Skip to main content

Advertisement

Log in

Incremental prognostic value of global longitudinal strain to the coronary microvascular resistances in Takotsubo patients

  • OriginalPaper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Background: Global longitudinal strain (GLS) allows an accurate assessment of left ventricular function with prognostic value. We aimed to evaluate whether the assessment of GLS in the acute phase of Takotsubo syndrome (TTS) provides incremental prognostic value to the degree of impaired microvascular resistance (MR) in TTS patients at 1-year follow-up. Methods: We recruited patients admitted for TTS who underwent cardiac angiography and echocardiography from January 2017 to June 2020. Left anterior descending coronary artery non-hyperaemic angiography-derived index of microcirculatory resistance (LAD NH-IMRangio) was calculated. NT-proBNP, high-sensitive cardiac troponin T (hs-cTnT), left ventricular ejection fraction (LVEF) and GLS were measured at admission. Major adverse cardiac events (MACE) were defined as the composite of cardiovascular death, repeat hospitalizations for heart failure (HF) and acute myocardial infarctions. Results: 67 patients had both GLS and NH-IMRangio available and were included in the study. Median age was 75.2 years and 88% were women. Rate of MACE at 1-year was 13.4%. Kaplan-Meier curves showed higher rates of MACE at 1-year in patients with both higher LAD NH-IMRangio and GLS values compared with those with higher LAD NH-IMRangio and lower GLS values (33.3% vs. 11.1%; p = 0.049). NT-proBNP levels at admission and the recovery of LVEF were correlated with GLS values while MR and hs-cTnT were not. Conclusion: GLS provides incremental prognostic value to the degree of impaired MR in TTS patients. The combination of a poorer GLS with a higher degree of impaired MR was associated with a higher rate of MACE in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wittstein I, Thieman D, Lima J, Baughman K, Schulman S, Gerstenblith G, et al. Neurohumoral Features of Myocardial Stunning Due to Sudden Emotional Stress. N Engl J Med [Internet]. 2005;352(6):2481?8. Available from: http://heinonlinebackup.com/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/nejccc4&amp, section=6

  2. Rigo F, Sicari R, Citro R, Ossena G, Buja P, Picano E (2009) Diffuse, marked, reversible impairment in coronary microcirculation in stress cardiomyopathy: a Doppler transthoracic echo study. Ann Med 41(6):462–470

    Article  PubMed  Google Scholar 

  3. Möller C, Stiermaier T, Meusel M, Jung C, Graf T, Eitel I (2021) Microcirculation in Patients with Takotsubo Syndrome — The Prospective CIRCUS-TTS Study.

  4. Sans-Roselló J, Fernández-Peregrina E, Duran-Cambra A, Carreras-Mora J, Sionis A, Álvarez-García J, García-García HM. Prognostic Value of Microvascular Resistance at Rest in Patients With Takotsubo Syndrome. JACC Cardiovasc Imaging. 2022 Oct;15(10):1784-1795. doi: 10.1016/j.jcmg.2022.03.030. Epub 2022 Jun 15. PMID: 36125887.

  5. Scarsini R, Shanmuganathan M, Kotronias RA, Terentes-Printzios D, Borlotti A, Langrish JP et al (2021) Angiography-derived index of microcirculatory resistance (IMRangio) as a novel pressure-wire-free tool to assess coronary microvascular dysfunction in acute coronary syndromes and stable coronary artery disease. Int J Cardiovasc Imaging [Internet]. ;(0123456789). Available from: https://doi.org/10.1007/s10554-021-02254-8

  6. Tebaldi M, Biscaglia S, Di Girolamo D, Erriquez A, Penzo C, Tumscitz C et al Angio-based index of microcirculatory resistance for the assessment of the coronary resistance: a proof of concept study.J Interv Cardiol. 2020;2020(i)

  7. De Maria GL, Scarsini R, Shanmuganathan M, Kotronias RA, Terentes-Printzios D, Borlotti A et al (2020) Angiography-derived index of microcirculatory resistance as a novel, pressure-wire-free tool to assess coronary microcirculation in ST elevation myocardial infarction. Int J Cardiovasc Imaging [Internet]. ;36(8):1395–406. Available from: https://doi.org/10.1007/s10554-020-01831-7

  8. Sans-Roselló J, Fernández-Peregrina E, Duran-Cambra A, Carreras-Mora J, Sionis A, Álvarez-García J, Garcia-Garcia HM. Coronary Microvascular Dysfunction in Takotsubo Syndrome Assessed by Angiography-Derived Index of Microcirculatory Resistance: A Pressure-Wire-Free Tool. J Clin Med. 2021 Sep 23;10(19):4331. doi: 10.3390/jcm10194331. PMID: 34640350; PMCID: PMC8509411.

