Skip to main content
Log in

The role of left ventricular hypertrophy measured by echocardiography in screening patients with ischaemia with non-obstructive coronary arteries: a cross-sectional study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Many patients with ischaemia with non-obstructive coronary arteries (INOCA) have a poor prognosis. This study aims to explore the diagnostic value of left ventricular hypertrophy (LVH)-related ultrasound parameters in INOCA patients. The study group consisted of 258 patients with INOCA in this retrospective cross-sectional study, and these patients were free of obstructive coronary artery disease, previous revascularization, atrial fibrillation, ejection fraction < 50%, major distortions of left ventricular geometry, suspected non-ischaemic causes. Control individuals were matched 1:1 with study group according to age, sex, cardiovascular risk factors, and time of hospital stay. According to left ventricular mass index (LVMI) and relative wall thickness, left ventricular geometry was composed of concentric hypertrophy, eccentric hypertrophy, concentric remodeling and normal geometry. LVH-related parameters, left ventricular geometry, demographic characteristics, laboratory parameters and other echocardiographic indicators were compared between the two groups. Subgroup analysis was performed based on sex. LVMI in the study group was higher than that in the control group (86.86 ± 18.83 g/m2 vs 82.25 ± 14.29 g/m2, P = 0.008). The ratio of LVH was higher in the study group (20.16% vs 10.85%, P = 0.006). After subgroup analysis based on sex, LVMI differences (85.77 ± 18.30 g/m2 vs 81.59 ± 14.64 g/m2, P = 0.014) and the ratio of LVH differences (25.00% vs 14.77%, P = 0.027) still existed in females between the two groups. There was no difference in the constituent ratio of left ventricular geometry between the two groups (P = 0.157). Sex-based subgroup analysis showed no difference in the constituent ratio of left ventricular geometry between the two groups in females (P = 0.242). The degree of LVH in the study group was higher than that in the control group, suggesting that LVH may play an important role in the occurrence and development of INOCA. Moreover, LVH-related ultrasound parameters may be of higher diagnostic value for female INOCA patients than for male INOCA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. Patel MR, Peterson ED, Dai D et al (2010) Low diagnostic yield of elective coronary angiography. N Engl J Med 362(10):886–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bairey Merz CN, Pepine CJ, Walsh MN et al (2017) Ischemia and No Obstructive Coronary Artery Disease (INOCA): developing evidence-based therapies and research agenda for the next decade. Circulation 135(11):1075–1092

    Article  PubMed  Google Scholar 

  3. Beltrame JF, Tavella R, Jones D et al (2021) Management of ischaemia with non-obstructive coronary arteries (INOCA). BMJ 375:e060602

    Article  PubMed  Google Scholar 

  4. Schroder J, Prescott E (2021) Doppler echocardiography assessment of coronary microvascular function in patients with angina and no obstructive coronary artery disease. Front Cardiovasc Med 8:723542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schroder J, Michelsen MM, Mygind ND et al (2021) Coronary flow velocity reserve predicts adverse prognosis in women with angina and no obstructive coronary artery disease: results from the iPOWER study. Eur Heart J 42(3):228–239

    Article  CAS  PubMed  Google Scholar 

  6. Pries AR, Reglin B (2017) Coronary microcirculatory pathophysiology: can we afford it to remain a black box? Eur Heart J 38(7):478–488

    CAS  PubMed  Google Scholar 

  7. Pries AR, Habazettl H, Ambrosio G et al (2008) A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings. Cardiovasc Res 80(2):165–174

    Article  CAS  PubMed  Google Scholar 

  8. Shimokawa H, Suda A, Takahashi J et al (2021) Clinical characteristics and prognosis of patients with microvascular angina: an international and prospective cohort study by the Coronary Vasomotor Disorders International Study (COVADIS) Group. Eur Heart J 42(44):4592–4600

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vancheri F, Longo G, Vancheri S et al (2020) Coronary microvascular dysfunction. J Clin Med 9(9):2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ford TJ, Rocchiccioli P, Good R et al (2018) Systemic microvascular dysfunction in microvascular and vasospastic angina. Eur Heart J 39(46):4086–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Camici PG, Tschope C, di Carli MF et al (2020) Coronary microvascular dysfunction in hypertrophy and heart failure. Cardiovasc Res 116(4):806–816

    Article  CAS  PubMed  Google Scholar 

  12. Petersen SE, Jerosch-Herold M, Hudsmith LE et al (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115(18):2418–2425

    Article  PubMed  Google Scholar 

  13. Miller RJH, Mikami Y, Heydari B et al (2020) Sex-specific relationships between patterns of ventricular remodelling and clinical outcomes. Eur Heart J Cardiovasc Imaging 21(9):983–990

    Article  PubMed  Google Scholar 

  14. Huang BT, Peng Y, Liu W et al (2014) Subclassification of left ventricular hypertrophy based on dilation stratifies coronary artery disease patients with distinct risk. Eur J Clin Invest 44(10):893–901

    Article  PubMed  Google Scholar 

  15. Murphy ML, Thenabadu PN, de Soyza N et al (1985) Sensitivity of electrocardiographic criteria for left ventricular hypertrophy according to type of cardiac disease. Am J Cardiol 55(5):545–549

