Skip to main content
Log in

Impact of assuming a circular orifice on flow error through elliptical regurgitant orifices: computational fluid dynamics and in vitro analysis of proximal flow convergence

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Grounded in hydrodynamic theory, proximal isovelocity surface area (PISA) is a simplistic and practical technique widely used to quantify valvular regurgitation flow. PISA provides a relatively reasonable, though slightly underestimated flow rate for circular orifices. However, for elliptical orifices frequently seen in functional mitral regurgitation, PISA underestimates the flow rate. Based on data obtained with computational fluid dynamics (CFD) and in vitro experiments using systematically varied orifice parameters, we hypothesized that flow rate underestimation for elliptical orifices by PISA is predictable and within a clinically acceptable range. We performed 45 CFD simulations with varying orifice areas 0.1, 0.3 and 0.5 cm2, orifice aspect ratios 1:1, 2:1, 3:1, 5:1, and 10:1, and peak velocities (Vmax) 400, 500 and 600 cm/s. The ratio of computed effective regurgitant orifice area to true effective area (EROAC/EROA) against the ratio of aliasing velocity to peak velocity (VA/Vmax) was analyzed for orifice shape impact. Validation was conducted with in vitro imaging in round and 3:1 elliptical orifices. Plotting EROAC/EROA against VA/Vmax revealed marginal flow underestimation with 2:1 and 3:1 elliptical axis ratios against a circular orifice (< 10% for 8% VA/Vmax), rising to ≤ 35% for 10:1 ratio. In vitro modeling confirmed CFD findings; there was a 8.3% elliptical EROA underestimation compared to the circular orifice estimate. PISA quantification for regurgitant flow through elliptical orifices produces predictable, but generally small, underestimation deemed clinically acceptable for most regurgitant orifices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bargiggia GS, Tronconi L, Sahn DJ et al (1991) A new method for quantitation of mitral regurgitation based on color flow Doppler imaging of flow convergence proximal to regurgitant orifice. Circulation 84(4):1481–1489

    Article  CAS  Google Scholar 

  2. Lancellotti P, Tribouilloy C, Hagendorff A et al (2013) Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Heart J 14(7):611–644

    Google Scholar 

  3. Recusani F, Bargiggia GS, Yoganathan AP et al (1991) A new method for quantification of regurgitant flow rate using color Doppler flow imaging of the flow convergence region proximal to a discrete orifice. An in vitro study. Circulation 83(2):594–604

    Article  CAS  Google Scholar 

  4. Zoghbi WA, Adams D, Bonow RO et al (2020) Recommendations for Noninvasive Evaluation of Native Valvular Regurgitation A Report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J Indian Acad Echocardiography Cardiovasc Imaging 4(1):58

    Article  Google Scholar 

  5. Enriquez-Sarano M, Miller FA, Hayes SN et al (1995) Effective mitral regurgitant orifice area: clinical use and pitfalls of the proximal isovelocity surface area method. J Am Coll Cardiol 25(3):703–709

    Article  CAS  Google Scholar 

  6. Rodriguez L, Anconina J, Flachskampf FA et al (1992) Impact of finite orifice size on proximal flow convergence. Implications for Doppler quantification of valvular regurgitation. Circul Res 70(5):923–930

    Article  CAS  Google Scholar 

  7. Enriquez-Sarano M, Avierinos J-F, Messika-Zeitoun D et al (2005) Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 352(9):875–883

    Article  CAS  Google Scholar 

  8. Grigioni F, Detaint D, Avierinos J-F et al (2005) Contribution of ischemic mitral regurgitation to congestive heart failure after myocardial infarction. J Am Coll Cardiol 45(2):260–267

    Article  Google Scholar 

  9. Matsumura Y, Fukuda S, Tran H et al (2008) Geometry of the proximal isovelocity surface area in mitral regurgitation by 3-dimensional color Doppler echocardiography: difference between functional mitral regurgitation and prolapse regurgitation. Am Heart J 155(2):231–238

    Article  Google Scholar 

  10. Song J-M, Kim M-J, Kim Y-J et al (2008) Three-dimensional characteristics of functional mitral regurgitation in patients with severe left ventricular dysfunction: a real-time three-dimensional colour Doppler echocardiography study. Heart 94(5):590–596

    Article  Google Scholar 

  11. de Agustín JA, Marcos-Alberca P, Fernandez-Golfin C et al (2012) Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation: a validation study. J Am Soc Echocardiogr 25(8):815–823

