Skip to main content
Log in

Myocardial early systolic lengthening predicts mid-term outcomes in patients with hypertrophic cardiomyopathy

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

In this study, we investigated whether early systolic lengthening (ESL) which reflects subclinical ischemia and other echocardiographic and clinic parameters predict primary outcome [appropriate ICD shock, cardiovascular mortality and ventricular tachycardia (VT) or fibrillation] in patients with hypertrophic cardiomyopathy (HCM). 202 Patients with HCM (68% male, mean age 48 ± 13.9 years) were included in the study. Patients’ clinical, electrocardiographic, 2D classic and speckle tracking echocardiography (STE) data were collected. ESL was defined as time from onset of the Q wave on ECG (onset of the R wave if the Q wave was absent) to maximum myocardial systolic lengthening. Patients were divided into two groups as occurrence or absence of primary outcome during 5 years follow up. During the follow-up period of 5 years (mean follow-up duration, 45.9 ± 10.8 months), 31 patients (15%) developed primary outcome [appropriate ICD shock 22 (11%), cardiovascular death 6 (3%), VT/VF 3(1.5%)]. Higher HCM Risk SCD score, longer ESL, and decreased global longitudinal peak strain (GLPS) were observed in patients with primary outcome. A Cox regression analysis, ESL, GLPS and HCM Risk SCD score were found to be independent predictors of occurrence of primary outcome. In ROC curve analysis, ESL > 53.5 msn could discriminate between groups with and without a primary outcome (AUC 0.768, 80% sensitivity and 60% specificity, CI 95% 0.666–0.871). ESL were found to be predictive for primary outcome in patients with HCM. Readily measurable ESL could be helpful to distinguish patients at high risk who could optimally benefit from ICD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Our data are not publicly available to preserve participants’ anonymity. Interested parties are invited to contact the authors to discuss the analysis.

Consent for publication

All of authors have declared consent for publication.

References

  1. Kofflard MJM, Ten Cate FJ, van der Lee C, van Domburg RT (2003) Hypertrophic cardiomyopathy in a large community-based population: clinical outcome and identification of risk factors for sudden cardiac death and clinical deterioration. J Am Coll Cardiol 41:987–993. https://doi.org/10.1016/s0735-1097(02)03004-8

    Article  PubMed  Google Scholar 

  2. Decker JA, Rossano JW, Smith EO et al (2009) Risk factors and mode of death in isolated hypertrophic cardiomyopathy in children. J Am Coll Cardiol 54:250–254. https://doi.org/10.1016/j.jacc.2009.03.051

    Article  PubMed  Google Scholar 

  3. Cardim N, Galderisi M, Edvardsen T et al (2015) Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: an expert consensus of the European Association of Cardiovascular Imaging Endorsed by the Saudi Heart Association. Eur Heart J Cardiovasc Imaging 16:280. https://doi.org/10.1093/ehjci/jeu291

    Article  PubMed  Google Scholar 

  4. Elliott PM, Anastasakis A, Borger MA et al (2014) 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35:2733–2779. https://doi.org/10.1093/eurheartj/ehu284

    Article  PubMed  Google Scholar 

  5. O’Mahony C, Jichi F, Pavlou M et al (2014) A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J 35:2010–2020. https://doi.org/10.1093/eurheartj/eht439

    Article  PubMed  Google Scholar 

  6. Buja G, Miorelli M, Turrini P et al (1993) Comparison of QT dispersion in hypertrophic cardiomyopathy between patients with and without ventricular arrhythmias and sudden death. Am J Cardiol 72:973–976. https://doi.org/10.1016/0002-9149(93)91118-2

    Article  CAS  PubMed  Google Scholar 

  7. D’Andrea A, Caso P, Severino S et al (2006) Prognostic value of intra-left ventricular electromechanical asynchrony in patients with hypertrophic cardiomyopathy. Eur Heart J 27:1311–1318. https://doi.org/10.1093/eurheartj/ehi688

