Skip to main content

Advertisement

Log in

The association between heart rate reserve and impaired coronary flow velocity reserve: a study based on adenosine stress echocardiography

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

This study was to explore the correlation between heart rate reserve (HRR) to coronary flow velocity reserve (CFVR), using adenosine stress echocardiography (SE), in patients with angina and no obstructive coronary artery disease (ANOCA). 111 ANOCA patients underwent adenosine SE were enrolled, which were divided into two groups, impaired CFVR group (CFVR < 2) and control groups (CFVR ≥ 2). The relationships between HRR and impaired CFVR were explored in total and subgroup to sex. A reduced HRR during adenosine infusion was seen in ANOCA patients with impaired CFVR (25.73 ± 8.39 vs. 34.30 ± 19.93, P < 0.001). Compared to respective controls, the blunted HRR to adenosine was more pronounced in female patients (women: 27.21 ± 8.01 vs. 39.48 ± 10.57, P < 0.001; men: 24.05 ± 8.70 vs. 29.12 ± 8.69, P = 0.041). A strong association between CFVR and a blunted HRR was observed in women (r = 0.46, P < 0.001), while no association in men (r = 0.18, P = 0.199). In female, a multivariate logistic regression identified HRR as the strongest negative predictor of impaired CFVR [HR (95% CI) = 0.854 (0.764–0.956), P = 0.006]. Based on the ROC curve, HRR < 35% was a strong indicator of impaired CFVR, with AUC of 0.838, sensitivity of 70%, and specificity of 87% in females. A blunted HRR was seen in patients with impaired CFVR, with a most pronounced effect being seen in female patients. The blunted HRR < 35% is intricately linked to impaired CFVR in women with ANOCA beyond the value of traditional risk factors, which could ultimately contribute to risk stratification of impaired CFVR in such patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bairey Merz CN, Pepine CJ, Walsh MN, Fleg JL (2017) Ischemia and No Obstructive Coronary Artery Disease (INOCA): Developing Evidence-Based Therapies and Research Agenda for the Next Decade. Circulation 135(11):1075–1092. https://doi.org/10.1161/CIRCULATIONAHA.116.024534

    Article  PubMed  Google Scholar 

  2. Rahman H, Corcoran D, Aetesam-Ur-Rahman M, Hoole SP, Berry C, Perera D (2019) Diagnosis of patients with angina and non-obstructive coronary disease in the catheter laboratory. Heart 105(20):1536–1542. https://doi.org/10.1136/heartjnl-2019-315042

    Article  PubMed  Google Scholar 

  3. Waheed N, Elias-Smale S, Malas W, Maas AH, Sedlak TL, Tremmel J, Mehta PK (2020) Sex differences in non-obstructive coronary artery disease. Cardiovasc Res 116(4):829–840. https://doi.org/10.1093/cvr/cvaa001

    Article  CAS  PubMed  Google Scholar 

  4. Ong P, Camici PG, Beltrame JF, Crea F, Shimokawa H, Sechtem U, Kaski JC, Merz B, Coronary Vasomotion Disorders International Study Group (COVADIS) (2018) International standardization of diagnostic criteria for microvascular angina. Int J Cardiol 250:16–20. https://doi.org/10.1016/j.ijcard.2017.08.068

    Article  PubMed  Google Scholar 

  5. Pepine CJ, Ferdinand KC, Shaw LJ, Light-McGroary KA, Shah RU, Gulati M, Duvernoy C, Walsh MN, Merz B, ACC CVD in Women Committee (2015) Emergence of Nonobstructive Coronary Artery Disease: A Woman’s Problem and Need for Change in Definition on Angiography. J Am Coll Cardiol 66(17):1918–1933. https://doi.org/10.1016/j.jacc.2015.08.876

    Article  PubMed  PubMed Central  Google Scholar 

  6. Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, Dorbala S, Blankstein R, Rimoldi O, Camici PG, Carli D, M. F (2014) Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 129(24):2518–2527. https://doi.org/10.1161/CIRCULATIONAHA.113.008507

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cortigiani L, Rigo F, Bovenzi F, Sicari R, Picano E (2019) The prognostic value of coronary flow velocity reserve in two coronary arteries during vasodilator stress echocardiography. J Am Soc Echocardiogr 32(1):81–91. https://doi.org/10.1016/j.echo.2018.09.002

    Article  PubMed  Google Scholar 

  8. Kono T, Uetani T, Inoue K, Nagai T, Nishimura K, Suzuki J, Tanabe Y, Kido T, Kurata A, Mochizuki T, Ogimoto A, Okura T, Higaki J, Yamaguchi O, Ikeda S (2020) Diagnostic accuracy of stress myocardial computed tomography perfusion imaging to detect myocardial ischemia: a comparison with coronary flow velocity reserve derived from transthoracic Doppler echocardiography. J Cardiol 76(3):251–258. https://doi.org/10.1016/j.jjcc.2020.03.003

