Skip to main content

Advertisement

Log in

Detection of myocardial bridge by optical coherence tomography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Myocardial bridge (MB) is less commonly documented by angiography than autopsy. Optical coherence tomography (OCT) may be useful to detect angiographically undetectable MB. To investigate OCT characteristics of MB, 86 LAD vessels were imaged by OCT. MB was defined as presence of intermediate optical intensity, “fine” layer surrounding coronary artery by OCT. Frequency and characteristics of the angio-detectable and angio-undetectable but OCT-detectable MB were investigated. In a subset of patients with angio-detectable MB, cyclic changes in coronary arterial dimensions were analyzed. OCT detected MB in 44 of 86 (51%). Arc of the MB was significantly larger (334.8 ± 58.5° vs. 268.4 ± 92.1°, P = 0.008) and length was significantly longer (22.6 ± 11.7 mm vs. 14.5 ± 8.1 mm, P = 0.014) in angio-detectable MB than OCT-detectable but angio-undetectable MB. Both vessel (6.8 ± 1.5 to 5.3 ± 1.0 mm2, P = 0.035) and lumen area (4.4 ± 1.5 to 3.1 ± 0.7 mm2, P = 0.040) decreased significantly from diastole to systole. Adventitial (0.08 ± 0.03 to 0.08 ± 0.02 mm, P = 0.828) and intima + plaque thickness (0.12 ± 0.05 to 0.10 ± 0.03 mm, P = 0.398) did not change significantly during cardiac cycle. On the other hand, medial thickness increased significantly from diastole to systole (0.08 ± 0.03 to 0.12 ± 0.03 mm, P = 0.022). In conclusion, MB is frequently detected as intermediate intensity, fine layer by OCT. During systole, vessel and lumen size decrease with increased medial thickness. Therefore, we should be careful for OCT interpretation of the coronary arteries with MB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alegria JR, Herrmann J, Holmes DR Jr, Lerman A, Rihal CS (2005) Myocardial bridging. Eur Heart J 26(12):1159–1168. https://doi.org/10.1093/eurheartj/ehi203

    Article  PubMed  Google Scholar 

  2. Bourassa MG, Butnaru A, Lesperance J, Tardif JC (2003) Symptomatic myocardial bridges: overview of ischemic mechanisms and current diagnostic and treatment strategies. J Am Coll Cardiol 41(3):351–359. https://doi.org/10.1016/s0735-1097(02)02768-7

    Article  PubMed  Google Scholar 

  3. Corban MT, Hung OY, Eshtehardi P, Rasoul-Arzrumly E, McDaniel M, Mekonnen G, Timmins LH, Lutz J, Guyton RA, Samady H (2014) Myocardial bridging: contemporary understanding of pathophysiology with implications for diagnostic and therapeutic strategies. J Am Coll Cardiol 63(22):2346–2355. https://doi.org/10.1016/j.jacc.2014.01.049

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mohlenkamp S, Hort W, Ge J, Erbel R (2002) Update on myocardial bridging. Circulation 106(20):2616–2622. https://doi.org/10.1161/01.cir.0000038420.14867.7a

    Article  PubMed  Google Scholar 

  5. Tsujita K, Maehara A, Mintz GS, H, Kubo T, Castellanos C, Liu J, Yang J, Oviedo C, Franklin-Bond T, Dasgupta N, Biro S, Dani L, Dangas GD, Mehran R, Kirtane AJ, Lansky AJ, Kreps EM, Collins MB, Stone GW, Moses JW, Leon MB (2008) Comparison of angiographic and intravascular ultrasonic detection of myocardial bridging of the left anterior descending coronary artery. Am J Cardiol 102(12):1608–1613. https://doi.org/10.1016/j.amjcard.2008.07.054

