Skip to main content
Log in

Association between left ventricular reverse remodeling and long-term outcomes after alcohol septal ablation for hypertrophic obstructive cardiomyopathy

  • OriginalPaper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

There is a paucity of data regarding the effect of left ventricular (LV) reverse remodeling (r-LVR) on diastolic function and outcomes after alcohol septal ablation (ASA) in patients with hypertrophic obstructive cardiomyopathy (HOCM). The aim of this study was to identify the impact of r-LVR on the outcome and the predictors of such changes after ASA. Eighty-seven patients (57.5% men) were enrolled and underwent both echocardiography and cardiovascular magnetic resonance (CMR) imaging at baseline and 27 months after the procedure. The study population was divided into two groups by the degree of r-LVR. Compared to the greater r-LVR group, the lesser r-LVR group had a significantly larger LV mass (LVM) and lower diastolic function parameters at baseline. The greater r-LVR group had significantly greater LVM regression and improvement of diastolic function after ASA. Kaplan‒Meier analysis showed significantly worse composite events in the lesser r-LVR group after ASA (P = 0.016). After adjusting for multiple clinical variables, r-LVR was associated with an improved E/e’ (β = 0.390, p < 0.001) and reduced events (hazard ratio: 0.795; 95% confidence interval (CI), 0.644–0.983; p = 0.034). Preablation LVM was associated with a decreased probability of r-LVR (β = -0.228, p = 0.021) and diastolic function improvement (β= -0.245, p = 0.006). r-LVR was associated with long-term outcome benefit in patients with HOCM. Preablation LVM prevented LV from favoring reverse remodeling and thus may be a potential parameter for risk stratification and prognosis after ASA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lehman SJ, Crocini C, Leinwand LA (2022) Targeting the sarcomere in inherited cardiomyopathies. Nat Rev Cardiol 19:353–363. https://doi.org/10.1038/s41569-022-00682-0

    Article  CAS  Google Scholar 

  2. Tuohy CV, Kaul S, Song HK et al (2020) Hypertrophic cardiomyopathy: the future of treatment. Eur J Heart Fail 22:228–240. https://doi.org/10.1002/ejhf.1715

    Article  Google Scholar 

  3. Liu J, Zhao S, Yu S et al (2022) Patterns of Replacement Fibrosis in Hypertrophic Cardiomyopathy. Radiology 302:298–306. https://doi.org/10.1148/radiol.2021210914

    Article  Google Scholar 

  4. Nucifora G, Muser D, Gianfagna P et al (2015) Systolic and diastolic myocardial mechanics in hypertrophic cardiomyopathy and their link to the extent of hypertrophy, replacement fibrosis and interstitial fibrosis. Int J Cardiovasc Imaging 31:1603–1610. https://doi.org/10.1007/s10554-015-0720-0

    Article  Google Scholar 

  5. Song Y, Bi X, Chen L et al (2022) Reduced myocardial septal function assessed by cardiac magnetic resonance feature tracking in patients with hypertrophic obstructive cardiomyopathy: associated with histological myocardial fibrosis and ventricular arrhythmias. Eur Heart J Cardiovasc Imaging 23:1006–1015. https://doi.org/10.1093/ehjci/jeac032

    Article  Google Scholar 

  6. Habib M, Adler A, Fardfini K et al (2021) Progression of Myocardial Fibrosis in Hypertrophic Cardiomyopathy: A Cardiac Magnetic Resonance Study. JACC Cardiovasc Imaging 14:947–958. https://doi.org/10.1016/j.jcmg.2020.09.037

    Article  Google Scholar 

  7. Cui H, Schaff HV, Wang S et al (2022) Survival Following Alcohol Septal Ablation or Septal Myectomy for Patients With Obstructive Hypertrophic Cardiomyopathy. J Am Coll Cardiol 79:1647–1655. https://doi.org/10.1016/j.jacc.2022.02.032

