Skip to main content
Log in

Association between epicardial adipose tissue and recurrence of atrial fibrillation after ablation: a propensity score-matched analysis

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To assess the association between epicardial adipose tissue (EAT) index derived from cardiac computed tomography and atrial fibrillation (AF) recurrence after ablation by comparing with a propensity score matched non-recurrence AF patients. A total of 506 patients with AF recurrence and 174 patients without AF recurrence were enrolled in this retrospective study. Density and volume of total EAT surrounding the heart (Total-EAT) and EAT surrounding the left atrium (LA-EAT) were measured, propensity score matching(PSM) analyses were used to compare the outcomes of the two groups while controlling for confounders. Total-EAT density (HU) value (-81.27 ± 4.67 vs -84.05 ± 3.84, P < 0.001) and LA-EAT density (HU) value (-76.16 ± 4.11 vs -78.83 ± 3.81, P < 0.001) were significantly higher in the patients with AF recurrence than in those without recurrence. LA-EAT density (HU) value was significantly higher than Total-EAT (− 77.50 ± 4.18 vs -82.66 ± 4.49, P = 0.000). In a multiple logistic regression analysis, a higher LA-EAT density (odds ratio: 1.12; 95% CI: 1.02–1.22, p = 0.015) was significantly associated with the AF recurrence after adjusting for other risk factors. The LA-EAT density plays an important role in the AF recurrence after ablation. Assessment of LA-EAT density can improve ablation outcomes by refining patient selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Björck S, Palaszewski B, Friberg L, Bergfeldt L (2013) Atrial fibrillation, stroke risk, and warfarin therapy revisited: a population-based study. Stroke 44:3103–3108. https://doi.org/10.1161/strokeaha.113.002329

    Article  PubMed  Google Scholar 

  2. Pastori D, Pignatelli P, Angelico F, Farcomeni A, Del Ben M, Vicario T et al (2015) Incidence of myocardial infarction and vascular death in elderly patients with atrial fibrillation taking anticoagulants: relation to atherosclerotic risk factors. Chest 147:1644–1650. https://doi.org/10.1378/chest.14-2414

    Article  PubMed  Google Scholar 

  3. Gómez-Outes A, Lagunar-Ruíz J, Terleira-Fernández AI, Calvo-Rojas G, Suárez-Gea ML, Vargas-Castrillón E (2016) Causes of Death in Anticoagulated Patients With Atrial Fibrillation. J Am Coll Cardiol 68:2508–2521. https://doi.org/10.1016/j.jacc.2016.09.944

    Article  PubMed  Google Scholar 

  4. Pokorney SD, Piccini JP, Stevens SR, Patel MR, Pieper KS, Halperin JL et al (2016) Cause of death and predictors of all-cause mortality in anticoagulated patients with nonvalvular atrial fibrillation: data from ROCKET AF. J Am Heart Assoc 5:e002197. https://doi.org/10.1161/jaha.115.002197

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee HY, Yang PS, Kim TH, Uhm JS, Pak HN, Lee MH et al (2017) Atrial fibrillation and the risk of myocardial infarction: a nation-wide propensity-matched study. Sci Rep 7:12716. https://doi.org/10.1038/s41598-017-13061-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takahashi A (2010) Catheter ablation is established as a treatment option for atrial fibrillation–is catheter ablation established as a treatment option of atrial fibrillation? (Pro). Circ J 74:1972–1977. https://doi.org/10.1253/circj.cj-10-0693

    Article  PubMed  Google Scholar 

  7. Yi F, Hou W, Zhou C, Yin Y, Lu S, Duan C et al (2019) Radiofrequency ablation versus antiarrhythmic drug therapy for atrial fibrillation: meta-analysis of safety and efficacy. J Cardiovasc Pharmacol 73:241–247. https://doi.org/10.1097/fjc.0000000000000654

