Skip to main content
Log in

Myocardial work in children with Wolff-Parkinson-White syndrome

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Wolff-Parkinson-White Syndrome (WPW) has been associated with reduced local myocardial deformation, and when left ventricular dysfunction is present, catheter ablation of the accessory pathway may be required, even in asymptomatic patients. We aimed to evaluate the diagnostic value of non-invasive myocardial work in predicting subtle abnormalities in myocardial performance in children with WPW.Seventy-five paediatric patients (age 8.7 ± 3.5 years) were retrospectively recruited for the study: 25 cases with manifest WPW and 50 age- and sex- matched controls (CTR). Global myocardial work index (MWI) was measured as the area of the left ventricle (LV) pressure-strain loops. From MWI, global Myocardial Constructive Work (MCW), Wasted Work (MWW), and Work Efficiency (MWE) were estimated. In addition, standard echocardiographic parameters of LV function were evaluated. Despite normal LV ejection fraction (EF) and global longitudinal strain (GLS), children with WPW had worse MWI, MCW, MWW, and MWE. At multivariate analysis, MWI and MCW were associated with GLS and systolic blood pressure, and QRS was the best independent predictor of low MWE and MWW. In particular, a QRS > 110 ms showed good sensitivity and specificity for worse MWE and MWW values. In children with WPW, myocardial work indices were found significantly reduced, even in the presence of normal LV EF and GLS. This study supports the systematic use of myocardial work during the follow-up of paediatric patients with WPW. Myocardial work analysis may represent a sensitive measure of LV performance and aid in decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sarubbi B, Scognamiglio G, Limongelli G, Mercurio B, Pacileo G, Pisacane C, Russo MG, Calabrò R (2003) Asymptomatic ventricular pre-excitation in children and adolescents: a 15 year follow up study. Heart 89(2):215–217. https://doi.org/10.1136/heart.89.2.215.PMID:12527686;PMCID:PMC1767557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sarubbi B (2008) The Wolff-Parkinson-White electrocardiogram pattern in athletes: how and when to evaluate the risk for dangerous arrhythmias. The opinion of the paediatric cardiologist. J Cardiovasc Med (Hagerstown). https://doi.org/10.2459/01.JCM.0000219320.97256.4d

    Article  PubMed  Google Scholar 

  3. Brugada J, Katritsis DG, Arbelo E, Arribas F, Bax JJ, Blomström-Lundqvist C et al (2019) ESC Scientific Document Group 2019. ESC Guidelines for the management of patients with supraventricular tachycardia. The Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC). Eur Heart J. https://doi.org/10.1093/eurheartj/ehz467

    Article  PubMed  Google Scholar 

  4. Sutherland GR, Di Salvo G, Claus P, Dhooge J, Bijnens B (2004) Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr. https://doi.org/10.1016/j.echo.2004.03.027

    Article  PubMed  Google Scholar 

  5. Meucci MC, Butcher SC, Galloo X, van der Velde ET, Marsan NA, Bax JJ, Delgado V (2022) Noninvasive left ventricular myocardial work in patients with chronic aortic regurgitation and preserved left ventricular ejection fraction. J Am Soc Echocardiogr 35(7):703–711.e3. https://doi.org/10.1016/j.echo.2022.01.008. (Epub 2022 Jan 26 PMID: 35091069)

    Article  PubMed  Google Scholar 

  6. Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Remme EW et al (2012) A novel clinical method for quantification of regional left ventricular pressure-strain loop area: a non-invasive index of myocardial work. Eur Heart J. https://doi.org/10.1093/eurheartj/ehs016

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sabatino J, Borrelli N, Fraisse A, Herberg J, Karagadova E, Avesani M et al (2021) Abnormal myocardial work in children with Kawasaki disease. Sci Rep. https://doi.org/10.1038/s41598-021-86933-5

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sabatino J, Leo I, Strangio A, Bella S, Borrelli N, Avesani M et al (2022) Echocardiographic normal reference ranges for non-invasive myocardial work parameters in pediatric age: results from an international multi-center study. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2022.792622

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cui C, Zheng Q, Li Y, Huang D, Hu Y, Wang Y et al (2022) Reference values of noninvasive myocardial work indices measured by echocardiography in healthy children. Front Pediatr. https://doi.org/10.3389/fped.2022.792526

    Article  PubMed  PubMed Central  Google Scholar 

  10. STROBE Statement-checklist of items that should be included in reports of case-control studies. Version 4 as published in Oct/Nov 2007. Available from: http:// www.strobe-statement.org/ index.php?id¼available-checklist (25 June 2022)