    Article  CAS  PubMed  Google Scholar 

  16. Grothues F, Smith GC, Moon JC et al (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90(1):29–34

    Article  PubMed  Google Scholar 

  17. Lang RM, Bierig M, Devereux RB et al (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7(2):79–108

    Article  PubMed  Google Scholar 

  18. Kunadian V, Chieffo A, Camici PG et al (2021) An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. EuroIntervention 16(13):1049–1069

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mancia G, Fagard R, Narkiewicz K et al (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34(28):2159–2219

    Article  PubMed  Google Scholar 

  20. Najjar RS, Schwartz AM, Wong BJ et al (2021) Berries and their polyphenols as a potential therapy for coronary microvascular dysfunction: a mini-review. Int J Mol Sci 22(7):3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Selthofer-Relatic K, Bosnjak I, Kibel A (2016) Obesity related coronary microvascular dysfunction: from basic to clinical practice. Cardiol Res Pract 2016:8173816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsujita K, Yamanaga K, Komura N et al (2015) Impact of left ventricular hypertrophy on impaired coronary microvascular dysfunction. Int J Cardiol 187:411–413

    Article  PubMed  Google Scholar 

  23. Kessler EL, Rivaud MR, Vos MA et al (2019) Sex-specific influence on cardiac structural remodeling and therapy in cardiovascular disease. Biol Sex Differ 10(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dykun I, Karner L, Mahmoud I et al (2020) Association of echocardiographic measures of left ventricular diastolic dysfunction and hypertrophy with presence of coronary microvascular dysfunction. Int J Cardiol Heart Vasc 27:100493

    PubMed  PubMed Central  Google Scholar 

  25. Reynolds HR, Diaz A, Cyr DD et al (2023) Ischemia with nonobstructive coronary arteries: insights from the ISCHEMIA trial. JACC Cardiovasc Imaging 16(1):63–74

    Article  PubMed  Google Scholar 

  26. Verma A, Meris A, Skali H et al (2008) Prognostic implications of left ventricular mass and geometry following myocardial infarction: the VALIANT (VALsartan In Acute myocardial iNfarcTion) Echocardiographic Study. JACC Cardiovasc Imaging 1(5):582–591

    Article  PubMed  Google Scholar 

  27. di Carli MF, Janisse J, Grunberger G et al (2003) Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 41(8):1387–1393

    Article  PubMed  Google Scholar 

  28. Ghosh AK, Hardy RJ, Francis DP et al (2014) Midlife blood pressure change and left ventricular mass and remodelling in older age in the 1946 British Birth Cohort Study. Eur Heart J 35(46):3287–3295

    Article  PubMed  PubMed Central  Google Scholar 

  29. Urbina EM, Mendizabal B, Becker RC et al (2019) Association of blood pressure level with left ventricular mass in adolescents. Hypertension 74(3):590–596

    Article  CAS  PubMed  Google Scholar 

  30. Leung DY, Leung M (2011) Non-invasive/invasive imaging: significance and assessment of coronary microvascular dysfunction. Heart 97(7):587–595

    Article  PubMed  Google Scholar 

  31. Michelsen MM, Pena A, Mygind ND et al (2016) Coronary flow velocity reserve assessed by transthoracic Doppler: the iPOWER study: factors influencing feasibility and quality. J Am Soc Echocardiogr 29(7):709–716

    Article  PubMed  Google Scholar 

  32. Knuuti J, Wijns W, Saraste A et al (2020) 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41(3):407–477

    Article  PubMed  Google Scholar 

  33. Rodriguez-Zanella H, Arbucci R, Fritche-Salazar JF et al (2022) Vasodilator strain stress echocardiography in suspected coronary microvascular angina. J Clin Med 11(3):711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu TT, Ding MY, Sun DD et al (2021) Clinical value of TDI combined with 2D-STI on evaluating the microcirculation dysfunction and left ventricular dysfunction in patients with non-obstructive coronary angina. Zhonghua Xin Xue Guan Bing Za Zhi 49(12):1191–1197

    CAS  PubMed  Google Scholar 

  35. Xing X, Li D, Chen S et al (2020) Evaluation of left ventricular systolic function in patients with different types of ischemic heart disease by two-dimensional speckle tracking imaging. J Cardiothorac Surg 15(1):325

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank American Journal Experts for providing English editing service.

Funding

The authors sincerely grateful for the financial supports from the National Natural Science Foundation of China (Grant No. 82171946, 81873901), Basic Research and Frontier Exploration Key Project of Chongqing Science and Technology Commission (Grant No. cstc2019jcyj-zdxmX0020), CQMU Program for Youth Innovation in Future Medicine (Grant No. W0026), Kuanren Talents Program of the Second Affiliated Hospital of Chongqing Medical University (Grant No. KR2019G001), and Chongqing Science and Health Joint Medical Research Project-Young and Middle-aged High-level Talent Project (Grant No. 2020GDRC011).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HY and JR; investigation: HY, MG, RF, and GQ; formal analysis: HY and XW; manuscript preparation: HY, PL and HT; validation: HY and JR; funding acquisition: JR. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jianli Ren.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Teng, H., Luo, P. et al. The role of left ventricular hypertrophy measured by echocardiography in screening patients with ischaemia with non-obstructive coronary arteries: a cross-sectional study. Int J Cardiovasc Imaging 39, 1657–1666 (2023). https://doi.org/10.1007/s10554-023-02879-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-023-02879-x

Keywords

Navigation