    Article  CAS  PubMed  Google Scholar 

  8. Al Chekakie MO, Welles CC, Metoyer R, Ibrahim A, Shapira AR, Cytron J et al (2010) Pericardial fat is independently associated with human atrial fibrillation. J Am Coll Cardiol 56:784–788. https://doi.org/10.1016/j.jacc.2010.03.071

    Article  PubMed  Google Scholar 

  9. Tsao HM, Hu WC, Wu MH, Tai CT, Lin YJ, Chang SL et al (2011) Quantitative analysis of quantity and distribution of epicardial adipose tissue surrounding the left atrium in patients with atrial fibrillation and effect of recurrence after ablation. Am J Cardiol 107:1498–1503. https://doi.org/10.1016/j.amjcard.2011.01.027

    Article  PubMed  Google Scholar 

  10. Acet H, Ertaş F, Akıl MA, Oylumlu M, Polat N, Yıldız A et al (2014) New inflammatory predictors for non-valvular atrial fibrillation: echocardiographic epicardial fat thickness and neutrophil to lymphocyte ratio. Int J Cardiovasc Imaging 30:81–89. https://doi.org/10.1007/s10554-013-0317-4

    Article  PubMed  Google Scholar 

  11. Mazurek T, Kiliszek M, Kobylecka M, Skubisz-Gluchowska J, Kochman J, Filipiak K et al (2014) Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of atrial fibrillation. Am J Cardiol 113:1505–1508. https://doi.org/10.1016/j.amjcard.2014.02.005

    Article  PubMed  Google Scholar 

  12. Packer M (2019) Drugs that ameliorate epicardial adipose tissue inflammation may have discordant effects in heart failure with a preserved ejection fraction as compared with a reduced ejection fraction. J Card Fail 25:986–1003. https://doi.org/10.1016/j.cardfail.2019.09.002

    Article  PubMed  Google Scholar 

  13. Liu Q, Zhang F, Yang M, Zhong J (2020) Increasing level of interleukin-1β in epicardial adipose tissue is associated with persistent atrial fibrillation. J Interferon Cytokine Res 40:64–69. https://doi.org/10.1089/jir.2019.0098

    Article  CAS  PubMed  Google Scholar 

  14. Wong CX, Ganesan AN, Selvanayagam JB (2017) Epicardial fat and atrial fibrillation: current evidence, potential mechanisms, clinical implications, and future directions. Eur Heart J 38:1294–1302. https://doi.org/10.1093/eurheartj/ehw045

    Article  CAS  PubMed  Google Scholar 

  15. Ciuffo L, Nguyen H, Marques MD, Aronis KN, Sivasambu B, de Vasconcelos HD et al (2019) Periatrial Fat Quality Predicts Atrial Fibrillation Ablation Outcome. Circ Cardiovasc Imaging 12:e008764. https://doi.org/10.1161/circimaging.118.008764

    Article  PubMed  PubMed Central  Google Scholar 

  16. Batal O, Schoenhagen P, Shao M, Ayyad AE, Van Wagoner DR, Halliburton SS et al (2010) Left atrial epicardial adiposity and atrial fibrillation. Circ Arrhythm Electrophysiol 3:230–236. https://doi.org/10.1161/circep.110.957241

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kogo H, Sezai A, Osaka S, Shiono M, Tanaka M (2019) Does epicardial adipose tissue influence postoperative atrial fibrillation? Ann Thorac Cardiovasc Surg 25:149–157. https://doi.org/10.5761/atcs.oa.18-00212

    Article  PubMed  Google Scholar 

  18. Nguyen BL, Fishbein MC, Chen LS, Chen PS, Masroor S (2009) Histopathological substrate for chronic atrial fibrillation in humans. Heart Rhythm 6:454–460. https://doi.org/10.1016/j.hrthm.2009.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marcus GM, Smith LM, Ordovas K, Scheinman MM, Kim AM, Badhwar N et al (2010) Intracardiac and extracardiac markers of inflammation during atrial fibrillation. Heart Rhythm 7:149–154. https://doi.org/10.1016/j.hrthm.2009.10.004

