Skip to main content
Log in

Doppler mitral inflow variables time course after treadmill stress echo with and without ischemic response

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

This study evaluated Doppler mitral inflow variables changes from rest to post-exercise among 104 subjects with and without echocardiographic evidence of ischemic response (IR) to exercise (63.9 ± 11 years, 54% male, 32% with IR) who underwent a clinically indicated treadmill stress echo (TSE) test. The time from exercise cessation to imaging (TIME) was recorded. The changes (after TSE minus baseline values) in the peak E-wave velocity (∆E) [34.2 vs. 24.2, p = 0.024] and E-wave deceleration rate (∆DR) [348.0 vs. 225.7, p = 0.010] were bigger in ischemic than in nonischemic subjects, while the changes in the peak A-wave velocity (∆A) did not differ [7.9 vs. 15.0, p = 0.082]. The correlations between Doppler variables and IR, TIME, and TIME × IR interaction were analyzed. We observed a significant interaction between TIME and IR regarding ∆E and ∆DR. The differences in the regression line slopes of time courses for ∆E and ∆DR based on IR were significant: ∆E (− 0.09 vs. − 8.17, p = 0.037) and ∆DR (11.23 vs. − 82.60, p = 0.022). Main findings: (1) Time courses after exercise of ∆E and ∆DR in subjects with and without IR were different. (2) ∆E and ∆DR did not differ between subjects with and without IR at exercise cessation (TIME = 0). (3) The simple main effect of ischemia on ∆E and ∆DR was significant at TIME of ≥ 3 min. Divergent time courses of ∆E and ∆DR after exercise might be promising for detecting diastolic dysfunction caused by ischemia.

Graphical abstract

After the cessation of exercise, ΔE and ΔDR in nonischemic but not in ischemic subjects quickly tend to zero. The differences in ΔE and ΔDR between the two groups only became significant for TIME of ≥ 3 min. At the time of exercise cessation, the values of ΔE and ΔDR (taken from the regression lines) were not significantly different between the patients with and without IR. This divergent response is promising for detecting diastolic dysfunction caused by ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Choong CY, Abascal VM, Thomas JD, Guerrero JL, McGlew S, Weyman AE (1988) Combined influence of ventricular loading and relaxation on the transmitral flow velocity profile in dogs measured by Doppler echocardiography. Circulation 78:672–683. https://doi.org/10.1161/01.cir.78.3.672

    Article  CAS  PubMed  Google Scholar 

  2. Thomas JD, Newell JB, Choong CY, Weyman AE (1991) Physical and physiological determinants of transmitral velocity: numerical analysis. Am J Physiol 260:H1718–H1731. https://doi.org/10.1152/ajpheart.1991.260.5.H1718

    Article  CAS  PubMed  Google Scholar 

  3. Quick CM, Young WL, Noordergraaf A (2001) Infinite number of solutions to the hemodynamic inverse problem. Am J Physiol Heart Circ Physiol 280:H1472–H1479. https://doi.org/10.1152/ajpheart.2001.280.4.H1472

    Article  CAS  PubMed  Google Scholar 

  4. King LM, Boucher F, Opie LH (1995) Coronary flow and glucose delivery as determinants of contracture in the ischemic myocardium. J Mol Cell Cardiol 27:701–720. https://doi.org/10.1016/s0022-2828(08)80061-2

    Article  CAS  PubMed  Google Scholar 

  5. Thomas JD, Choong CY, Flachskampf FA, Weyman AE (1990) Analysis of the early transmitral Doppler velocity curve: effect of primary physiologic changes and compensatory preload adjustment. J Am Coll Cardiol 16:644–655. https://doi.org/10.1016/0735-1097(90)90356-t

    Article  CAS  PubMed  Google Scholar 

  6. Thomas JD, Weyman AE (1992) Numerical modeling of ventricular filling. Ann Biomed Eng 20:19–39. https://doi.org/10.1007/bf02368504

    Article  CAS  PubMed  Google Scholar 

  7. Van de Werf F, Minten J, Carmeliet P, De Geest H, Kesteloot H (1984) The genesis of the third and fourth heart sounds. A pressure-flow study in dogs. J Clin Invest 73:1400–1407. https://doi.org/10.1172/JCI111344

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yamamoto K, Masuyama T, Tanouchi J, Uematsu M, Doi Y, Mano T, Hori M, Tada M, Kamada T (1993) Peak early diastolic filling velocity may decrease with preload augmentation: effect of concomitant increase in the rate of left atrial pressure drop in early diastole. J Am Soc Echocardiogr 6:245–254. https://doi.org/10.1016/s0894-7317(14)80060-6

    Article  CAS  PubMed  Google Scholar 

  9. Courtois M, Vered Z, Barzilai B, Ricciotti NA, Pérez JE, Ludbrook PA (1988) The transmitral pressure-flow velocity relation. Effect of abrupt preload reduction. Circulation 78:1459–1468. https://doi.org/10.1161/01.cir.78.6.1459

