Skip to main content

Advertisement

Log in

Incremental prognostic value of arterial elastance in mild-to-moderate idiopathic pulmonary fibrosis

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Previous reports suggested that poor pulmonary function was associated with increased arterial elastance (Ea) in patients with chronic obstructive pulmonary disease and systemic sclerosis. The mechanisms connecting pulmonary function and Ea have not yet been accurately studied in patients with idiopathic pulmonary fibrosis (IPF). The present study was designed to assess Ea in IPF patients without chronic severe pulmonary hypertension and to determine its prognostic role over a medium-term follow-up. This retrospective study included 60 consecutive patients with mild-to-moderate IPF (73.8 ± 6.6 years, 75% males) and 60 controls matched by age, sex and cardiovascular risk factors. All patients underwent physical examination, spirometry, blood tests, modified Haller index (MHI, chest transverse diameter over the distance between sternum and spine) assessment, conventional transthoracic echocardiography implemented with speckle tracking analysis of left atrial positive global strain (LA-GSA+ ) and finally carotid Doppler ultrasonography, at basal evaluation. The effective arterial elastance index (EaI) was calculated as the ratio of end-systolic pressure to stroke volume index. During follow-up period, we evaluated the composite endpoint of (1) pulmonary or cardiovascular hospitalizations; (2) all-cause mortality. At baseline, EaI was significantly higher in IPF patients than controls (4.1 ± 1.3 vs 3.5 ± 1.0 mmHg/ml/m2, p = 0.01). EaI was strongly correlated to the following variables: C-reactive protein (CRP) (r = 0.86), forced vital capacity (FVC) (r =  − 0.91), E/e′ ratio (r = 0.91), LA-GSA+  (r =  − 0.92), common carotid artery-cross sectional area (CCA-CSA) (r = 0.89) and MHI (r = 0.86), in IPF patients. Mean follow-up time was 2.4 ± 1.3 years. During follow-up, 12 patients died and 17 were hospitalized due to major adverse clinical events. At univariate Cox analysis, CRP (HR 1.51, 95% CI 1.25–1.82), FVC (HR 0.88, 95% CI 0.85–0.91), LA-GSA+  (HR 0.85, 95% CI 0.77–0.94), CCA-CSA (HR 1.12, 95% CI 1.03–1.22) and EaI (HR 2.43, 95% CI 1.75–3.37) were significantly associated with outcome. At multivariate Cox analysis, only EaI (HR 1.60, 95% CI 1.03–2.50) retained statistical significance. An EaI ≥ 4 mmHg/ml/m2 showed 100% sensitivity and 99.4% specificity for predicting outcome (AUC = 0.98). In patients with mild-to-moderate IPF, an EaI ≥ 4 mmHg/ml/m2 is a negative prognostic factor over a medium-term follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

6MWT:

Six-Minute Walking Test

AUC:

Area under curve

CCA:

Common carotid artery

CI:

Confidence interval

COPD:

Chronic obstructive pulmonary disease

CRP:

C-reactive protein

CSA:

Cross sectional area

DLCO:

Diffusing capacity of the lungs for carbon monoxide

EaI:

Arterial elastance index

EesI:

End-systolic elastance index

EDD:

End-diastolic diameter

eGFR:

Estimated glomerular filtration rate

ESP:

End-systolic pressure

FVC:

Forced vital capacity

GSA+  :

Positive global atrial strain

ICC:

Intraclass correlation coefficient

ILD:

Interstitial lung disease

IMT:

Intima–media thickness

IPF:

Idiopathic pulmonary fibrosis

LA:

Left atrial

LV:

Left ventricular

LVEF:

Left ventricular ejection fraction

LVESVi:

Left ventricular end-systolic volume index

MACE:

Major adverse clinical events

MHI:

Modified Haller index

ROC:

Receiver operating characteristic

RWT:

Relative wall thickness

SPAP:

Systolic pulmonary artery pressure

STE:

Speckle tracking echocardiography

SVi:

Stroke volume index

TRV:

Tricuspid regurgitation velocity

VAC:

Ventricular-arterial coupling

References

  1. Raghu G, Remy-Jardin M, Myers JL et al (2018) Diagnosis of idiopathic pulmonary fibrosis: an official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med 198:e44–e68

    Article  PubMed  Google Scholar 

  2. Harari S, Davì M, Biffi A et al (2020) Epidemiology of idiopathic pulmonary fibrosis: a population-based study in primary care. Intern Emerg Med 15:437–445

    Article  PubMed  Google Scholar 

  3. Dalleywater W, Powell HA, Hubbard RB, Navaratnam V (2015) Risk factors for cardiovascular disease in people with idiopathic pulmonary fibrosis: a population-based study. Chest 147:150–215

    Article  PubMed  Google Scholar 

  4. Suzuki A, Kondoh Y (2017) The clinical impact of major comorbidities on idiopathic pulmonary fibrosis. Respir Investig 55:94–103

    Article  PubMed  Google Scholar 

  5. van Cleemput J, Sonaglioni A, Wuyts WA, Bengus M, Stauffer JL, Harari S (2019) Idiopathic pulmonary fibrosis for cardiologists: differential diagnosis, cardiovascular comorbidities, and patient management. Adv Ther 36:298–317

    Article  PubMed  Google Scholar 

  6. King TE Jr, Albera C, Bradford WZ et al (2014) All-cause mortality rate in patients with idiopathic pulmonary fibrosis. Implications for the design and execution of clinical trials. Am J Respir Crit Care Med 189:825–831

    Article  PubMed  Google Scholar 

  7. King CS, Nathan SD (2017) Idiopathic pulmonary fibrosis: effects and optimal management of comorbidities. Lancet Respir Med 5:72–84

    Article  PubMed  Google Scholar 

  8. Caminati A, Lonati C, Cassandro R et al (2019) Comorbidities in idiopathic pulmonary fibrosis: an underestimated issue. Eur Respir Rev 28:190044

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chemla D, Antony I, Lecarpentier Y, Nitenberg A (2003) Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans. Am J Physiol Heart Circ Physiol 285:H614–H620

    Article  CAS  PubMed  Google Scholar 

  10. Antonini-Canterin F, Poli S, Vriz O et al (2013) The ventricular-arterial coupling: from basic pathophysiology to clinical application in the echocardiography laboratory. J Cardiovasc Echogr 23:91–95

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245(5 Pt 1):H773–H780

    CAS  PubMed  Google Scholar 

  12. Chantler PD, Lakatta EG, Najjar SS (2008) Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol 105:1342–1351

    Article  PubMed  PubMed Central  Google Scholar 

  13. Willum-Hansen T, Staessen JA, Torp-Pedersen C et al (2006) Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation 113:664–670

    Article  PubMed  Google Scholar 

  14. Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 55:1318–1327

    Article  PubMed  Google Scholar 

  15. Mills NL, Miller JJ, Anand A et al (2008) Increased arterial stiffness in patients with chronic obstructive pulmonary disease: a mechanism for increased cardiovascular risk. Thorax 63:306–311

    Article  CAS  PubMed  Google Scholar 

  16. Moyssakis I, Gialafos E, Vassiliou V et al (2005) Aortic stiffness in systemic sclerosis is increased independently of the extent of skin involvement. Rheumatology (Oxford) 44:251–254

    Article  CAS  PubMed  Google Scholar 

  17. Okamoto M, Shipley MJ, Wilkinson IB et al (2019) Does poorer pulmonary function accelerate arterial stiffening? A cohort study with repeated measurements of carotid-femoral pulse wave velocity. Hypertension 74:929–935

    Article  CAS  PubMed  Google Scholar 

  18. Alageel S, Gulliford MC (2019) Health checks and cardiovascular risk factor values over six years’ follow-up: Matched cohort study using electronic health records in England. PLoS Med 16:e1002863

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sonaglioni A, Caminati A, Lipsi R et al (2020) Early left atrial dysfunction in idiopathic pulmonary fibrosis patients without chronic right heart failure. Int J Cardiovasc Imaging 36:1711–1723

    Article  PubMed  Google Scholar 

  20. Sonaglioni A, Caminati A, Lipsi R, Lombardo M, Harari S (2021) Association between C-reactive protein and carotid plaque in mild-to-moderate idiopathic pulmonary fibrosis. Intern Emerg Med 16:1529–1539

