Skip to main content
Log in

Impact of mitral regurgitation on left ventricular remodeling and function in children with rheumatic heart disease

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The impact of mitral regurgitation (MR) from pediatric rheumatic heart disease (RHD) and its effect on left ventricular (LV) remodeling and function following surgical intervention is uncertain. The objective is to explore the impact of mitral valve (MV) surgeries on myocardial mechanics, remodeling and function and identify pre-operative predictors of post-operative dysfunction which may contribute to the optimal timing of intervention. A retrospective review of echocardiographic data was performed of eighteen pediatric patients with RHD (median 9yrs, IQR 6–12) who underwent MV surgery. Echocardiograms pre-operatively and a median of 13.5 months (IQR 10.2–15) following intervention were compared to controls. Pre-operative LV end-diastolic indexed volumes (LVEDVi) were significantly increased compared to controls and remained persistently larger post-operatively. LV ejection fraction (LVEF) (pre 62.6% ± 6.1, post 51.7% ± 9.7, p = 0.002), and global longitudinal strain (GLS) (pre − 24.3 ± 4.1, post − 18.2 ± 2.6, p < 0.001) decreased post-operatively at mid-term follow-up. Pre-operative LVEDVi was a significant predictor of post-operative LVEF, with a cut-off of ≥ 102 ml/m2 associated with LV dysfunction (LVEF < 55%; sensitivity 70%, specificity 75%). Pre-operative LVEDVi also negatively correlated with GLS (r = − 0.58, p = 0.01). LV dimensions and volumes remain persistently larger than controls while LV function decreases post-surgical alleviation of MR in paediatric RHD. Pre-operative LVEDVi predicted post-operative LV dysfunction and utilising LV indexed volumes in directing timing of surgical planning should be considered. Further studies are required to investigate whether timely alleviation of MR before significant LV dilatation and remodeling occur may substantially prevent LV dysfunction and improve outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seckeler MD, Hoke TR (2011) The worldwide epidemiology of acute rheumatic fever and rheumatic heart disease. Clin Epidemiol 3:67

    Article  PubMed  PubMed Central  Google Scholar 

  2. RHDAustralia (ARF/RHD writing group). (2020) The 2020 Australian guideline for prevention, diagnosis and management of acute rheumatic fever and rheumatic heart disease (3.2 edition, March 2022)

  3. Health AIo, Welfare (2013) Rheumatic heart disease and acute rheumatic fever in Australia: 1996-2012. AIHW, Canberra

    Google Scholar 

  4. Yeong M, Silbery M, Finucane K, Wilson NJ, Gentles TL (2015) Mitral valve geometry in paediatric rheumatic mitral regurgitation. Pediatr Cardiol 36(4):827–834

    Article  PubMed  Google Scholar 

  5. Gentles TL, Finucane AK, Remenyi B, Kerr AR, Wilson NJ (2015) Ventricular function before and after surgery for isolated and combined regurgitation in the young. Ann Thorac Surg 100(4):1383–1389

    Article  PubMed  Google Scholar 

  6. Li X, Bao K, Zhu R, Qi Q, Liu S, Li H et al (2019) Predictors of early left ventricular dysfunction after mitral valve replacement for rheumatic valvular disease. J Card Surg 34(11):1185–1193

    Article  PubMed  Google Scholar 

  7. Varghese R, Itagaki S, Anyanwu AC, Milla F, Adams DH (2014) Predicting early left ventricular dysfunction after mitral valve reconstruction: the effect of atrial fibrillation and pulmonary hypertension. J Thorac Cardiovasc Surg 148(2):422–427

    Article  PubMed  Google Scholar 

  8. Johnson JT, Eckhauser AW, Pinto NM, Weng HY, Minich LL, Tani LY (2015) Indications for intervention in asymptomatic children with chronic mitral regurgitation. Pediatr Cardiol 36(2):417–422

    Article  PubMed  Google Scholar 

  9. American College of Cardiology; American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease); Society of Cardiovascular Anesthesiologists, Bonow RO, Carabello BA, Chatterjee K et al (2006) ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing Committee to Revise the 1998 guidelines for the management of patients with valvular heart disease) developed in collaboration with the Society of Cardiovascular Anesthesiologists endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. J Am Coll Cardiol 48(3):1–148

    Article  Google Scholar 

  10. Arunamata A, Selamet Tierney ES, Tacy TA, Punn R (2015) Echocardiographic measures associated with early postsurgical myocardial dysfunction in pediatric patients with mitral valve regurgitation. J Am Soc Echocardiogr 28(3):284–293

    Article  PubMed  Google Scholar 

  11. Gentles TL, French JK, Zeng I, Milsom PF, Finucane AK, Wilson NJ (2012) Normalized end-systolic volume and pre-load reserve predict ventricular dysfunction following surgery for aortic regurgitation independent of body size. JACC Cardiovasc Imaging 5(6):626–633