    Article  PubMed  Google Scholar 

  8. Adabag AS, Maron BJ, Appelbaum E et al (2008) Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol 51:1369–1374. https://doi.org/10.1016/j.jacc.2007.11.071

    Article  PubMed  Google Scholar 

  9. Maurer MS, Bokhari S, Damy T et al (2019) Expert consensus recommendations for the suspicion and diagnosis of transthyretin cardiac amyloidosis. Circ Heart Fail 12:e006075. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006075

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lyseggen E, Vartdal T, Remme EW et al (2009) A novel echocardiographic marker of end systole in the ischemic left ventricle: “tug of war” sign. Am J Physiol Heart Circ Physiol 296:H645–H654. https://doi.org/10.1152/ajpheart.00313.2008

    Article  CAS  PubMed  Google Scholar 

  11. Bijnens B, Claus P, Weidemann F et al (2007) Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease. Circulation 116:2453–2464. https://doi.org/10.1161/CIRCULATIONAHA.106.684357

    Article  PubMed  Google Scholar 

  12. Brainin P, Biering-Sørensen SR, Møgelvang R et al (2020) Duration of early systolic lengthening: prognostic potential in the general population. Eur Heart J Cardiovasc Imaging 21:1283–1290. https://doi.org/10.1093/ehjci/jez262

    Article  PubMed  Google Scholar 

  13. Smedsrud MK, Sarvari S, Haugaa KH et al (2012) Duration of myocardial early systolic lengthening predicts the presence of significant coronary artery disease. J Am Coll Cardiol 60:1086–1093. https://doi.org/10.1016/j.jacc.2012.06.022

    Article  PubMed  Google Scholar 

  14. Kühlkamp V, Dörnberger V, Mewis C et al (1999) Clinical experience with the new detection algorithms for atrial fibrillation of a defibrillator with dual chamber sensing and pacing. J Cardiovasc Electrophysiol 10:905–915. https://doi.org/10.1111/j.1540-8167.1999.tb01261.x

    Article  PubMed  Google Scholar 

  15. Higgins SL, Lee RS, Kramer RL (1995) Stability: an ICD detection criterion for discriminating atrial fibrillation from ventricular tachycardia. J Cardiovasc Electrophysiol 6:1081–1088. https://doi.org/10.1111/j.1540-8167.1995.tb00385.x

    Article  CAS  PubMed  Google Scholar 

  16. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270. https://doi.org/10.1093/ehjci/jev014

    Article  PubMed  Google Scholar 

  17. Schabelman S, Schiller NB, Silverman NH, Ports TA (1981) Left atrial volume estimation by two-dimensional echocardiography. Catheter Cardiovasc Diagn 7:165–178. https://doi.org/10.1002/ccd.1810070206

    Article  CAS  Google Scholar 

  18. Pepi M, Tamborini G, Galli C et al (1994) A new formula for echo-Doppler estimation of right ventricular systolic pressure. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 7:20–26. https://doi.org/10.1016/s0894-7317(14)80414-8

    Article  CAS  Google Scholar 

  19. Brainin P, Biering-Sørensen T, Jensen MT et al (2020) Prognostic value of early systolic lengthening by strain imaging in type 2 diabetes. J Am Soc Echocardiogr. https://doi.org/10.1016/j.echo.2020.09.008

    Article  PubMed  Google Scholar 

  20. Minamisawa M, Koyama J, Kozuka A et al (2018) Duration of myocardial early systolic lengthening for diagnosis of coronary artery disease. Open Heart 5:1–9. https://doi.org/10.1136/openhrt-2018-000896

    Article  Google Scholar 

  21. Kahyaoglu M, Gecmen C, Candan O et al (2019) The duration of early systolic lengthening may predict ischemia from scar tissue in patients with chronic coronary total occlusion lesions. Int J Cardiovasc Imaging 35:1823–1829. https://doi.org/10.1007/s10554-019-01624-7

    Article  PubMed  Google Scholar 

  22. Zahid W, Eek CH, Remme EW et al (2014) Early systolic lengthening may identify minimal myocardial damage in patients with non-ST-elevation acute coronary syndrome. Eur Heart J Cardiovasc Imaging 15:1152–1160. https://doi.org/10.1093/ehjci/jeu101