    Article  PubMed  Google Scholar 

  6. Yamada R, Turcott RG, Connolly AJ, Ikeno F, McConnell MV, Schnittger I, Fitzgerald PJ, Honda Y (2014) Histological characteristics of myocardial bridge with an ultrasonic echolucent band. Comparison between intravascular ultrasound and histology. Circ J 78(2):502–504. https://doi.org/10.1253/circj.cj-13-0708

    Article  PubMed  Google Scholar 

  7. Kubo T, Ino Y, Shiono Y, Terada K, Emori H, Higashioka D, Takahata M, Wada T, Shimamura K, Khalifa AKM, Tu S, Akasaka T (2021) Usefulness of optical coherence tomography with angiographic coregistration in the guidance of coronary stent implantation. Heart Vessels. https://doi.org/10.1007/s00380-021-01911-1

    Article  PubMed  Google Scholar 

  8. Kume T, Okura H, Kawamoto T, Yamada R, Miyamoto Y, Hayashida A, Watanabe N, Neishi Y, Sadahira Y, Akasaka T, Yoshida K (2011) Assessment of the coronary calcification by optical coherence tomography. EuroIntervention 6(6):768–772. https://doi.org/10.4244/EIJV6I6A130

    Article  PubMed  Google Scholar 

  9. Kyodo A, Watanabe M, Okamura A, Iwai S, Sakagami A, Nogi K, Kamon D, Hashimoto Y, Ueda T, Soeda T, Okura H, Saito Y (2021) Post-stent optical coherence tomography findings at index percutaneous coronary intervention-characteristics related to subsequent stent thrombosis. Circ J 85(6):857–866. https://doi.org/10.1253/circj.CJ-20-0759

    Article  PubMed  Google Scholar 

  10. Miyamoto Y, Okura H, Kume T, Kawamoto T, Neishi Y, Hayashida A, Yamada R, Imai K, Saito K, Yoshida K (2011) Plaque characteristics of thin-cap fibroatheroma evaluated by OCT and IVUS. JACC Cardiovasc Imaging 4(6):638–646. https://doi.org/10.1016/j.jcmg.2011.03.014

    Article  PubMed  Google Scholar 

  11. Nishida T, Hiro T, Takayama T, Sudo M, Haruta H, Fukamachi D, Hirayama A, Okumura Y (2021) Clinical significance of microvessels detected by in vivo optical coherence tomography within human atherosclerotic coronary arterial intima: a study with multimodality intravascular imagings. Heart Vessels 36(6):756–765. https://doi.org/10.1007/s00380-020-01756-0

    Article  PubMed  Google Scholar 

  12. Yamada R, Okura H, Kume T, Saito K, Miyamoto Y, Imai K, Tsuchiya T, Maehama T, Okahashi N, Obase K, Hayashida A, Neishi Y, Kawamoto T, Yoshida K (2010) Relationship between arterial and fibrous cap remodeling: a serial three-vessel intravascular ultrasound and optical coherence tomography study. Circ Cardiovasc Interv 3(5):484–490. https://doi.org/10.1161/CIRCINTERVENTIONS.109.928911

    Article  PubMed  Google Scholar 

  13. Iwai S, Watanabe M, Okamura A, Kyodo A, Nogi K, Kamon D, Hashimoto Y, Ueda T, Soeda T, Okura H, Saito Y (2021) Prognostic impact of calcified plaque morphology after drug eluting stent implantation: an optical coherence tomography study. Circ J 85(11):2019–2028. https://doi.org/10.1253/circj.CJ-20-1233

    Article  PubMed  Google Scholar 

  14. Ishii T, Hosoda Y, Osaka T, Imai T, Shimada H, Takami A, Yamada H (1986) The significance of myocardial bridge upon atherosclerosis in the left anterior descending coronary artery. J Pathol 148(4):279–291. https://doi.org/10.1002/path.1711480404