    Article  PubMed  Google Scholar 

  12. Finucane K, Wilson N (2013) Priorities in cardiac surgery for rheumatic heart disease. Glob Heart 8(3):213–220

    Article  PubMed  Google Scholar 

  13. Detaint D, Messika-Zeitoun D, Maalouf J, Tribouilloy C, Mahoney DW, Tajik AJ et al (2008) Quantitative echocardiographic determinants of clinical outcome in asymptomatic patients with aortic regurgitation: a prospective study. JACC Cardiovasc Imaging 1(1):1–11

    Article  PubMed  Google Scholar 

  14. Wisenbaugh T, Skudicky D, Sareli P (1994) Prediction of outcome after valve replacement for rheumatic mitral regurgitation in the era of chordal preservation. Circulation 89(1):191–197

    Article  CAS  PubMed  Google Scholar 

  15. Remenyi B, Webb R, Gentles T, Russell P, Finucane K, Lee M et al (2013) Improved long-term survival for rheumatic mitral valve repair compared to replacement in the young. World Journal for Pediatric and Congenital Heart Surgery 4(2):155–164

    Article  PubMed  Google Scholar 

  16. Hillman ND, Tani LY, Veasy LG, Lambert LL, Di Russo GB, Doty DB et al (2004) Current status of surgery for rheumatic carditis in children. Ann Thorac Surg 78(4):1403–1408

    Article  PubMed  Google Scholar 

  17. Talwar S, Rajesh MR, Subramanian A, Saxena A, Kumar AS (2005) Mitral valve repair in children with rheumatic heart disease. J Thorac Cardiovasc Surg 129(4):875–879

    Article  PubMed  Google Scholar 

  18. Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK et al (2010) Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the pediatric measurements writing group of the American society of echocardiography pediatric and congenital heart disease council. J Am Soc Echocardiogr 23(5):465–495

    Article  PubMed  Google Scholar 

  19. Remenyi B, Wilson N, Steer A, Ferreira B, Kado J, Kumar K et al (2012) World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease–an evidence-based guideline. Nat Rev Cardiol 9(5):297–309

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ross J Jr (1981) Left ventricular function and the timing of surgical treatment in valvular heart disease. Ann Intern Med 94(4 pt 1):498–504

    Article  PubMed  Google Scholar 

  21. Harkness A, Ring L, Augustine DX, Oxborough D, Robinson S, Sharma V (2020) Normal reference intervals for cardiac dimensions and function for use in echocardiographic practice: a guideline from the British society of echocardiography. Echo Res Pract 7(1):G1–G18

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mascle S, Schnell F, Thebault C, Corbineau H, Laurent M, Hamonic S et al (2012) Predictive value of global longitudinal strain in a surgical population of organic mitral regurgitation. J Am Soc Echocardiogr 25(7):766–772

    Article  PubMed  Google Scholar 

  23. Boston Children's Hospital Heart Centre Z-score Calculator: Boston Children's Hospital 2015 [updated 2021. https://zscore.chboston.org/Home/About

  24. Zoghbi WA, Enriquez-Sarano M, Foster E, Grayburn PA, Kraft CD, Levine RA et al (2003) Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr 16(7):777–802

    Article  PubMed  Google Scholar 

  25. Gaasch WH, Meyer TE (2008) Left ventricular response to mitral regurgitation: implications for management. Circulation 118(22):2298–2303

    Article  PubMed  Google Scholar 

  26. Ross J Jr (1985) Afterload mismatch in aortic and mitral valve disease: implications for surgical therapy. J Am Coll Cardiol 5(4):811–826

    Article  PubMed  Google Scholar 

  27. Matsumura T, Ohtaki E, Tanaka K, Misu K, Tobaru T, Asano R et al (2003) Echocardiographic prediction ofleft ventricular dysfunction aftermitral valve repair for mitral regurgitation as anindicator to decide the optimal timing of repair. J Am Coll Cardiol 42(3):458–463

    Article  PubMed  Google Scholar 

  28. Nishimura RA, Vahanian A, Eleid MF, Mack MJ (2016) Mitral valve disease—current management and future challenges. Lancet 387(10025):1324–1334

    Article  PubMed  Google Scholar 

  29. Essop MR, Wisenbaugh TW, Sareli PE (1994) Discordant changes in left ventricular performance after valve replacement for isolated rheumatic mitral regurgitation versus combined mitral and aortic regurgitation in teenagers. Am J Cardiol 73(12):910–914

    Article  CAS  PubMed  Google Scholar 

  30. Skudicky D, Essop MR, Sareli P (1997) Time-related changes in left ventricular function after double valve replacement for combined aortic and mitral regurgitation in a young rheumatic population: Predictors of postoperative left ventricular performance and role of chordal preservation. Circulation 95(4):899–904