    Article  PubMed  Google Scholar 

  21. Harari S, Cereda F, Pane F et al (2019) Lung cryobiopsy for the diagnosis of interstitial lung diseases: a series contribution to a debated procedure. Medicina (Kaunas) 55:606

    Article  PubMed  Google Scholar 

  22. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  23. Sonaglioni A, Baravelli M, Vincenti A et al (2018) A new modified anthropometric Haller index obtained without radiological exposure. Int J Cardiovasc Imaging 34:1505–1509

    Article  PubMed  Google Scholar 

  24. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1-39.e14

    Article  PubMed  Google Scholar 

  25. Nagueh SF, Smiseth OA, Appleton CP et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 29:277–314

    Article  PubMed  Google Scholar 

  26. Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  27. Badano LP, Kolias TJ, Muraru D et al (2018) Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 19:591–600

    Article  PubMed  Google Scholar 

  28. Sonaglioni A, Lonati C, Lombardo M et al (2019) Incremental prognostic value of global left atrial peak strain in women with new-onset gestational hypertension. J Hypertens 37:1668–1675

    Article  CAS  PubMed  Google Scholar 

  29. Stein JH, Korcarz CE, Hurst RT et al (2008) Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force: endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr 21:93–111

    Article  PubMed  Google Scholar 

  30. AIUM (2016) AIUM practice parameter for the performance of an ultrasound examination of the extracranial cerebrovascular system. J Ultrasound Med 35:1–11

    Google Scholar 

  31. Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA (2005) Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation 112:2254–2262

    Article  PubMed  Google Scholar 

  32. van Popele NM, Grobbee DE, Bots ML et al (2001) Association between arterial stiffness and atherosclerosis: the Rotterdam study. Stroke 32:454–460

    Article  PubMed  Google Scholar 

  33. Palombo C, Kozakova M (2016) Arterial stiffness, atherosclerosis and cardiovascular risk: pathophysiologic mechanisms and emerging clinical indications. Vasc Pharmacol 77:1–7

    Article  CAS  Google Scholar 

  34. Yasmin MCM, Wallace S et al (2005) Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol 25:372

    Article  CAS  PubMed  Google Scholar 

  35. Bolton CE, Cockcroft JR, Sabit R et al (2009) Lung function in mid-life compared with later life is a stronger predictor of arterial stiffness in men: the caerphilly prospective study. Int J Epidemiol 38:867–876

    Article  PubMed  Google Scholar 

  36. Amaral AF, Patel J, Gnatiuc L, Jones M, Burney PG (2015) Association of pulse wave velocity with total lung capacity: a cross-sectional analysis of the BOLD London study. Respir Med 109:1569–1575

    Article  PubMed  PubMed Central  Google Scholar 

  37. Eagan TM, Ueland T, Wagner PD et al (2010) Systemic inflammatory markers in COPD: results from the Bergen COPD Cohort Study. Eur Respir J 35:540–548

    Article  CAS  PubMed  Google Scholar 

  38. Agusti A, Edwards LD, Rennard SI et al (2012) Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS ONE 7:e37483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferns GAA, Heikal L (2017) Hypoxia in atherogenesis. Angiology 68:472–493

    Article  CAS  PubMed  Google Scholar 

  40. Tarbell J, Mahmoud M, Corti A, Cardoso L, Caro C (2020) The role of oxygen transport in atherosclerosis and vascular disease. J R Soc Interface 17:20190732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wen W, Luo R, Tang X et al (2015) Age-related progression of arterial stiffness and its elevated positive association with blood pressure in healthy people. Atherosclerosis 238:147–152

    Article  CAS  PubMed  Google Scholar 

  42. Tesauro M, Mauriello A, Rovella V et al (2017) Arterial ageing: from endothelial dysfunction to vascular calcification. J Intern Med 281:471–482