    Article  CAS  PubMed  Google Scholar 

  10. Bell SP, Fabian J, LeWinter MM (1998) Effects of dobutamine on left ventricular restoring forces. Am J Physiol 275:H190–H194. https://doi.org/10.1152/ajpheart.1998.275.1.H190

    Article  CAS  PubMed  Google Scholar 

  11. Eisman AS, Shah RV, Dhakal BP, Pappagianopoulos PP, Wooster L, Bailey C, Cunningham TF, Hardin KM, Baggish AL, Ho JE, Malhotra R, Lewis GD (2018) Pulmonary capillary wedge pressure patterns during exercise predict exercise capacity and incident heart failure. Circulation Heart Failure 11:e004750. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004750

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reddy YNV, El-Sabbagh A, Nishimura RA (2018) Comparing pulmonary arterial wedge pressure and left ventricular end diastolic pressure for assessment of left-sided filling pressures. JAMA Cardiol 3:453–454. https://doi.org/10.1001/jamacardio.2018.0318

    Article  PubMed  Google Scholar 

  13. Wolsk E, Bakkestrøm R, Thomsen JH, Balling L, Andersen MJ, Dahl JS, Hassager C, Moller JE, Gustafsson F (2017) The influence of age on hemodynamic parameters during rest and exercise in healthy individuals. JACC Heart Fail 5:337–346. https://doi.org/10.1016/j.jchf.2016.10.012

    Article  PubMed  Google Scholar 

  14. Kass DA, Bronzwaer JG, Paulus WJ (2004) What mechanisms underlie diastolic dysfunction in heart failure? Circ Res 94:1533–1542. https://doi.org/10.1161/01.RES.0000129254.25507.d6

    Article  CAS  PubMed  Google Scholar 

  15. Nikolic S, Yellin EL, Tamura K, Tamura T, Frater RW (1990) Effect of early diastolic loading on myocardial relaxation in the intact canine left ventricle. Circ Res 66:1217–1226. https://doi.org/10.1161/01.res.66.5.1217

    Article  CAS  PubMed  Google Scholar 

  16. Fraites TJ Jr, Saeki A, Kass DA (1997) Effect of altering filling pattern on diastolic pressure-volume curve. Circulation 96:4408–4414. https://doi.org/10.1161/01.CIR.96.12.4408

    Article  PubMed  Google Scholar 

  17. Nikolic SD, Tamura K, Tamura T, Dahm M, Frater RW, Yellin EL (1990) Diastolic viscous properties of the intact canine left ventricle. Circ Res 67:352–359. https://doi.org/10.1161/01.res.67.2.352

    Article  CAS  PubMed  Google Scholar 

  18. Quick CM, Berger DS, Noordergraaf A (1998) Apparent arterial compliance. Am J Physiol 274:H1393–H1403. https://doi.org/10.1152/ajpheart.1998.274.4.H1393

    Article  CAS  PubMed  Google Scholar 

  19. Braunwald E (1997) Heart disease: a textbook of cardiovascular medicine, 5th edn. Saunders, Philadelphia

    Google Scholar 

  20. Solomon SB, Nikolic SD, Glantz SA, Yellin EL (1998) Left ventricular diastolic function of remodeled myocardium in dogs with pacing-induced heart failure. Am J Physiol 274:H945–H954. https://doi.org/10.1152/ajpheart.1998.274.3.H945

    Article  CAS  PubMed  Google Scholar 

  21. Ishii K, Imai M, Suyama T, Maenaka M, Nagai T, Kawanami M, Seino Y (2009) Exercise-induced post-ischemic left ventricular delayed relaxation or diastolic stunning: is it a reliable marker in detecting coronary artery disease? J Am Coll Cardiol 53:698–705. https://doi.org/10.1016/j.jacc.2008.09.057

    Article  PubMed  Google Scholar 

  22. Nonogi H, Hess OM, Bortone AS, Ritter M, Carroll JD, Krayenbuehl HP (1989) Left ventricular pressure-length relation during exercise-induced ischemia. J Am Coll Cardiol 13:1062–1070. https://doi.org/10.1016/0735-1097(89)90261-1

    Article  CAS  PubMed  Google Scholar 

  23. Appleton CP, Jensen JL, Hatle LK, Oh JK (1997) Doppler evaluation of left and right ventricular diastolic function: a technical guide for obtaining optimal flow velocity recordings. J Am Soc Echocardiogr 10:271–292. https://doi.org/10.1016/s0894-7317(97)70063-4

    Article  CAS  PubMed  Google Scholar 

  24. Roger VL, Pellikka PA, Oh JK, Miller FA, Seward JB, Tajik AJ (1995) Stress echocardiography. Part I. Exercise echocardiography: techniques, implementation, clinical applications, and correlations. Mayo Clin Proc 70:5–15. https://doi.org/10.1016/S0025-6196(11)64659-4

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabijan Lulić.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lulić, F., Virag, Z. Doppler mitral inflow variables time course after treadmill stress echo with and without ischemic response. Int J Cardiovasc Imaging 38, 1751–1759 (2022). https://doi.org/10.1007/s10554-022-02568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02568-1

Keywords

Navigation