Skip to main content
Log in

Correlating decline in left ventricular ejection fraction and longitudinal strain in pediatric cancer patients

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Left ventricular ejection fraction (LVEF) is routinely used to monitor cardiac function in cancer patients. Global longitudinal strain (GLS) detects subclinical myocardial dysfunction. There is no consensus on what constitutes a significant change in GLS in pediatric cancer patients. We aim to determine the change in GLS associated with a simultaneous decline in LVEF in pediatric cancer patients.

Methods

This is a retrospective longitudinal study of pediatric cancer patients treated with anthracyclines between October 2017 and November 2019. GLS was measured by 2-dimensional speckle tracking. The study outcome was a decline in LVEF, defined as a decrease in LVEF of ≥ 10% points from baseline or LVEF < 55%. We evaluated two echocardiograms per patient, one baseline, and one follow-up. The follow-up echocardiogram was either (1) the first study that met the outcome or (2) the last echocardiogram available in patients without the outcome. Statistical analyses included receiver operator characteristic curves and univariable and multivariable Cox proportional hazards regression.

Results

Out of 161 patients, 33 (20.5%) had a decline in LVEF within one year of follow-up. GLS reduction by ≥ 15% from baseline and follow-up GLS >-18% had sensitivities of 85% and 78%, respectively, and specificities of 86% and 83%, respectively, to detect LVEF decline. GLS reduction by ≥ 15% from baseline and follow-up GLS >-18% were independently associated with simultaneous LVEF decline [hazard ratio (95% confidence intervals): 16.71 (5.47–51.06), and 12.83 (4.62–35.63), respectively].

Conclusion

Monitoring GLS validates the decline in LVEF in pediatric cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CTRCD :

Cancer therapy-related cardiac dysfunction

LV :

Left ventricular

LVEF :

Left ventricular ejection fraction

GLS :

Global longitudinal strain

IQR :

Interquartile range

ROC :

receiver operating characteristic

AUC :

Area under the curve

CI :

Confidence interval

References

  1. Lipshultz SE, Adams MJ, Colan SD, Constine LS, Herman EH, Hsu DT et al (2013) Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation 128:1927–1955. https://doi.org/10.1161/CIR.0b013e3182a88099

    Article  PubMed  Google Scholar 

  2. Franco VI, Henkel JM, Miller TL, Lipshultz SE (2011) Cardiovascular effects in childhood cancer survivors treated with anthracyclines. Cardiol Res Pract. https://doi.org/10.4061/2011/134679

    Article  PubMed  PubMed Central  Google Scholar 

  3. Krischer JP, Epstein S, Cuthbertson DD, Goorin AM, Epstein ML, Lipshultz SE (1997) Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J Clin Oncol 15:1544–1552. https://doi.org/10.1200/jco.1997.15.4.1544

    Article  CAS  PubMed  Google Scholar 

  4. Armstrong GT, Plana JC, Zhang N, Srivastava D, Green DM, Ness KK et al (2012) Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol 30:2876–2884. https://doi.org/10.1200/JCO.2011.40.3584

    Article  PubMed  PubMed Central  Google Scholar 

  5. Patel MD, Myers C, Negishi K, Singh GK, Anwar S (2019) Two-dimensional strain is more precise than conventional measures of left ventricular systolic function in Pediatric Patients. Pediatr Cardiol. https://doi.org/10.1007/s00246-019-02243-8

    Article  PubMed  Google Scholar 

  6. Jacobs LD, Salgo IS, Goonewardena S, Weinert L, Coon P, Bardo S et al (2006) Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur Heart J 27:460–468. https://doi.org/10.1093/eurheartj/ehi666

    Article  PubMed  Google Scholar 

  7. Armstrong GT, Joshi VM, Ness KK, Marwick TH, Zhang N, Scrivastava D et al (2015) Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the St. Jude Lifetime Cohort Study. J Am Coll Cardiol 65:2511–2522. https://doi.org/10.1016/j.jacc.2015.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  8. Singh GK, Cupps B, Pasque M, Woodard PK, Holland MR, Ludomirsky A (2010) Accuracy and reproducibility of strain by speckle tracking in pediatric subjects with normal heart and single ventricular physiology: a two-dimensional speckle-tracking echocardiography and magnetic resonance imaging correlative study. J Am Soc Echocardiogr 23:1143–1152. https://doi.org/10.1016/j.echo.2010.08.010

    Article  PubMed  PubMed Central  Google Scholar 

  9. Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M et al (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the american society of echocardiography and the european association of cardiovascular imaging. J Am Soc Echocardiogr 27(9):911–939. https://doi.org/10.1016/j.echo.2014.07.012

    Article  PubMed  Google Scholar 

  10. Hu H-M, Zhang X-L, Zhang W-L, Huang D-S, Du Z-D (2018) Detection of subclinical anthracyclines’ cardiotoxicity in children with solid tumor. Chin Med J (Engl 131:1450–1456. https://doi.org/10.4103/0366-6999.233950