  11. Arruda MS, McClelland JH, Wang X, Beckman KJ, Widman LE, Gonzalez MD, Nakagawa H, Lazzara R, Jackman WM (1998) Development and validation of an ECG algorithm for identifying accessory pathway ablation site in Wolff-Parkinson-White syndrome. J Cardiovasc Electrophysiol 9(1):2–12. https://doi.org/10.1111/j.1540-8167.1998.tb00861.x

    Article  CAS  PubMed  Google Scholar 

  12. Borrelli N, Di Salvo G, Sabatino J, Ibrahim A, Avesani M, Sirico D et al (2020) Serial changes in longitudinal strain are associated with outcome in children with hypoplastic left heart syndrome. Int J Cardiol. https://doi.org/10.1016/j.ijcard.2020.03.085

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hubert A, Le Rolle V, Leclercq C, Galli E, Samset E, Casset C et al (2018) Estimation of myocardial work from pressure-strain loops analysis: an experimental evaluation. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jey024. (PMID: 29529181)

    Article  PubMed  Google Scholar 

  14. Galli E, Leclercq C, Fournet M, Hubert A, Bernard A, Smiseth OA et al (2018) Value of myocardial work estimation in the prediction of response to cardiac resynchronization therapy. J Am Soc Echocardiogr. https://doi.org/10.1016/j.echo.2017.10.009

    Article  PubMed  Google Scholar 

  15. Boe E, Russell K, Eek C, Eriksen M, Remme EW, Smiseth OA et al (2015) Non-invasive myocardial work index identifies acute coronary occlusion in patients with non-ST-segment elevation-acute coronary syndrome. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jev078

    Article  PubMed  Google Scholar 

  16. ChenCheng D, BaoJing G, WenXiu L, YanYan X, Mei J, Ling H et al (2018) The effect of ventricular pre-excitation on ventricular wall motion and left ventricular systolic function. EP Europace. https://doi.org/10.1093/europace/eux242

    Article  Google Scholar 

  17. Kwon BS, Bae EJ, Kim GB, Noh CI, Choi JY, Yun YS (2010) Septal dyskinesia and global left ventricular dysfunction in pediatric Wolff-Parkinson-White syndrome with septal accessory pathway. J Cardiovasc Electrophysiol. https://doi.org/10.1111/j.1540-8167.2009.01612.x

    Article  PubMed  Google Scholar 

  18. Tomaske M, Janousek J, Rázek V, Gebauer RA, Tomek V, Hindricks G et al (2008) Adverse effects of Wolff-Parkinson-White syndrome with right septal or posteroseptal accessory pathways on cardiac function. Europace. https://doi.org/10.1093/europace/eun005

    Article  PubMed  Google Scholar 

  19. Lee HJ, Uhm JS, Joung B, Hong YJ, Hur J, Choi BW et al (2016) Detecting Regional Myocardial Abnormalities in Patients With Wolff-Parkinson-White Syndrome With the Use of ECG-Gated Cardiac MDCT. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.15.15141

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nagai T, Hamabe A, Arakawa J, Tabata H, Nishioka T (2017) The impact of left ventricular deformation and dyssynchrony on improvement of left ventricular ejection fraction following radiofrequency catheter ablation in Wolff-Parkinson-White syndrome: a comprehensive study by speckle tracking echocardiography. Echocardiography. https://doi.org/10.1111/echo.13691

    Article  PubMed  Google Scholar 

  21. Akimoto S, Fukunaga H, Akiya A, Hosono Y, Iso T, Shigemitsu S et al (2021) Deep insight into cardiac dysfunction in children and young adults with Wolff-Parkinson-White syndrome using speckle tracking imaging. Heart Vessels. https://doi.org/10.1007/s00380-021-01848-5

    Article  PubMed  Google Scholar 

  22. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G et al (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr. https://doi.org/10.1093/ejechocard/jer021

    Article  PubMed  Google Scholar 

  23. Di Salvo G, Pergola V, Fadel B, Bulbul ZA, Caso P (2015) Strain echocardiography and myocardial mechanics: from basics to clinical applications. J Cardiovasc Echogr. https://doi.org/10.4103/2211-4122.158415

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chan J, Edwards NFA, Khandheria BK, Shiino K, Sabapathy S, Anderson B et al (2019) A new approach to assess myocardial work by non-invasive left ventricular pressure–strain relations in hypertension and dilated cardiomyopathy. Europ Heart JCardiovasc Imaging. https://doi.org/10.1093/ehjci/jey131