    Article  Google Scholar 

  8. Batzner A, Pfeiffer B, Neugebauer A et al (2018) Survival After Alcohol Septal Ablation in Patients With Hypertrophic Obstructive Cardiomyopathy. J Am Coll Cardiol 72:3087–3094. https://doi.org/10.1016/j.jacc.2018.09.064

    Article  Google Scholar 

  9. Chen YZ, Zhao XS, Yuan JS et al (2022) Sex-related differences in left ventricular remodeling and outcome after alcohol septal ablation in hypertrophic obstructive cardiomyopathy: insights from cardiovascular magnetic resonance imaging. Biol Sex Differ 13:37. https://doi.org/10.1186/s13293-022-00447-x

    Article  CAS  Google Scholar 

  10. Jassal DS, Neilan TG, Fifer MA et al (2006) Sustained improvement in left ventricular diastolic function after alcohol septal ablation for hypertrophic obstructive cardiomyopathy. Eur Heart J 27:1805–1810. https://doi.org/10.1093/eurheartj/ehl106

    Article  Google Scholar 

  11. van Dockum WG, Beek AM, Ten CF et al (2005) Early onset and progression of left ventricular remodeling after alcohol septal ablation in hypertrophic obstructive cardiomyopathy. Circulation 111:2503–2508. https://doi.org/10.1161/01.CIR.0000165084.28065.01

    Article  Google Scholar 

  12. Bruder O, Wagner A, Jensen CJ et al (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56:875–887. https://doi.org/10.1016/j.jacc.2010.05.007

    Article  Google Scholar 

  13. Matsumura Y, Elliott PM, Virdee MS et al (2002) Left ventricular diastolic function assessed using Doppler tissue imaging in patients with hypertrophic cardiomyopathy: relation to symptoms and exercise capacity. Heart 87:247–251. https://doi.org/10.1136/heart.87.3.247

    Article  CAS  Google Scholar 

  14. Ong KC, Geske JB, Hebl VB et al (2016) Pulmonary hypertension is associated with worse survival in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 17:604–610. https://doi.org/10.1093/ehjci/jew024

    Article  Google Scholar 

  15. Gonçalves AV, Rosa SA, Branco L et al (2021) Myocardial work is associated with significant left ventricular myocardial fibrosis in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 37:2237–2244. https://doi.org/10.1007/s10554-021-02186-3

    Article  Google Scholar 

  16. Raphael CE, Liew AC, Mitchell F et al (2020) Predictors and Mechanisms of Atrial Fibrillation in Patients With Hypertrophic Cardiomyopathy. Am J Cardiol 136:140–148. https://doi.org/10.1016/j.amjcard.2020.09.006

    Article  Google Scholar 

  17. Raphael CE, Mitchell F, Kanaganayagam GS et al (2021) Cardiovascular magnetic resonance predictors of heart failure in hypertrophic cardiomyopathy: the role of myocardial replacement fibrosis and the microcirculation. J Cardiovasc Magn Reson 23:26. https://doi.org/10.1186/s12968-021-00720-9

    Article  Google Scholar 

  18. Zhao M, Liu M, Leal JP et al (2019) Association of PET-measured myocardial flow reserve with echocardiography-estimated pulmonary artery systolic pressure in patients with hypertrophic cardiomyopathy. PLoS ONE 14:e0212573. https://doi.org/10.1371/journal.pone.0212573

    Article  CAS  Google Scholar 

  19. O’Brien AC, MacDermott R, Keane S et al (2022) Cardiac MRI e-prime predicts myocardial late gadolinium enhancement and diastolic dysfunction in hypertrophic cardiomyopathy. Eur J Radiol 149:110192. https://doi.org/10.1016/j.ejrad.2022.110192

    Article  Google Scholar 

  20. Menon SC, Ackerman MJ, Ommen SR et al (2008) Impact of septal myectomy on left atrial volume and left ventricular diastolic filling patterns: an echocardiographic study of young patients with obstructive hypertrophic cardiomyopathy. J Am Soc Echocardiogr 21:684–688. https://doi.org/10.1016/j.echo.2007.11.006