    Article  PubMed  Google Scholar 

  23. Brainin P, Haahr-Pedersen S, Olsen FJ et al (2020) Early systolic lengthening in patients with ST-segment–elevation myocardial infarction: a novel predictor of cardiovascular events. J Am Heart Assoc. https://doi.org/10.1161/JAHA.119.013835

    Article  PubMed  PubMed Central  Google Scholar 

  24. Saumarez RC, Camm AJ, Panagos A et al (1992) Ventricular fibrillation in hypertrophic cardiomyopathy is associated with increased fractionation of paced right ventricular electrograms. Circulation 86:467–474. https://doi.org/10.1161/01.cir.86.2.467

    Article  CAS  PubMed  Google Scholar 

  25. Funabashi N, Takaoka H, Horie S et al (2013) Regional peak longitudinal-strain by 2D speckle-tracking TTE provides useful information to distinguish fibrotic from non-fibrotic lesions in LV myocardium on cardiac MR in hypertrophic cardiomyopathy. Int J Cardiol 168:4520–4523

    Article  Google Scholar 

  26. Hartlage GR, Kim JH, Strickland PT et al (2015) The prognostic value of standardized reference values for speckle-tracking global longitudinal strain in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 31:557–565. https://doi.org/10.1007/s10554-015-0590-5

    Article  PubMed  Google Scholar 

  27. Reant P, Mirabel M, Lloyd G et al (2016) Global longitudinal strain is associated with heart failure outcomes in hypertrophic cardiomyopathy. Heart (Br Card Soc) 102:741–747. https://doi.org/10.1136/heartjnl-2015-308576

    Article  CAS  Google Scholar 

  28. De S, Borowski AG, Wang H et al (2011) Subclinical echocardiographic abnormalities in phenotype-negative carriers of myosin-binding protein C3 gene mutation for hypertrophic cardiomyopathy. Am Heart J 162:262-267.e3. https://doi.org/10.1016/j.ahj.2011.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ozawa K, Funabashi N, Takaoka H, Kobayashi Y (2017) Successful MACE risk stratification in hypertrophic cardiomyopathy patients using different 2D speckle-tracking TTE approaches. Int J Cardiol 228:1015–1021. https://doi.org/10.1016/j.ijcard.2016.11.141

    Article  PubMed  Google Scholar 

  30. Debonnaire P, Thijssen J, Leong DP, Joyce E (2014) Global longitudinal strain and left atrial volume index improve prediction of appropriate implantable cardioverter defibrillator therapy in hypertrophic cardiomyopathy patients. Int J Cardiovasc Imaging. https://doi.org/10.1007/s10554-014-0378-z

    Article  PubMed  Google Scholar 

  31. Liu H, Pozios I, Haileselassie B et al (2017) Role of global longitudinal strain in predicting outcomes in hypertrophic cardiomyopathy. Am J Cardiol 120:670–675. https://doi.org/10.1016/j.amjcard.2017.05.039

    Article  PubMed  Google Scholar 

  32. Maron BJ (2010) Contemporary insights and strategies for risk stratification and prevention of sudden death in hypertrophic cardiomyopathy. Circulation 121:445–456. https://doi.org/10.1161/CIRCULATIONAHA.109.878579

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the patients who voluntarily participated in the study.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozkan Candan.

Ethics declarations

Conflict of interest

All of the authors have no conflict of interest.

Ethical approval

Ethical approval was obtained from the Ethics Committee of Kartal Kosuyolu Heart Training and Research Hospital in Istanbul (Turkey).

Informed consent

Each participant provided written informed consent after receiving a detailed description of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candan, O., Gecmen, C., Kahyaoğlu, M. et al. Myocardial early systolic lengthening predicts mid-term outcomes in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 38, 161–168 (2022). https://doi.org/10.1007/s10554-021-02484-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02484-w

Keywords

Navigation