  9. Citro R, Rigo F, D’Andrea A, Ciampi Q, Parodi G, Provenza G et al (2014) Echocardiographic correlates of acute heart failure, cardiogenic shock, and in-hospital mortality in tako-tsubo cardiomyopathy. JACC Cardiovasc Imaging [Internet]. ;7(2):119–29. Available from: https://doi.org/10.1016/j.jcmg.2013.09.020

  10. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S (2016) Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J 37(15):1196–1207b

    Article  PubMed  Google Scholar 

  11. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M et al (2004) Two-dimensional strain-A novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 17(10):1021–1029

    Article  PubMed  Google Scholar 

  12. Jung IH, Park JH, Lee JA, Kim GS, Lee HY, Byun YS et al (2020) Left ventricular global longitudinal strain as a predictor for left ventricular reverse remodeling in dilated cardiomyopathy. J Cardiovasc Imaging 28(2):137–149

    Article  PubMed  PubMed Central  Google Scholar 

  13. Adamo L, Perry A, Novak E, Makan M, Lindman BR, Mann DL (2017) Abnormal global longitudinal strain predicts future deterioration of left ventricular function in heart failure patients with a recovered left ventricular ejection Fraction. Circ Hear Fail 10(6):1–17

    Google Scholar 

  14. Scally C, Rudd A, Mezincescu A, Wilson H, Srivanasan J, Horgan G et al (2018) Persistent long-term structural, functional, and metabolic changes after stress-induced (takotsubo) cardiomyopathy. Circulation 137(10):1039–1048

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schwarz K, Ahearn T, Srinivasan J, Neil CJ, Scally C, Rudd A et al (2017) Alterations in Cardiac Deformation, Timing of Contraction and Relaxation, and Early Myocardial Fibrosis Accompany the Apparent Recovery of Acute Stress-Induced (Takotsubo) Cardiomyopathy: An End to the Concept of Transience. J Am Soc Echocardiogr [Internet]. ;30(8):745–55. Available from: https://doi.org/10.1016/j.echo.2017.03.016

  16. Lee M (2020) Time course of functional recovery in takotsubo (stress) cardiomyopathy: a serial speckle tracking echocardiography and electrocardiography study. J Cardiovasc Imaging 28(1):50–60

    Article  PubMed  Google Scholar 

  17. Dias A, Franco E, Rubio M, Bhalla V, Pressman GS, Amanullah S et al (2018) Usefulness of left ventricular strain analysis in patients with takotsubo syndrome during acute phase. Echocardiography 35(2):179–183

    Article  PubMed  Google Scholar 

  18. Alashi A, Isaza N, Faulx J, Popovic ZB, Menon V, Ellis SG et al (2020) Characteristics and outcomes of patients with takotsubo syndrome: incremental prognostic value of baseline left ventricular systolic function. J Am Heart Assoc 9(16):1–11

    Article  Google Scholar 

  19. Prasad A, Lerman A, Rihal CS (2008) Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart J 155(3):408–417

    Article  PubMed  Google Scholar 

  20. Stevens LA, Manzi J, Levey AS, Chen J, Deysher AE, Greene T et al (2007) Impact of Creatinine Calibration on performance of GFR estimating equations in a pooled individual patient database. Am J Kidney Dis 50(1):21–35

    Article  CAS  PubMed  Google Scholar 

  21. Galderisi M, Cosyns B, Edvardsen T, Cardim N, Delgado V, Di Salvo G et al (2017) Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imag. Eur Heart J Cardiovasc Imaging 18(12):1301–1310

    Article  PubMed  Google Scholar 

  22. Melikian N, Vercauteren S, Fearon WF, Cuisset T, MacCarthy PA, Davidavicius G, Aarnoudse W, Bartunek J, Vanderheyden M, Wyffels E, Wijns W Heyndrickx GR DBB. Quantitative assessment of coronary microvascular function in patients with and without epicardial atherosclerosis.EuroIntervention 2010Apr; 5(8). 939 – 45 PMID 20542779

  23. Garcia-Garcia HM, McFadden EP, Farb A, Mehran R, Stone GW, Spertus J et al (2018) Standardized end point definitions for coronary intervention trials: the academic research consortium-2 consensus document. Circulation 137(24):2635–2650