    Article  CAS  PubMed  Google Scholar 

  31. Krishna Moorthy PS, Sivalingam S, Dillon J, Kong PK, Yakub MA (2019) Is it worth repairing rheumatic mitral valve disease in children? Long-term outcomes of an aggressive approach to rheumatic mitral valve repair compared to replacement in young patients. Interact Cardiovasc Thorac Surg 28(2):191–198

    Article  PubMed  Google Scholar 

  32. McGurty D, Remenyi B, Cheung M, Engelman D, Zannino D, Milne C et al (2019) Outcomes after rheumatic mitral valve repair in children. Ann Thorac Surg 108(3):792–797

    Article  PubMed  Google Scholar 

  33. Kalangos A, Christenson JT, Beghetti M, Cikirikcioglu M, Kamentsidis D, Aggoun Y (2008) Mitral valve repair for rheumatic valve disease in children: midterm results and impact of the use of a biodegradable mitral ring. Ann Thorac Surg 86(1):161–169

    Article  PubMed  Google Scholar 

  34. Witschey WR, Zhang D, Contijoch F, McGarvey JR, Lee M, Takebayashi S et al (2015) the influence of mitral annuloplasty on left ventricular flow dynamics. Ann Thorac Surg 100(1):114–121

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ren J-F, Aksut S, Lighty GW Jr, Vigilante GJ, Sink JD, Segal BL et al (1996) Mitral valve repair is superior to valve replacement for the early preservation of cardiac function: relation of ventricular geometry to function. Am Heart J 131(5):974–981

    Article  CAS  PubMed  Google Scholar 

  36. Lee C, Lee CH, Kwak JG, Park CS, Kim SJ, Song JY et al (2010) Long-term results after mitral valve repair in children. Eur J Cardiothorac Surg 37(2):267–272

    PubMed  Google Scholar 

  37. Galli E, Lancellotti P, Sengupta PP, Donal E (2014) LV mechanics in mitral and aortic valve diseases: value of functional assessment beyond ejection fraction. JACC Cardiovasc Imaging 7(11):1151–1166

    Article  PubMed  Google Scholar 

  38. Colquitt JL, Pignatelli RH (2016) Strain imaging: the emergence of speckle tracking echocardiography into clinical pediatric cardiology. Congenit Heart Dis 11(2):199–207

    Article  PubMed  Google Scholar 

  39. Rusinaru D, Tribouilloy C, Grigioni F, Avierinos JF, Suri RM, Barbieri A et al (2011) Left atrial size is a potent predictor of mortality in mitral regurgitation due to flail leaflets: results from a large international multicenter study. Circulation 4(5):473–81

    PubMed  Google Scholar 

  40. Dujardin KS, Enriquez-Sarano M, Rossi A, Bailey KR, Seward JB (1997) Echocardiographic assessment of left ventricular remodeling: are left ventricular diameters suitable tools? J Am Coll Cardiol 30(6):1534–1541

    Article  CAS  PubMed  Google Scholar 

  41. Bijvoet G, Teske A, Chamuleau S, Hart E, Jansen R, Schaap J (2020) Global longitudinal strain to predict left ventricular dysfunction in asymptomatic patients with severe mitral valve regurgitation: literature review. Neth Hear J 28(2):63–72

    Article  CAS  Google Scholar 

  42. Marwick TH (2006) Measurement of strain and strain rate by echocardiography: ready for prime time? J Am Coll Cardiol 47(7):1313–1327

    Article  PubMed  Google Scholar 

  43. Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S (2016) Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J 37(15):1196–1207

    Article  PubMed  Google Scholar 

  44. Sobhy R, Samir M, Abdelmohsen G, Ibrahim H, Abd El Rahman MY, Abdelrahman N et al (2019) Subtle myocardial dysfunction and fibrosis in children with rheumatic heart disease: insight from 3D echocardiography, 3D speckle tracking and cardiac magnetic resonance imaging. Pediatr Cardiol 40(3):518–25

    Article  CAS  PubMed  Google Scholar 

  45. Goldsmith IR, Lip GY, Patel RL (2001) A prospective study of changes in the quality of life of patients following mitral valve repair and replacement. Eur J Cardiothorac Surg 20(5):949–955

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

There is no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deane L. Yim.

Ethics declarations

Conflict of interest

The authors disclose no conflict of interest financial or otherwise. This research and manuscript preparation did not receive any specific grants or other support from funding agencies in the public, commercial, or not-for-profit sectors.

Ethical approval

Ethical approval for this study was granted by the Child and Adolescent Health Service Human Research Ethics Committee (PRN: RGS0000003471).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarca, A.J., Causer, L.E., Maslin, K.L. et al. Impact of mitral regurgitation on left ventricular remodeling and function in children with rheumatic heart disease. Int J Cardiovasc Imaging 38, 2667–2676 (2022). https://doi.org/10.1007/s10554-022-02678-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02678-w

Keywords

Navigation