    Article  Google Scholar 

  12. Iwakura K, Ito H, Kawano S et al (2006) Comparison of orifice area by transthoracic three-dimensional Doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am J Cardiol 97(11):1630–1637

    Article  Google Scholar 

  13. Utsunomiya T, Ogawa T, Doshi R et al (1991) Doppler color flow “proximal isovelocity surface area” method for estimating volume flow rate: effects of orifice shape and machine factors. J Am Coll Cardiol 17(5):1103–1111

    Article  CAS  Google Scholar 

  14. Nishimura RA, Otto CM, Bonow RO et al (2017) 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 70(2):252–289

    Article  Google Scholar 

  15. Hopmeyer J, He S, Thorvig KM et al (1998) Estimation of mitral regurgitation with a hemielliptic curve-fitting algorithm: in vitro experiments with native mitral valves. J Am Soc Echocardiogr 11(4):322–331

    Article  CAS  Google Scholar 

  16. Hopmeyer J, Whitney E, Papp DA et al (1996) Computational simulations of mitral regurgitation quantification using the flow convergence method: comparison of hemispheric and hemielliptic formulae. Ann Biomed Eng 24(5):561–572

    Article  CAS  Google Scholar 

  17. Kahlert P, Plicht B, Schenk IM et al (2008) Direct assessment of size and shape of noncircular vena contracta area in functional versus organic mitral regurgitation using real-time three-dimensional echocardiography. J Am Soc Echocardiogr 21(8):912–921

    Article  Google Scholar 

  18. Marsan NA, Westenberg JJ, Ypenburg C et al (2009) Quantification of functional mitral regurgitation by real-time 3D echocardiography: comparison with 3D velocity-encoded cardiac magnetic resonance. JACC: Cardiovasc Imaging 2(11):1245–1252

    Google Scholar 

  19. Papolla C, Adda J, Rique A et al (2020) In vitro quantification of mitral regurgitation of complex geometry by the modified proximal isovelocity surface area method. J Am Soc Echocardiogr 33(7):838–847 e1

    Article  Google Scholar 

  20. Utsunomiya T, Ogawa T, Tang HA et al (1991) Doppler color flow mapping of the proximal isovelocity surface area: a new method for measuring volume flow rate across a narrowed orifice. J Am Soc Echocardiogr 4(4):338–348

    Article  CAS  Google Scholar 

  21. Jamil M, Ahmad O, Poh KK et al (2017) Feasibility of ultrasound-based computational fluid dynamics as a mitral valve regurgitation quantification technique: comparison with 2-D and 3-D proximal isovelocity surface area-based methods. Ultrasound Med Biol 43(7):1314–1330

    Article  Google Scholar 

  22. Ashikhmina E, Shook D, Cobey F et al (2015) Three-dimensional versus two-dimensional echocardiographic assessment of functional mitral regurgitation proximal isovelocity surface area. Anesth Analgesia 120(3):534–542

    Article  Google Scholar 

  23. Qin T, Caballero A, Hahn RT et al (2021) Computational analysis of virtual echocardiographic assessment of functional mitral regurgitation for validation of proximal isovelocity surface area methods. J Am Soc Echocardiogr 34(11):1211–1223

    Article  Google Scholar 

  24. Domino SP (2015) Sierra Low Mach Module: Nalu Theory Manual 1.0, SAND2015-3107 W. Sandia National Laboratories Unclassified Unlimited Release (UUR)

  25. Thomas J, Wilkins G, Choong C et al (1988) Inaccuracy of mitral pressure half-time immediately after percutaneous mitral valvotomy. Dependence on transmitral gradient and left atrial and ventricular compliance. Circulation 78(4):980–993

    Article  CAS  Google Scholar 

  26. Thomas JD, Weyman AE (1987) Doppler mitral pressure half-time: a clinical tool in search of theoretical justification. J Am Coll Cardiol 10(4):923–929

    Article  CAS  Google Scholar 

  27. Aurich M, André F, Keller M et al (2014) Assessment of left ventricular volumes with echocardiography and cardiac magnetic resonance imaging: real-life evaluation of standard versus new semiautomatic methods. J Am Soc Echocardiogr 27(10):1017–1024

    Article  Google Scholar 

  28. Thavendiranathan P, Liu S, Datta S et al (2012) Automated quantification of mitral inflow and aortic outflow stroke volumes by three-dimensional real-time volume color-flow Doppler transthoracic echocardiography: comparison with pulsed-wave Doppler and cardiac magnetic resonance imaging. J Am Soc Echocardiogr 25(1):56–65