    Article  PubMed  Google Scholar 

  20. Gaborit B, Venteclef N, Ancel P, Pelloux V, Gariboldi V, Leprince P et al (2015) Human epicardial adipose tissue has a specific transcriptomic signature depending on its anatomical peri-atrial, peri-ventricular, or peri-coronary location. Cardiovasc Res 108:62–73. https://doi.org/10.1093/cvr/cvv208

    Article  CAS  PubMed  Google Scholar 

  21. Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L et al (2017) 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 14:e275–e444. https://doi.org/10.1016/j.hrthm.2017.05.012

    Article  PubMed  PubMed Central  Google Scholar 

  22. Austin PC (2011) An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivariate Behav Res 46:399–424. https://doi.org/10.1080/00273171.2011.568786

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wels MG, Lades F, Muehlberg A, Suehling M (2019) General purpose radiomics for multi-modal clinical research. InMedical Imaging 2019: Computer-Aided Diagnosis 2019 Mar 13. Vol 10950, pp 1047–1054. SPIE

  24. Zhang M, Kono M (1997) Solitary pulmonary nodules: evaluation of blood flow patterns with dynamic CT. Radiology 205:471–478. https://doi.org/10.1148/radiology.205.2.9356631

    Article  CAS  PubMed  Google Scholar 

  25. Venteclef N, Guglielmi V, Balse E, Gaborit B, Cotillard A, Atassi F et al (2015) Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines. Eur Heart J 36:795–805a. https://doi.org/10.1093/eurheartj/eht099

    Article  CAS  PubMed  Google Scholar 

  26. Vyas V, Lambiase P (2019) Obesity and Atrial Fibrillation: Epidemiology, Pathophysiology and Novel Therapeutic Opportunities. Arrhythm Electrophysiol Rev 8:28–36. https://doi.org/10.15420/aer.2018.76.2

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chung MK, Martin DO, Sprecher D, Wazni O, Kanderian A, Carnes CA et al (2001) C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation 104:2886–2891. https://doi.org/10.1161/hc4901.101760

    Article  CAS  PubMed  Google Scholar 

  28. Aviles RJ, Martin DO, Apperson-Hansen C, Houghtaling PL, Rautaharju P, Kronmal RA et al (2003) Inflammation as a risk factor for atrial fibrillation. Circulation 108:3006–3010. https://doi.org/10.1161/01.Cir.0000103131.70301.4f

    Article  PubMed  Google Scholar 

  29. Malouf JF, Kanagala R, Al Atawi FO, Rosales AG, Davison DE, Murali NS et al (2005) High sensitivity C-reactive protein: a novel predictor for recurrence of atrial fibrillation after successful cardioversion. J Am Coll Cardiol 46:1284–1287. https://doi.org/10.1016/j.jacc.2005.06.053

    Article  CAS  PubMed  Google Scholar 

  30. Rotter M, Jaïs P, Vergnes MC, Nurden P, Takahashi Y, Sanders P et al (2006) Decline in C-reactive protein after successful ablation of long-lasting persistent atrial fibrillation. J Am Coll Cardiol 47:1231–1233. https://doi.org/10.1016/j.jacc.2005.12.038

    Article  PubMed  Google Scholar 

  31. Liu T, Li G. Periatrial epicardial fat, local pro- and anti-inflammatory balance, and atrial fibrillation. J Am Coll Cardiol 2011;57:1249. https://doi.org/10.1016/j.jacc.2010.09.068

  32. Shin SY, Yong HS, Lim HE, Na JO, Choi CU, Choi JI et al (2011) Total and interatrial epicardial adipose tissues are independently associated with left atrial remodeling in patients with atrial fibrillation. J Cardiovasc Electrophysiol 22:647–655. https://doi.org/10.1111/j.1540-8167.2010.01993.x