    Article  CAS  PubMed  Google Scholar 

  11. Cheung Y, Hong W, Chan GCF, Wong SJ, Ha S (2010) Left ventricular myocardial deformation and mechanical dyssynchrony in children with normal ventricular shortening fraction after anthracycline therapy. Heart 96:1137–1141. https://doi.org/10.1136/hrt.2010.194118

    Article  PubMed  Google Scholar 

  12. Agha H, Shalaby L, Attia W, Abdelmohsen G, Aziz OA, Rahman MYA (2016) Early ventricular dysfunction after Anthracycline Chemotherapy in Children. Pediatr Cardiol 37:537–544. https://doi.org/10.1007/s00246-015-1311-5

    Article  PubMed  Google Scholar 

  13. Poterucha JT, Kutty S, Lindquist RK, Li L, Eidem BW (2012) Changes in left ventricular longitudinal strain with anthracycline chemotherapy in adolescents precede subsequent decreased left ventricular ejection fraction. J Am Soc Echocardiogr 25:733–740. https://doi.org/10.1016/j.echo.2012.04.007

    Article  PubMed  Google Scholar 

  14. Feijen EAM, Leisenring WM, Stratton KL, Ness KK, van der Pal HJH, van Dalen EC et al (2019) Derivation of Anthracycline and Anthraquinone Equivalence Ratios to Doxorubicin for late-onset. Cardiotoxicity JAMA Oncol 5:864–871. https://doi.org/10.1001/jamaoncol.2018.6634

    Article  PubMed  Google Scholar 

  15. Loar RW, Pignatelli RH, Tunuguntla HP, Rainusso NC, Gramatges MM, Plana JC et al (2020) Improving reproducibility of left ventricular ejection fraction in pediatric oncology patients: less is more. Int J Cardiovasc Imaging 36:1887–1895. https://doi.org/10.1007/s10554-020-01901-w

    Article  CAS  PubMed  Google Scholar 

  16. Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK et al (2010) Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric measurements writing Group of the American Society of Echocardiography Pediatric and congenital heart Disease Council. J Am Soc Echocardiogr 23:465–467. https://doi.org/10.1016/j.echo.2010.03.019

    Article  PubMed  Google Scholar 

  17. Voigt J-U, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R et al (2015) Definitions for a common Standard for 2D Speckle Tracking Echocardiography: Consensus Document of the EACVI/ASE/Industry Task Force to Standardize Deformation Imaging. J Am Soc Echocardiogr 28:183–193. https://doi.org/10.1016/j.echo.2014.11.003

    Article  PubMed  Google Scholar 

  18. Levy PT, Machefsky A, Sanchez AA, Patel MD, Rogal S, Fowler S et al (2016) Reference ranges of left ventricular strain measures by Two-Dimensional Speckle-Tracking Echocardiography in Children: a systematic review and Meta-analysis. J Am Soc Echocardiogr 29:209–225. https://doi.org/10.1016/j.echo.2015.11.016

    Article  PubMed  Google Scholar 

  19. Çilsal E, Oğuz AD, Tunaoğlu FS, Kula S, Pektaş A (2018) Subclinical reduction in left ventricular function using triplane and 2D speckle tracking echocardiography after anthracycline exposure in children. Anatol J Cardiol 19:58–66. https://doi.org/10.14744/anatoljcardiol.2017.7944

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pignatelli RH, Ghazi P, Reddy SC-B, Thompson P, Cui Q, Castro J et al (2015) Abnormal myocardial strain indices in children receiving Anthracycline Chemotherapy. Pediatr Cardiol 36:1610–1616. https://doi.org/10.1007/s00246-015-1203-8

    Article  PubMed  Google Scholar 

  21. Linares Ballesteros A, Sanguino Lobo R, Villada Valencia JC, Arevalo Leal O, Plazas Hernandez DC, Aponte Barrios N et al (2021) Early-onset cardiotoxicity assessment related to anthracycline in children with leukemia. A prospective study. Colomb Med (Cali) 52:e2034542. https://doi.org/10.25100/cm.v52i1.4542

    Article  PubMed  Google Scholar 

  22. Thavendiranathan P, Negishi T, Somerset E, Negishi K, Penicka M, Lemieux J et al (2021) Strain-guided management of potentially cardiotoxic Cancer therapy. J Am Coll Cardiol 77:392–401. https://doi.org/10.1016/j.jacc.2021.04.006

    Article  CAS  PubMed  Google Scholar 

  23. Harrington JK, Richmond ME, Fein AW, Kobsa S, Satwani P, Shah A (2018) Two-Dimensional Speckle Tracking Echocardiography-Derived strain measurements in survivors of Childhood Cancer on Angiotensin converting enzyme inhibition or receptor blockade. Pediatr Cardiol 39:1404–1412. https://doi.org/10.1007/s00246-018-1910-z