    Article  Google Scholar 

  29. Pu M, Prior DL, Fan X et al (2001) Calculation of mitral regurgitant orifice area with use of a simplified proximal convergence method: initial clinical application. J Am Soc Echocardiogr 14(3):180–185

    Article  CAS  Google Scholar 

  30. Rodriguez L, Thomas JD, Monterroso V et al (1993) Validation of the proximal flow convergence method. Calculation of orifice area in patients with mitral stenosis. Circulation 88(3):1157–1165

    Article  CAS  Google Scholar 

  31. Pu M, Vandervoort PM, Greenberg NL et al (1996) Impact of wall constraint on velocity distribution in proximal flow convergence zone Implications for color Doppler quantification of mitral regurgitation. J Am Coll Cardiol 27(3):706–713

    Article  CAS  Google Scholar 

  32. Pu M, Vandervoort PM, Griffin BP et al (1995) Quantification of mitral regurgitation by the proximal convergence method using transesophageal echocardiography: clinical validation of a geometric correction for proximal flow constraint. Circulation 92(8):2169–2177

    Article  CAS  Google Scholar 

  33. Little SH, Igo SR, Pirat B et al (2007) In vitro validation of real-time three-dimensional color Doppler echocardiography for direct measurement of proximal isovelocity surface area in mitral regurgitation. Am J Cardiol 99(10):1440–1447

    Article  Google Scholar 

  34. Matsumura Y, Saracino G, Sugioka K et al (2008) Determination of regurgitant orifice area with the use of a new three-dimensional flow convergence geometric assumption in functional mitral regurgitation. J Am Soc Echocardiogr 21(11):1251–1256

    Article  Google Scholar 

  35. Schwammenthal E, Chen C, Giesler M et al (1996) New method for accurate calculation of regurgitant flow rate based on analysis of doppler color flow maps of the proximal flow field validation in a canine model of mitral regurgitation with initial application in patients. J Am Coll Cardiol 27(1):161–172

    Article  CAS  Google Scholar 

  36. Francis DP, Willson K, Davies LC et al (2000) True shape and area of proximal isovelocity surface area (PISA) when flow convergence is hemispherical in valvular regurgitation. Int J Cardiol 73(3):237–242

    Article  CAS  Google Scholar 

  37. Thomas JD (1997) How leaky is that mitral valve? Simplified Doppler methods to measure regurgitant orifice area. Circulation 95(3):548–550

    Article  CAS  Google Scholar 

  38. Plicht B, Kahlert P, Goldwasser R et al (2008) Direct quantification of mitral regurgitant flow volume by real-time three-dimensional echocardiography using dealiasing of color Doppler flow at the vena contracta. J Am Soc Echocardiogr 21(12):1337–1346

    Article  Google Scholar 

  39. Sitges M, Jones M, Shiota T et al (2003) Real-time three-dimensional color Doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: validation experimental animal study and initial clinical experience. J Am Soc Echocardiogr 16(1):38–45

    Article  Google Scholar 

  40. Thavendiranathan P, Liu S, Datta S et al (2013) Quantification of chronic functional mitral regurgitation by automated 3-dimensional peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3-dimensional volume color Doppler echocardiography: in vitro and clinical validation. Circ Cardiovasc Imaging 6(1):125–133

    Article  Google Scholar 

Download references

Funding

Dr. James Thomas is supported by the Irene D. Pritzker Foundation and by grants from Abbott Vascular and GE Medical. Dr. Greg Wagner is supported by a grant from Abbott Vascular. Dr. Alex Barker is supported by NIH NHLBI Grants K25HL119608 & R01HL133504. Dr. Michael Markl is supported by NIH NHLBI Grants R01HL115828.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Thomas.

Ethics declarations

Conflict of interest

Dr. Thomas reports consulting fees from Abbott Vascular, egnite, GE Medical, EchoIQ and Caption Health and spouse employment with Caption Health. Dr. Mitter reports honoraria from Alnylam and the National Minority Quality Forum.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Mitter, S.S., Van Assche, L. et al. Impact of assuming a circular orifice on flow error through elliptical regurgitant orifices: computational fluid dynamics and in vitro analysis of proximal flow convergence. Int J Cardiovasc Imaging 39, 307–318 (2023). https://doi.org/10.1007/s10554-022-02729-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02729-2

Keywords

Navigation