    Article  PubMed  Google Scholar 

  24. Domienik-Karłowicz J, Kupczyńska K, Michalski B, Kapłon-Cieślicka A, Darocha S, Dobrowolski P et al (2021) Fourth universal definition of myocardial infarction. Selected messages from the european society of cardiology document and lessons learned from the new guidelines on st-segment elevation myocardial infarction and non-st-segment elevation-acute coronary. Cardiol J 28(2):195–201

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hicks KA, Tcheng JE, Bozkurt B, Chaitman BR, Cutlip DE, Farb A et al (2015) 2014 ACC/AHA key data elements and definitions for cardiovascular endpoint events in clinical trials: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (writing Committee to develop Cardiovascu. J Am Coll Cardiol 66(4):403–469

    Article  PubMed  Google Scholar 

  26. Núñez-Gil IJ, Almendro-Delia M, Andrés M, Sionis A, Martin A, Bastante T et al (2016) Secondary forms of Takotsubo cardiomyopathy: a whole different prognosis. Eur Hear journal Acute Cardiovasc care 5(4):308–316

    Article  Google Scholar 

  27. Stiermaier T, Moeller C, Oehler K, Desch S, Graf T, Eitel C et al (2016) Long-term excess mortality in takotsubo cardiomyopathy: predictors, causes and clinical consequences. Eur J Heart Fail 18(6):650–656

    Article  PubMed  Google Scholar 

  28. Pelliccia F, Kaski JC, Crea F, Camici PG (2017) Pathophysiology of Takotsubo Syndrome. Circulation 135(24):2426–2441

    Article  CAS  PubMed  Google Scholar 

  29. Akashi YJ, Nef HM, Lyon AR (2015) Epidemiology and pathophysiology of Takotsubo syndrome. Nat Rev Cardiol [Internet]. ;12(7):387–97. Available from: https://doi.org/10.1038/nrcardio.2015.39

  30. Pestana G, Tavares-Silva M, Sousa C, Pinto R, Ribeiro V, Vasconcelos M et al (2019) Myocardial dysfunction in Takotsubo syndrome: more than meets the eye? Rev Port Cardiol 38(4):261–266

    Article  PubMed  Google Scholar 

  31. Reddin G, Forrestal BJ, Garcia-Garcia HM, Medvedofsky D, Singh M, Asch FM, Ribeiro HBCC Left ventricular global longitudinal strain assessment in patients with Takotsubo Cardiomyopathy: a call for an echocardiography-based classification.Minerva Cardioangiol 2021 Jan11.1023736/S0026-47252005386-4Epub ahead print PMID 33427420

  32. Singh M, Reddin G, Garcia-Garcia HM, Medvedofsky D, Asch FM, Kumar P et al (2021) Comparison of Contractility Patterns on Left Ventriculogram Versus Longitudinal Strain by Echocardiography in Patients With Takotsubo Cardiomyopathy. Cardiovasc Revascularization Med [Internet]. ;27(xxxx):45–51. Available from: https://doi.org/10.1016/j.carrev.2020.07.021

  33. Nguyen TH, Neil CJ, Sverdlov AL, Mahadavan G, Chirkov YY, Kucia AM et al (2011) N-terminal pro-brain natriuretic protein levels in takotsubo cardiomyopathy. Am J Cardiol [Internet]. ;108(9):1316–21. Available from: https://doi.org/10.1016/j.amjcard.2011.06.047

  34. Khan H, Gamble D, Mezincescu A, Abbas H, Rudd A, Dawson D (2021) A systematic review of biomarkers in Takotsubo syndrome: A focus on better understanding the pathophysiology. IJC Hear Vasc [Internet]. ;34:100795. Available from: https://doi.org/10.1016/j.ijcha.2021.100795

  35. Meimoun P, Passos P, Benali T, Boulanger J, Elmkies F, Zemir H et al (2011) Assessment of left ventricular twist mechanics in Tako-tsubo cardiomyopathy by two-dimensional speckle-tracking echocardiography. Eur J Echocardiogr 12(12):931–939

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jordi Sans-Roselló or Hector M. Garcia-Garcia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tweet: The evaluation of global longitudinal strain in the acute phase of #Takotsubo syndrome provides incremental prognostic value to the degree of impaired microvascular resistance at 1-year follow-up. Twitter: @hect2701; @j_alvarezgarcia; @JordiSR1981; @EstefaniaFdzP3; @Asionis; @jose_carmora

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sans-Roselló, J., Fernández-Peregrina, E., Duran-Cambra, A. et al. Incremental prognostic value of global longitudinal strain to the coronary microvascular resistances in Takotsubo patients. Int J Cardiovasc Imaging 39, 683–693 (2023). https://doi.org/10.1007/s10554-022-02767-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02767-w

Keywords

Navigation