    Article  PubMed  Google Scholar 

  24. Border WL, Sachdeva R, Stratton KL, Armenian SH, Bhat A, Cox DE et al (2020) Longitudinal changes in echocardiographic parameters of cardiac function in pediatric cancer survivors. J Am Coll Cardiol CardioOnc 2:26–37. https://doi.org/10.1016/j.jaccao.2020.02.016

    Article  Google Scholar 

  25. Getz KD, Sung L, Ky B, Gerbing RB, Leger KJ, Leahy AB et al (2018) Occurrence of treatment-related cardiotoxicity and its impact on outcomes among children treated in the AAML0531 clinical trial: a Report from the children’s Oncology Group. J Clin Oncol 37:12–21. https://doi.org/10.1200/jco.18.00313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Steinherz LJ, Graham T, Hurwitz R, Sondheimer HM, Schwartz RG, Shaffer EM et al (1992) Guidelines for cardiac monitoring of children during and after anthracycline therapy: report of the Cardiology Committee of the Childrens Cancer Study Group. Pediatrics 89:942–949

    Article  CAS  PubMed  Google Scholar 

  27. Herrmann J, Lenihan D, Armenian S, Barac S, Ky B, Lyon AR et al (2022) Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement. Eur Heart J 43:280–299. https://doi.org/10.1093/eurheartj/ehab674

    Article  PubMed  Google Scholar 

  28. Lipshultz SE, Lipsitz SR, Mone SM, Goorin AM, Sallan SE, Sanders SP et al (1995) Female sex and higher drug dose as risk factors for late Cardiotoxic Effects of Doxorubicin Therapy for Childhood Cancer. N Engl J Med 332:1738–1744. https://doi.org/10.1056/nejm199506293322602

    Article  CAS  PubMed  Google Scholar 

  29. Samosir SM, Utamayasa IKA, Andarsini MR, Rahman MA, Ontoseno T, Hidayat T et al (2021) Risk factors of Daunorubicine Induced Early Cardiotoxicity in Childhood Acute Lymphoblastic Leukemia: a retrospective study. Asian Pac J Cancer Prev 22:1407–1412. https://doi.org/10.31557/apjcp.2021.22.5.1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chow EJ, Chen Y, Kremer LC, Breslow NE, Hudson MM, Armstrong GT et al (2015) Individual prediction of heart failure among childhood cancer survivors. J Clin Oncol 33:394–402. https://doi.org/10.1200/jco.2014.56.1373

    Article  PubMed  Google Scholar 

  31. Getz KD, Sung L, Todd AA, Leger KJ, Gerbing RB, Pollard JA et al (2020) Effect of dexrazoxane on left ventricular systolic function and treatment outcomes in patients with Acute myeloid leukemia: a Report from the children’s Oncology Group. J Clin Oncol 38:2398–2406. https://doi.org/10.1200/jco.19.02856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lipshultz S, Rifai SE, Dalton N, Levy VM, Silverman DE, Lipsitz LB et al (2004) The Effect of Dexrazoxane on Myocardial Injury in Doxorubicin-Treated children with Acute Lymphoblastic Leukemia. N Engl J Med 351:145–153. https://doi.org/10.1056/nejmoa035153

    Article  CAS  PubMed  Google Scholar 

  33. Liesse K, Harris J, Chan M, Schmidt ML, Chiu B (2018) Dexrazoxane significantly reduces anthracycline-induced cardiotoxicity in pediatric solid tumor patients: a systematic review. J Pediatr Hematol Oncol 40:417–425. https://doi.org/10.1097/mph.0000000000001118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Aura A. Sanchez Mejia, Ricardo H. Pignatelli, Nino Rainusso, Christian Lilje, Shagun Sachdeva, Hari P Tunuguntla, Tam T Doan, and Robert W Loar made substantial contributions to the conception and design of this work. Aura A. Sanchez Mejia, Anusha A Gandhi, Nicole C Walters, and Daniela Plana Trajtenberg collected clinical and echocardiographic data. AASM and RWL performed the statistical analyses. AASM drafted the mansucript which was then critically reviewed, revised, and approved by all authors.

Ethics declarations

Statements and declarations

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical standards

This research study was conducted retrospectively from data obtained for clinical purposes. This study was performed with approval by the Institutional Review Board for Baylor College of Medicine. Waiver of patient consent was granted by the Institutional Review Board for Baylor College of Medicine.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchez Mejia, A.A., Pignatelli, R.H., Rainusso, N. et al. Correlating decline in left ventricular ejection fraction and longitudinal strain in pediatric cancer patients. Int J Cardiovasc Imaging 39, 747–755 (2023). https://doi.org/10.1007/s10554-022-02780-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02780-z

Keywords

Navigation