    Article  CAS  PubMed  Google Scholar 

  15. Tanaka A, Shimada K, Tearney GJ, Kitabata H, Taguchi H, Fukuda S, Kashiwagi M, Kubo T, Takarada S, Hirata K, Mizukoshi M, Yoshikawa J, Bouma BE, Akasaka T (2011) Conformational change in coronary artery structure assessed by optical coherence tomography in patients with vasospastic angina. J Am Coll Cardiol 58(15):1608–1613. https://doi.org/10.1016/j.jacc.2011.06.046

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ge J, Erbel R, Gorge G, Haude M, Meyer J (1995) High wall shear stress proximal to myocardial bridging and atherosclerosis: intracoronary ultrasound and pressure measurements. Br Heart J 73(5):462–465. https://doi.org/10.1136/hrt.73.5.462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishii T, Asuwa N, Masuda S, Ishikawa Y, Kiguchi H, Shimada K (1991) Atherosclerosis suppression in the left anterior descending coronary artery by the presence of a myocardial bridge: an ultrastructural study. Mod Pathol 4(4):424–431

    CAS  PubMed  Google Scholar 

  18. Ishikawa Y, Akasaka Y, Suzuki K, Fujiwara M, Ogawa T, Yamazaki K, Niino H, Tanaka M, Ogata K, Morinaga S, Ebihara Y, Kawahara Y, Sugiura H, Takimoto T, Komatsu A, Shinagawa T, Taki K, Satoh H, Yamada K, Yanagida-Iida M, Shimokawa R, Shimada K, Nishimura C, Ito K, Ishii T (2009) Anatomic properties of myocardial bridge predisposing to myocardial infarction. Circulation 120(5):376–383. https://doi.org/10.1161/CIRCULATIONAHA.108.820720

    Article  PubMed  Google Scholar 

  19. Yamada R, Tremmel JA, Tanaka S, Lin S, Kobayashi Y, Hollak MB, Yock PG, Fitzgerald PJ, Schnittger I, Honda Y (2016) Functional versus anatomic assessment of myocardial bridging by intravascular ultrasound: impact of arterial compression on proximal atherosclerotic plaque. J Am Heart Assoc 5(4):e001735. https://doi.org/10.1161/JAHA.114.001735

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ernst A, Bulum J, Separovic Hanzevacki J, Lovric Bencic M, Strozzi M (2013) Five-year angiographic and clinical follow-up of patients with drug-eluting stent implantation for symptomatic myocardial bridging in absence of coronary atherosclerotic disease. J Invasive Cardiol 25(11):586–592

    PubMed  Google Scholar 

  21. Haager PK, Schwarz ER, vom Dahl J, Klues HG, Reffelmann T, Hanrath P (2000) Long term angiographic and clinical follow up in patients with stent implantation for symptomatic myocardial bridging. Heart 84(4):403–408. https://doi.org/10.1136/heart.84.4.403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsujita K, Maehara A, Mintz GS, H, Kubo T, Castellanos C, Liu J, Yang J, Oviedo C, Franklin-Bond T, Sugirtharaj DD, Dangas GD, Lansky AJ, Stone GW, Moses JW, Leon MB, Mehran R (2009) Impact of myocardial bridge on clinical outcome after coronary stent placement. Am J Cardiol 103(10):1344–1348. https://doi.org/10.1016/j.amjcard.2009.01.340

    Article  PubMed  Google Scholar 

  23. Darmoch F, Alraies MC, Al-Khadra Y, Moussa Pacha H, Pinto DS, Osborn EA (2020) Intravascular ultrasound imaging-guided versus coronary angiography-guided percutaneous coronary intervention: a systematic review and meta-analysis. J Am Heart Assoc 9(5):e013678. https://doi.org/10.1161/JAHA.119.013678

    Article  PubMed  PubMed Central  Google Scholar 

  24. Saito Y, Kobayashi Y, Fujii K, Sonoda S, Tsujita K, Hibi K, Morino Y, Okura H, Ikari Y, Honye J (2020) Clinical expert consensus document on standards for measurements and assessment of intravascular ultrasound from the Japanese Association of Cardiovascular Intervention and Therapeutics. Cardiovasc Interv Ther 35(1):1–12. https://doi.org/10.1007/s12928-019-00625-6