    Article  Google Scholar 

  21. Lu DY, Haileselassie B, Ventoulis I et al (2018) E/e’ ratio and outcome prediction in hypertrophic cardiomyopathy: the influence of outflow tract obstruction. Eur Heart J Cardiovasc Imaging 19:101–107. https://doi.org/10.1093/ehjci/jex134

    Article  Google Scholar 

  22. Tang B, Song Y, Yang Q et al (2022) Changes in left atrial function, left ventricle remodeling, and fibrosis after septal myectomy for obstructive hypertrophic cardiomyopathy. J Thorac Cardiovasc Surg 163:1828–1834e4. https://doi.org/10.1016/j.jtcvs.2020.06.017

    Article  Google Scholar 

  23. Finocchiaro G, Haddad F, Kobayashi Y et al (2016) Impact of Septal Reduction on Left Atrial Size and Diastole in Hypertrophic Cardiomyopathy. Echocardiography 33:686–694. https://doi.org/10.1111/echo.13158

    Article  Google Scholar 

  24. Mazur W, Nagueh SF, Lakkis NM et al (2001) Regression of left ventricular hypertrophy after nonsurgical septal reduction therapy for hypertrophic obstructive cardiomyopathy. Circulation 103:1492–1496. https://doi.org/10.1161/01.cir.103.11.1492

    Article  CAS  Google Scholar 

  25. Musumeci MB, Mastromarino V, Casenghi M et al (2017) Pulmonary hypertension and clinical correlates in hypertrophic cardiomyopathy. Int J Cardiol 248:326–332. https://doi.org/10.1016/j.ijcard.2017.07.010

    Article  Google Scholar 

  26. Batzner A, Aicha D, Pfeiffer B et al (2022) Age-related survival after alcohol septal ablation in hypertrophic obstructive cardiomyopathy. ESC Heart Fail 9:327–336. https://doi.org/10.1002/ehf2.13750

    Article  Google Scholar 

  27. Rigopoulos AG, Daci S, Pfeiffer B et al (2016) Low occurrence of ventricular arrhythmias after alcohol septal ablation in high-risk patients with hypertrophic obstructive cardiomyopathy. Clin Res Cardiol 105:953–961. https://doi.org/10.1007/s00392-016-1005-x

    Article  CAS  Google Scholar 

  28. Liebregts M, Faber L, Jensen MK et al (2018) Validation of the HCM Risk-SCD model in patients with hypertrophic cardiomyopathy following alcohol septal ablation. Europace 20:f198–f203. https://doi.org/10.1093/europace/eux251

    Article  Google Scholar 

  29. Rigopoulos AG, Ali M, Abate E et al (2019) Review on sudden death risk reduction after septal reduction therapies in hypertrophic obstructive cardiomyopathy. Heart Fail Rev 24:359–366. https://doi.org/10.1007/s10741-018-09767-w

    Article  Google Scholar 

  30. Sorajja P, Nishimura RA, Ommen SR et al (2008) Effect of septal ablation on myocardial relaxation and left atrial pressure in hypertrophic cardiomyopathy an invasive hemodynamic study. JACC Cardiovasc Interv 1:552–560. https://doi.org/10.1016/j.jcin.2008.07.004

    Article  Google Scholar 

Download references

Funding

agencies: The present study was supported by the National Natural Science Foundation of China (NO.81700330) Beijing Municipal Excellent Talents Foundation (2016000021469G176) and Beijing Jishuitan Hospital Nova Program XKXX2018 (XKXX201802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Bin Qiao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, FJ., Chen, YZ., Yuan, JS. et al. Association between left ventricular reverse remodeling and long-term outcomes after alcohol septal ablation for hypertrophic obstructive cardiomyopathy. Int J Cardiovasc Imaging 39, 423–432 (2023). https://doi.org/10.1007/s10554-022-02735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02735-4

Keywords

Navigation