    Article  Google Scholar 

  25. Papadopoulos K, Özden Tok Ö, Mitrousi K, Ikonomidis I (2021) Myocardial work: methodology and clinical applications. Diagnostics (Basel). https://doi.org/10.3390/diagnostics11030573

    Article  PubMed  Google Scholar 

  26. Manganaro R, Marchetta S, Dulgheru R, Ilardi F, Sugimoto T, Robinet S, Cimino S, Go YY, Bernard A, Kacharava G, Athanassopoulos GD, Barone D, Baroni M, Cardim N, Hagendorff A, Hristova K, López-Fernández T, de la Morena G, Popescu BA, Penicka M, Ozyigit T, Rodrigo Carbonero JD, van de Veire N, Von Bardeleben RS, Vinereanu D, Zamorano JL, Rosca M, Calin A, Moonen M, Magne J, Cosyns B, Galli E, Donal E, Carerj S, Zito C, Santoro C, Galderisi M, Badano LP, Lang RM, Oury C, Lancellotti P (2019) Echocardiographic reference ranges for normal non-invasive myocardial work indices: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 20(5):582–590. https://doi.org/10.1093/ehjci/jey188. (PMID: 30590562)

    Article  PubMed  Google Scholar 

  27. Olsen FJ, Skaarup KG, Lassen MCH, Johansen ND, Sengeløv M, Jensen GB, Schnohr P, Marott JL, Søgaard P, Gislason G, Svendsen JH, Møgelvang R, Aalen JM, Remme EW, Smiseth OA, Biering-Sørensen T (2022) Normal values for myocardial work indices derived from pressure-strain loop analyses: from the CCHS. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.121.013712

    Article  PubMed  Google Scholar 

  28. Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Gjesdal O, Edvardsen T, Smiseth OA (2013) Assessment of wasted myocardial work: a novel method to quantify energy loss due to uncoordinated left ventricular contractions. Am J Physiol Heart Circ Physiol 305(7):H996–1003. https://doi.org/10.1152/ajpheart.00191.2013

    Article  CAS  PubMed  Google Scholar 

  29. Maréchaux S (2016) The Wolff-Parkinson-White Syndrome: a test bed for the assessment of myocardial dyssynchrony? Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.116.005112

    Article  PubMed  Google Scholar 

  30. Lustosa RP, Butcher SC, van der Bijl P, El Mahdiui M, Montero-Cabezas JM, Kostyukevich MV et al (2021) Global Left Ventricular Myocardial Work Efficiency and Long-Term Prognosis in Patients After ST-Segment-Elevation Myocardial Infarction. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.120.012072

    Article  PubMed  Google Scholar 

  31. Fitzpatrick AP, Gonzales RP, Lesh MD, Modin GW, Lee RJ, Scheinman MM (1994) New algorithm for the localization of accessory atrioventricular connections using a baseline electrocardiogram. J Am Coll Cardiol 23(1):107–116. https://doi.org/10.1016/0735-1097(94)90508-8

    Article  CAS  PubMed  Google Scholar 

  32. Prinzen FW, Cheriex EC, Delhaas T, van Oosterhout MFM, Arts T, Wellens HJJ, Reneman RS (1995) Asymmetric thickness of the left ventricular wall resulting from asynchronous electric activation: a study in dogs with ventricular pacing and in patients with left bundle branch block. Am Heart J 130:1045–1053

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Assunta Carandente, Nadia Puzone, Gabriella Piccolo, Cecilia Spinelli-Barrile, Tiziana Varriale for their valuable help during this project.

Funding

The authors received no financial support for this study.

Author information

Authors and Affiliations

Authors

Contributions

NB, GDS and BS contributed to conception and design of the study. NB, GDC, JS, MA and IL collected the data and organized the database. JS and MA performed the statistical analysis. NB wrote the first draft of the manuscript. RB, JS, MA, IL, GDC, GS, MGR, BS and NB wrote sections of the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

Corresponding author

Correspondence to Nunzia Borrelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Azienda Ospedaliera dei Colli. Informed consent to participate in this study was obtained from patients’ parents or legal guardians.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borrelli, N., Di Salvo, G., Ciriello, G.D. et al. Myocardial work in children with Wolff-Parkinson-White syndrome. Int J Cardiovasc Imaging 39, 1697–1705 (2023). https://doi.org/10.1007/s10554-023-02883-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-023-02883-1

Keywords

Navigation