    Article  CAS  PubMed  Google Scholar 

  25. Sonoda S, Hibi K, Okura H, Fujii K, Honda Y, Kobayashi Y (2020) Current clinical use of intravascular ultrasound imaging to guide percutaneous coronary interventions. Cardiovasc Interv Ther 35(1):30–36. https://doi.org/10.1007/s12928-019-00603-y

    Article  PubMed  Google Scholar 

  26. Ali ZA, Maehara A, Genereux P, Shlofmitz RA, Fabbiocchi F, Nazif TM, Guagliumi G, Meraj PM, Alfonso F, Samady H, Akasaka T, Carlson EB, Leesar MA, Matsumura M, Ozan MO, Mintz GS, Ben-Yehuda O, Stone GW, Investigators IIOP (2016) Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial. Lancet 388(10060):2618–2628. https://doi.org/10.1016/S0140-6736(16)31922-5

    Article  PubMed  Google Scholar 

  27. Kubo T, Shinke T, Okamura T, Hibi K, Nakazawa G, Morino Y, Shite J, Fusazaki T, Otake H, Kozuma K, Ioji T, Kaneda H, Serikawa T, Kataoka T, Okada H, Akasaka T, Investigators O (2017) Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results. Eur Heart J 38(42):3139–3147. https://doi.org/10.1093/eurheartj/ehx351

    Article  PubMed  PubMed Central  Google Scholar 

  28. Otake H, Kubo T, Shinke T, Hibi K, Tanaka S, Ishida M, Kataoka T, Takaya T, Iwasaki M, Sonoda S, Ioji T, Akasaka T (2020) OPtical frequency domain imaging vs. INtravascular ultrasound in percutaneous coronary InterventiON in patients with Acute Coronary Syndrome: study protocol for a randomized controlled trial. J Cardiol 76(3):317–321. https://doi.org/10.1016/j.jjcc.2020.03.010

    Article  PubMed  Google Scholar 

  29. Terashima M, Kaneda H, Honda Y, Shimura T, Kodama A, Habara M, Suzuki T (2021) Current status of hybrid intravascular ultrasound and optical coherence tomography catheter for coronary imaging and percutaneous coronary intervention. J Cardiol 77(5):435–443.  https://doi.org/10.1016/j.jjcc.2020.08.012

    Article  PubMed  Google Scholar 

  30. Shlofmitz E, Jeremias A, Parviz Y, Karimi Galougahi K, Redfors B, Petrossian G, Edens M, Matsumura M, Maehara A, Mintz GS, Stone GW, Shlofmitz RA, Ali ZA (2021) External elastic lamina vs. luminal diameter measurement for determining stent diameter by optical coherence tomography: an ILUMIEN III substudy. Eur Heart J Cardiovasc Imaging 22(7):753–759. https://doi.org/10.1093/ehjci/jeaa276

    Article  Google Scholar 

  31. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG, Bouma B, Bruining N, Cho JM, Chowdhary S, Costa MA, de Silva R, Dijkstra J, Di Mario C, Dudek D, Falk E, Feldman MD, Fitzgerald P, Garcia-Garcia HM, Gonzalo N, Granada JF, Guagliumi G, Holm NR, Honda Y, Ikeno F, Kawasaki M, Kochman J, Koltowski L, Kubo T, Kume T, Kyono H, Lam CC, Lamouche G, Lee DP, Leon MB, Maehara A, Manfrini O, Mintz GS, Mizuno K, Morel MA, Nadkarni S, Okura H, Otake H, Pietrasik A, Prati F, Raber L, Radu MD, Rieber J, Riga M, Rollins A, Rosenberg M, Sirbu V, Serruys PW, Shimada K, Shinke T, Shite J, Siegel E, Sonoda S, Suter M, Takarada S, Tanaka A, Terashima M, Thim T, Uemura S, Ughi GJ, van Beusekom HM, van der Steen AF, van Es GA, van Soest G, Virmani R, Waxman S, Weissman NJ, Weisz G (2012) Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol 59(12):1058–1072. https://doi.org/10.1016/j.jacc.2011.09.079

