Skip to main content
Log in

Utility of speckle-tracking echocardiography for predicting atrial fibrillation following ischemic stroke: a systematic review and meta-analysis

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Undiagnosed atrial fibrillation (AF) is one of the main sources of cryptogenic stroke. And strain indices measured by speckle-tracking echocardiography are associated with atrial remodeling supposed to be the substrate of AF. Therefore, there is a strong need for evaluating the utility of speckle-tracking echocardiography to predict the likelihood of AF in patients with cryptogenic stroke. PubMed, Embase and Cochrane Database were searched for studies. The random-effects model was used to calculate the pooled results, and summary receiver operating characteristic curve (SROC) analysis was performed to show the overall predictive value. There were 1483 patients with cryptogenic stroke from 8 studies. Meta-analysis showed that strain indices including global longitudinal strain (GLS) (mean difference [SMD]: − 0.22, 95% confidence interval [95% CI] − 0.40 to − 0.04), left atrial reservoir strain (εR), (SMD: − 0.87, 95% CI − 1.26 to − 0.48, conduit strain (εCD) (SMD: − 0.56, 95% CI − 0.81 to − 0.30), contractile strain (εCT) (SMD: − 1.00, 95% CI − 1.39 to − 0.61), and left atrial reservoir strain rate (SRe) (SMD: − 0.54, 95% CI − 0.80 to − 0.28) measured at the period of cryptogenic stroke was significantly decreased in patients with AF occurrence compared to without. SROC analysis suggested an acceptable predictive efficiency of εR for AF occurrence (AUC = 0.799). For patients after cryptogenic stroke, GLS, εR, εCD, εCT and SRe were significantly decreased in AF occurrence compared with non-occurrence. But there was no value in left atrial reservoir strain rate (SRs) and contractile strain rate (SRa) for predicting AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Ble M, Benito B, Cuadrado-Godia E, Pérez-Fernández S, Gómez M, Mas-Stachurska A, Tizón-Marcos H, Molina L, Martí-Almor J, Cladellas M (2021) Left atrium assessment by speckle tracking echocardiography in cryptogenic stroke: seeking silent atrial fibrillation. J Clin Med 10(16):3501

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sandercock PA, Warlow CP, Jones LN, Starkey IR (1989) Predisposing factors for cerebral infarction: the Oxfordshire community stroke project. BMJ 298(6666):75–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hart R, Diener H, Coutts S, Easton J, Granger C, O’Donnell M, Sacco R, Connolly S (2014) Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol 13:429–438

    Article  PubMed  Google Scholar 

  4. Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, Rymer MM, Thijs V, Rogers T, Beckers F et al (2014) Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 370(26):2478–2486

    Article  CAS  PubMed  Google Scholar 

  5. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomstrom-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE et al (2021) 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 42(5):373–498

    Article  PubMed  Google Scholar 

  6. Glotzer TV, Hellkamp AS, Zimmerman J, Sweeney MO, Yee R, Marinchak R, Cook J, Paraschos A, Love J, Radoslovich G et al (2003) Atrial high rate episodes detected by pacemaker diagnostics predict death and stroke: report of the Atrial Diagnostics Ancillary Study of the MOde Selection Trial (MOST). Circulation 107(12):1614–1619

    Article  PubMed  Google Scholar 

  7. Perera KS, Sharma M, Connolly SJ, Wang J, Gold MR, Hohnloser SH, Lau CP, Van Gelder IC, Morillo C, Capucci A et al (2018) Stroke type and severity in patients with subclinical atrial fibrillation: an analysis from the asymptomatic atrial fibrillation and stroke evaluation in pacemaker patients and the atrial fibrillation reduction atrial pacing trial (ASSERT). Am Heart J 201:160–163

    Article  PubMed  Google Scholar 

  8. Vianna-Pinton R, Moreno CA, Baxter CM, Lee KS, Tsang TS, Appleton CP (2009) Two-dimensional speckle-tracking echocardiography of the left atrium: feasibility and regional contraction and relaxation differences in normal subjects. J Am Soc Echocardiogr 22(3):299–305

    Article  PubMed  Google Scholar 

  9. Cameli M, Caputo M, Mondillo S, Ballo P, Palmerini E, Lisi M, Marino E, Galderisi M (2009) Feasibility and reference values of left atrial longitudinal strain imaging by two-dimensional speckle tracking. Cardiovasc Ultrasound 7:6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Haji K, Marwick TH (2021) Clinical utility of echocardiographic strain and strain rate measurements. Curr Cardiol Rep 23(3):18

    Article  PubMed  Google Scholar 

  11. Fu L, Rao F, Lian F, Yang H, Kuang S, Wu S, Deng C, Xue Y (2019) Mechanism of electrical remodeling of atrial myocytes and its influence on susceptibility to atrial fibrillation in diabetic rats. Life Sci 239:116903

    Article  CAS  PubMed  Google Scholar 

  12. Johansen MC, Doria de Vasconcellos H, Nazarian S, Lima JAC, Gottesman RF (2021) The investigation of left atrial structure and stroke etiology: the I-LASER study. J Am Heart Assoc 10(2):e018766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoit BD (2014) Left atrial size and function: role in prognosis. J Am Coll Cardiol 63(6):493–505

    Article  PubMed  Google Scholar 

  14. Pathan F, D’Elia N, Nolan MT, Marwick TH, Negishi K (2017) Normal ranges of left atrial strain by speckle-tracking echocardiography: a systematic review and meta-analysis. J Am Soc Echocardiogr 30(1):59–70 (e58)