    Article  CAS  PubMed  Google Scholar 

  43. Mikael LR, Paiva AMG, Gomes MM et al (2017) Vascular aging and arterial stiffness. Arq Bras Cardiol 109:253–258

    PubMed  PubMed Central  Google Scholar 

  44. Randrianarisoa E, Rietig R, Jacob S et al (2015) Normal values for intima-media thickness of the common carotid artery: an update following a novel risk factor profiling. Vasa 44:444–450

    Article  PubMed  Google Scholar 

  45. Archer JE, Gardner A, Berryman F, Pynsent P (2016) The measurement of the normal thorax using the Haller index methodology at multiple vertebral levels. J Anat 229:577–581

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sonaglioni A, Nicolosi GL, Granato A, Lombardo M, Anzà C, Ambrosio G (2021) Reduced myocardial strain parameters in subjects with pectus excavatum: impaired myocardial function or methodological limitations due to chest deformity? Semin Thorac Cardiovasc Surg 33:251–262

    Article  PubMed  Google Scholar 

  47. Sonaglioni A, Rigamonti E, Nicolosi GL, Bianchi S, Lombardo M (2021) Influence of chest conformation on ventricular-arterial coupling during normal pregnancy. J Clin Ultrasound 49:586–596

    Article  PubMed  Google Scholar 

  48. Chen CH, Fetics B, Nevo E et al (2001) Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J Am Coll Cardiol 38:2028–2034

    Article  CAS  PubMed  Google Scholar 

  49. Chantler PD, Lakatta EG (2012) Arterial-ventricular coupling with aging and disease. Front Physiol 3:90

    Article  PubMed  PubMed Central  Google Scholar 

  50. Satoh H, Kurishima K, Ishikawa H, Ohtsuka M (2006) Increased levels of KL-6 and subsequent mortality in patients with interstitial lung diseases. J Intern Med 260:429–434

    Article  CAS  PubMed  Google Scholar 

  51. Kinder BW, Brown KK, McCormack FX et al (2009) Serum surfactant protein-A is a strong predictor of early mortality in idiopathic pulmonary fibrosis. Chest 135:1557–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barlo NP, van Moorsel CH, Ruven HJ, Zanen P, van den Bosch JM, Grutters JC (2009) Surfactant protein-D predicts survival in patients with idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis 26:155–161

    CAS  PubMed  Google Scholar 

  53. Rosas IO, Richards TJ, Konishi K et al (2008) MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med 5:e93

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work has been supported by Italian Ministry of Health Ricerca Corrente—IRCCS MultiMedica.

Author information

Authors and Affiliations

Authors

Contributions

AS: Conceptualization; Data curation; Investigation; Methodology; Software; Visualization; Writing—original draft. AC: Conceptualization; Data curation; Methodology; Writing—review & editing. GLN: Conceptualization; Supervision; Validation; Writing—review & editing. ML: Conceptualization; Supervision; Validation; Writing—review & editing. SH: Conceptualization; Supervision; Validation; Writing—review & editing.

Corresponding author

Correspondence to Antonella Caminati.

Ethics declarations

Conflict of interest

We wish to confirm that there are no conflicts of interest associated with this publication. Andrea Sonaglioni declares that he has no conflict of interest. Antonella Caminati reports personal fees from Roche and Boehringer Ingelheim, outside the submitted work. Gian Luigi Nicolosi declares that he has no conflict of interest. Michele Lombardo declares that he has no conflict of interest. Sergio Harari reports grants and personal fees from Roche, Actelion and Boehringer Ingelheim, outside the submitted work.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

The need for informed consent was not required due to the retrospective nature of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10554_2022_2541_MOESM1_ESM.docx

Supplemental table. Intra- and interobserver variability analysis of the main echoDoppler parameters and hemodynamic indices. ICC, intraclass correlation coefficient. CCA, common carotid artery. CI, confidence interval. CSA, cross sectional area. EaI, arterial elastance index. GSA+, positive global atrial strain. LA, left atrial (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonaglioni, A., Caminati, A., Nicolosi, G.L. et al. Incremental prognostic value of arterial elastance in mild-to-moderate idiopathic pulmonary fibrosis. Int J Cardiovasc Imaging 38, 1473–1485 (2022). https://doi.org/10.1007/s10554-022-02541-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-022-02541-y

Keywords

Navigation