    Article  PubMed  Google Scholar 

  33. Frustaci A, Chimenti C, Bellocci F, Morgante E, Russo MA, Maseri A (1997) Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 96:1180–1184. https://doi.org/10.1161/01.cir.96.4.1180

    Article  CAS  PubMed  Google Scholar 

  34. Hell MM, Achenbach S, Schuhbaeck A, Klinghammer L, May MS, Marwan M (2016) CT-based analysis of pericoronary adipose tissue density: Relation to cardiovascular risk factors and epicardial adipose tissue volume. J Cardiovasc Comput Tomogr 10:52–60. https://doi.org/10.1016/j.jcct.2015.07.011

    Article  PubMed  Google Scholar 

  35. Balcer B, Dykun I, Schlosser T, Forsting M, Rassaf T, Mahabadi AA (2018) Pericoronary fat volume but not attenuation differentiates culprit lesions in patients with myocardial infarction. Atherosclerosis 276:182–188. https://doi.org/10.1016/j.atherosclerosis.2018.05.035

    Article  CAS  PubMed  Google Scholar 

  36. Sepehri Shamloo A, Dagres N, Dinov B, Sommer P, Husser-Bollmann D, Bollmann A et al (2019) Is epicardial fat tissue associated with atrial fibrillation recurrence after ablation? A systematic review and meta-analysis. Int J Cardiol Heart Vasc 22:132–138. https://doi.org/10.1016/j.ijcha.2019.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nagashima K, Okumura Y, Watanabe I, Nakai T, Ohkubo K, Kofune T et al (2011) Association between epicardial adipose tissue volumes on 3-dimensional reconstructed CT images and recurrence of atrial fibrillation after catheter ablation. Circ J 75:2559–2565. https://doi.org/10.1253/circj.cj-11-0554

    Article  CAS  PubMed  Google Scholar 

  38. D’Ascenzo F, Corleto A, Biondi-Zoccai G, Anselmino M, Ferraris F, di Biase L et al (2013) Which are the most reliable predictors of recurrence of atrial fibrillation after transcatheter ablation?: a meta-analysis. Int J Cardiol 167:1984–1989. https://doi.org/10.1016/j.ijcard.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  39. Krummen DE, Swarup V, Narayan SM (2015) The role of rotors in atrial fibrillation. J Thorac Dis 7:142–151. https://doi.org/10.3978/j.issn.2072-1439.2014.11.15

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mayyas F, Niebauer M, Zurick A, Barnard J, Gillinov AM, Chung MK et al (2010) Association of left atrial endothelin-1 with atrial rhythm, size, and fibrosis in patients with structural heart disease. Circ Arrhythm Electrophysiol 3:369–379. https://doi.org/10.1161/circep.109.924985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

(1) Shanghai Rising Stars of Medical Talent Youth Development Program, Youth Medical Talents—Medical Imaging Practitioner Program: SHWRS(2020)_087. (2) Three-Year Initiative Plan for Strengthening Public Health System Construction in Shanghai—Youth Medical Talents: GWV-10.2-YQ30. (3) Shanghai Sailing Program. (4) Natural Science Foundation of China under Grant: 8217070113.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MY, WB, ZX, LQ and NZh. Conceptualization, resources, and methodology were performed by WY, and FY. The first draft of the manuscript was written by MY. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenjie Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The approval for this study had been granted by the local Institutional Review board prior to its conduct and informed consent was waived. The study therefore had been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. No patient identifiers were collected, and details that might disclose the identity of the subjects under study should were omitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Bao, W., Xu, Z. et al. Association between epicardial adipose tissue and recurrence of atrial fibrillation after ablation: a propensity score-matched analysis. Int J Cardiovasc Imaging 38, 1865–1872 (2022). https://doi.org/10.1007/s10554-022-02557-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02557-4

Keywords

Navigation