    Article  PubMed  Google Scholar 

  15. Azemi T, Rabdiya VM, Ayirala SR, McCullough LD, Silverman DI (2012) Left atrial strain is reduced in patients with atrial fibrillation, stroke or TIA, and low risk CHADS(2) scores. J Am Soc Echocardiogr 25(12):1327–1332

    Article  PubMed  Google Scholar 

  16. Liao JN, Chao TF, Kuo JY, Sung KT, Tsai JP, Lo CI, Lai YH, Su CH, Hung CL, Yeh HI (2020) Global left atrial longitudinal strain using 3-beat method improves risk prediction of stroke over conventional echocardiography in atrial fibrillation. Circ Cardiovasc imaging 13(8):e010287

    Article  PubMed  Google Scholar 

  17. Kamel H, Bartz TM, Longstreth WT Jr, Elkind MSV, Gottdiener J, Kizer JR, Gardin JM, Kim J, Shah S (2021) Cardiac mechanics and incident ischemic stroke: the cardiovascular health study. Sci Rep 11(1):17358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deferm S, Bertrand PB, Churchill TW, Sharma R, Vandervoort PM, Schwamm LH, Yoerger Sanborn DM (2021) Left atrial mechanics assessed early during hospitalization for cryptogenic stroke are associated with occult atrial fibrillation: a speckle-tracking strain echocardiography study. J Am Soc Echocardiogr 34(2):156–165

    Article  PubMed  Google Scholar 

  19. Kusunose K, Takahashi H, Nishio S, Hirata Y, Zheng R, Ise T, Yamaguchi K, Yagi S, Fukuda D, Yamada H et al (2021) Predictive value of left atrial function for latent paroxysmal atrial fibrillation as the cause of embolic stroke of undetermined source. J Cardiol 78(5):355–361

    Article  PubMed  Google Scholar 

  20. Olsen FJ et al (2020) Relationship between left atrial strain, diastolic dysfunction and subclinical atrial fibrillation in patients with cryptogenic stroke: the SURPRISE echo substudy. Int J Cardiovasc Imaging 36(1):79–89

    Article  PubMed  Google Scholar 

  21. Pathan F, Sivaraj E, Negishi K, Rafiudeen R, Pathan S, D’Elia N, Galligan J, Neilson S, Fonseca R, Marwick TH (2018) Use of atrial strain to predict atrial fibrillation after cerebral ischemia. JACC Cardiovasc Imaging 11(11):1557–1565

    Article  PubMed  Google Scholar 

  22. Rasmussen SMA, Olsen FJ, Jørgensen PG, Fritz-Hansen T, Jespersen T, Gislason G, Biering-Sørensen T (2019) Utility of left atrial strain for predicting atrial fibrillation following ischemic stroke. Int J Cardiovasc Imaging 35(9):1605–1613

    Article  PubMed  Google Scholar 

  23. Sade LE, Keskin S, Can U, Colak A, Yuce D, Ciftci O, Ozin B, Muderrisoglu H (2020) Left atrial mechanics for secondary prevention from embolic stroke of undetermined source. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jeaa311

    Article  PubMed  PubMed Central  Google Scholar 

  24. Skaarup KG, Christensen H, Høst N, Mahmoud MM, Ovesen C, Olsen FJ, Jensen JS, Biering-Sørensen T (2017) Usefulness of left ventricular speckle tracking echocardiography and novel measures of left atrial structure and function in diagnosing paroxysmal atrial fibrillation in ischemic stroke and transient ischemic attack patients. Int J Cardiovasc Imaging 33(12):1921–1929

    Article  PubMed  Google Scholar 

  25. Sonaglioni A, Lombardo M, Nicolosi GL, Rigamonti E, Anza C (2021) Incremental diagnostic role of left atrial strain analysis in thrombotic risk assessment of nonvalvular atrial fibrillation patients planned for electrical cardioversion. Int J Cardiovasc Imaging 37(5):1539–1550

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92(7):1954–1968

    Article  CAS  PubMed  Google Scholar 

  27. Thomas L, Abhayaratna WP (2017) Left atrial reverse remodeling: mechanisms, evaluation, and clinical significance. JACC Cardiovasc Imaging 10(1):65–77

    Article  PubMed  Google Scholar 

  28. Ramkumar S, Pathan F, Kawakami H, Ochi A, Yang H, Potter EL, Marwick TH (2021) Impact of disease stage on the performance of strain markers in the prediction of atrial fibrillation. Int J Cardiol 324:233–241

    Article  PubMed  Google Scholar 

  29. Njoku A, Kannabhiran M, Arora R, Reddy P, Gopinathannair R, Lakkireddy D, Dominic P (2018) Left atrial volume predicts atrial fibrillation recurrence after radiofrequency ablation: a meta-analysis. Europace 20(1):33–42

    Article  PubMed  Google Scholar 

  30. Tschope C, Senni M (2020) Usefulness and clinical relevance of left ventricular global longitudinal systolic strain in patients with heart failure with preserved ejection fraction. Heart Fail Rev 25(1):67–73

    Article  PubMed  Google Scholar 

  31. Dons M, Jensen JS, Olsen FJ, de Knegt MC, Fritz-Hansen T, Vazir A, Biering-Sorensen T (2018) Global longitudinal strain corrected by RR-interval is a superior echocardiographic predictor of outcome in patients with atrial fibrillation. Int J Cardiol 263:42–47

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Beijing Municipal Administration of Hospitals’ Ascent Plan (DFL20190902) of Professor Ping Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Liu, P., Lv, T. et al. Utility of speckle-tracking echocardiography for predicting atrial fibrillation following ischemic stroke: a systematic review and meta-analysis. Int J Cardiovasc Imaging 38, 1771–1780 (2022). https://doi.org/10.1007/s10554-022-02570-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02570-7

Keywords

Navigation