M, Zhang J, Sugiyama T, Yang S, Kanaji Y, Hamaya R et al (2021) Prognostic value of pericoronary inflammation and unsupervised machine-learning-defined phenotypic clustering of CT angiographic findings. Int J Cardiol 333:226–232. https://doi.org/10.1016/j.ijcard.2021.03.019

    Article  PubMed  Google Scholar 

  21. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG et al (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography standardization and validation. J Am Coll Cardiol 59:1058–1072. https://doi.org/10.1016/j.jacc.2011.09.079

    Article  PubMed  Google Scholar 

  22. Hoshino M, Yonetsu T, Usui E, Kanaji Y, Ohya H, Sumino Y et al (2019) Clinical significance of the presence or absence of lipid-rich plaque underneath intact fibrous cap plaque in acute coronary syndrome. J Am Heart Assoc 8:e011820. https://doi.org/10.1161/JAHA.118.011820

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ozaki Y, Okumura M, Ismail TF, Motoyama S, Naruse H, Hattori K et al (2011) Coronary CT angiographic characteristics of culprit lesions in acute coronary syndromes not related to plaque rupture as defined by optical coherence tomography and angioscopy. Eur Heart J 32:2814–2823. https://doi.org/10.1093/eurheartj/ehr189

    Article  PubMed  Google Scholar 

  24. Russo M, Fracassi F, Kurihara O, Kim HO, Thondapu V, Araki M et al (2020) Healed plaques in patients with stable angina pectoris. Arterioscler Thromb Vasc Biol 40:1587–1597. https://doi.org/10.1161/ATVBAHA.120.314298

    Article  CAS  PubMed  Google Scholar 

  25. Lin A, Nerlekar N, Munnur RK, Kataoka Y, Andrews J, Dey D et al (2020) Cholesterol crystal-induced coronary inflammation: insights from optical coherence tomography and pericoronary adipose tissue computed tomography attenuation. J Cardiovasc Comput Tomogr 14:277–278. https://doi.org/10.1016/j.jcct.2019.11.011

    Article  CAS  PubMed  Google Scholar 

  26. Qin Z, Cao M, Xi X, Zhang Y, Wang Z, Zhao S et al (2022) Cholesterol crystals in non-culprit plaques of STEMI patients: a 3-vessel OCT study. Int J Cardiol 364(364):162–168. https://doi.org/10.1016/j.ijcard.2022.06.016

    Article  PubMed  Google Scholar 

  27. Mann J, Davies MJ (1999) Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart 82:265–268. https://doi.org/10.1136/hrt.82.3.265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH et al (2007) Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol 49:1860–1870. https://doi.org/10.1016/j.jacc.2006.10.079

    Article  PubMed  Google Scholar 

  29. Cha MJ, Kim SM, Kim Y, Kim HS, Cho SJ, Sung J et al (2018) Unrecognized myocardial infarction detected on cardiac magnetic resonance imaging: association with coronary artery calcium score and cardiovascular risk prediction scores in asymptomatic asian cohort. PLoS ONE 13:e0204040. https://doi.org/10.1371/journal.pone.0204040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

M.Hoshino, T.S., Y.K., M.Hada, T.N., K.N., Y.T., H.U., K.S., K.M., T.Y., and T.Sasano. analyzed and interpreted the patients’ data. M.Hoshino, T.S., T.M., M.Hada, T.N., K.N., Y.T., H.U. K.S., and K.M. made effort to enroll the patients. M.Hoshino and T.K. were major contributors in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tsunekazu Kakuta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshino, M., Sugiyama, T., Kanaji, Y. et al. Multimodality coronary imaging to predict non-culprit territory unrecognized myocardial infarction in Non-ST-Elevation acute coronary syndrome. Int J Cardiovasc Imaging 39, 2051–2061 (2023). https://doi.org/10.1007/s10554-023-02903-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-023-02903-0

Keywords

Navigation