    Article  PubMed  Google Scholar 

  32. Kume T, Okura H, Miyamoto Y, Yamada R, Saito K, Tamada T, Koyama T, Neishi Y, Hayashida A, Kawamoto T, Yoshida K (2012) Natural history of stent edge dissection, tissue protrusion and incomplete stent apposition detectable only on optical coherence tomography after stent implantation: preliminary observation. Circ J 76(3):698–703. https://doi.org/10.1253/circj.cj-11-0845

    Article  PubMed  Google Scholar 

  33. Kunadian V, Chieffo A, Camici PG, Berry C, Escaned J, Maas A, Prescott E, Karam N, Appelman Y, Fraccaro C, Buchanan GL, Manzo-Silberman S, Al-Lamee R, Regar E, Lansky A, Abbott JD, Badimon L, Duncker DJ, Mehran R, Capodanno D, Baumbach A (2021) An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on coronary pathophysiology & microcirculation endorsed by coronary vasomotor disorders international study group. EuroIntervention 16(13):1049–1069. https://doi.org/10.4244/EIJY20M07_01

  34. Escaned J, Cortes J, Flores A, Goicolea J, Alfonso F, Hernandez R, Fernandez-Ortiz A, Sabate M, Banuelos C, Macaya C (2003) Importance of diastolic fractional flow reserve and dobutamine challenge in physiologic assessment of myocardial bridging. J Am Coll Cardiol 42(2):226–233. https://doi.org/10.1016/s0735-1097(03)00588-6

    Article  PubMed  Google Scholar 

  35. Hakeem A, Cilingiroglu M, Leesar MA (2010) Hemodynamic and intravascular ultrasound assessment of myocardial bridging: fractional flow reserve paradox with dobutamine versus adenosine. Catheter Cardiovasc Interv 75(2):229–236. https://doi.org/10.1002/ccd.22237

    Article  PubMed  Google Scholar 

  36. Kobayashi Y, Tremmel JA, Kobayashi Y, Amsallem M, Tanaka S, Yamada R, Rogers IS, Haddad F, Schnittger I (2015) Exercise strain echocardiography in patients with a hemodynamically significant myocardial bridge assessed by physiological study. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.002496

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pargaonkar VS, Kimura T, Kameda R, Tanaka S, Yamada R, Schwartz JG, Perl L, Rogers IS, Honda Y, Fitzgerald P, Schnittger I, Tremmel JA (2021) Invasive assessment of myocardial bridging in patients with angina and no obstructive coronary artery disease. EuroIntervention 16(13):1070–1078. https://doi.org/10.4244/EIJ-D-20-00779

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Okura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Video 1. Fixed OCT/OFDI image of the coronary arterial segment with MB. Fixed (=no pullback) OFDI image of the coronary arterial segment with myocardial bridge showing cyclic compression and deformation of the coronary artery. Supplementary material 1 (MP4 915.8 kb)

Video 2. Coronary angiogram showing MB of the distal LAD. Supplementary material 2 (MP4 571.3 kb)

Video 3. OCT pullback image of the LAD with MB. Lumen narrowing was evident by OCT pullback imaging. Note that the stenotic lesions were surrounded by myocardial tissue (intermediate optical intensity, fine layer similar to media) and thickening of the media. Supplementary material 3 (MP4 956.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamura, A., Okura, H., Iwai, S. et al. Detection of myocardial bridge by optical coherence tomography. Int J Cardiovasc Imaging 38, 1169–1176 (2022). https://doi.org/10.1007/s10554-021-02497-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02497-5

Keywords

Navigation