    Article  PubMed  Google Scholar 

  9. Mulvagh SL, Mokhtar AT (2019) Coronary Flow Velocity Reserve in Stress Echocardiography: Time to Go With the Global Flow? J Am Coll Cardiol 74(18):2292–2294. https://doi.org/10.1016/j.jacc.2019.08.1042

    Article  PubMed  Google Scholar 

  10. Ciampi Q, Zagatina A, Cortigiani L, Gaibazzi N, Daros B, Zhuravskaya C, Wierzbowska-Drabik N, Kasprzak K, de Castro JD, Silva Pretto E, Andrea JLD, Djordjevic-Dikic A, Monte A, Simova I, Boshchenko I, Citro A, Amor R, Merlo M, Dodi PM, Rigo C, Gligorova FS, Stress Echo 2020 Study Group of the Italian Society of Echocardiography and Cardiovascular Imaging (2019) Functional, anatomical, and prognostic correlates of coronary flow velocity reserve during stress echocardiography. J Am Coll Cardiol 74(18):2278–2291. https://doi.org/10.1016/j.jacc.2019.08.1046

    Article  CAS  PubMed  Google Scholar 

  11. Hage FG, Heo J, Franks B, Belardinelli L, Blackburn B, Wang W, Iskandrian AE (2009) Differences in heart rate response to adenosine and regadenoson in patients with and without diabetes mellitus. Am Heart J 157(4):771–776. https://doi.org/10.1016/j.ahj.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  12. Hage FG, Perry G, Heo J, Iskandrian AE (2010) Blunting of the heart rate response to adenosine and regadenoson in relation to hyperglycemia and the metabolic syndrome. Am J Cardiol 105(6):839–843. https://doi.org/10.1016/j.amjcard.2009.11.042

    Article  CAS  PubMed  Google Scholar 

  13. Hedqvist P, Fredholm BB (1979) Inhibitory effect of adenosine on adrenergic neuroeffector transmission in the rabbit heart. Acta Physiol Scand 105(1):120–122. https://doi.org/10.1111/j.1748-1716.1979.tb06321.x

    Article  CAS  PubMed  Google Scholar 

  14. Burger IA, Lohmann C, Messerli M, Bengs S, Becker A, Maredziak M, Treyer V, Haider A, Schwyzer M, Benz DC, Kudura K, Fiechter M, Giannopoulos AA, Fuchs TA, Gräni C, Pazhenkottil AP, Gaemperli O, Buechel RR, Kaufmann PA, Gebhard C (2018) Age- and sex-dependent changes in sympathetic activity of the left ventricular apex assessed by 18F-DOPA PET imaging. PLoS ONE 13(8):e0202302. https://doi.org/10.1371/journal.pone.0202302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, Cammann VL, Sarcon A, Geyer V, Neumann CA, Seifert B, Hellermann J, Schwyzer M, Eisenhardt K, Jenewein J, Franke J, Katus HA, Burgdorf C, Schunkert H, Moeller C, Lüscher TF (2015) Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy. N Engl J Med 373(10):929–938. https://doi.org/10.1056/NEJMoa1406761

    Article  CAS  PubMed  Google Scholar 

  16. Cortigiani L, Ciampi Q, Carpeggiani C, Bovenzi F, Picano E (2020) Prognostic value of heart rate reserve is additive to coronary flow velocity reserve during dipyridamole stress echocardiography. Arch Cardiovasc Dis 113(4):244–251. https://doi.org/10.1016/j.acvd.2020.01.005

    Article  PubMed  Google Scholar 

  17. Kunadian V, Chieffo A, Camici PG, Berry C, Escaned J, Maas A, Prescott E, Karam N, Appelman Y, Fraccaro C, Buchanan L, Manzo-Silberman G, Al-Lamee S, Regar R, Lansky E, Abbott A, Badimon JD, Duncker L, Mehran DJ, Capodanno R, Baumbach D, A (2020) An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur Heart J 41(37):3504–3520. https://doi.org/10.1093/eurheartj/ehaa503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang N, Su YF, Li WW, Wang SS, Zhao CQ, Wang BY, Liu H, Guo M, Han W (2019) Microcirculation function assessed by adenosine triphosphate stress myocardial contrast echocardiography and prognosis in patients with nonobstructive coronary artery disease. Medicine 98(27):e15990. https://doi.org/10.1097/MD.0000000000015990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dean J, Cruz SD, Mehta PK, Merz CN (2015) Coronary microvascular dysfunction: sex-specific risk, diagnosis, and therapy. Nat Rev Cardiol 12(7):406–414. https://doi.org/10.1038/nrcardio.2015.72

    Article  PubMed  Google Scholar 

  20. Lauer MS, Francis GS, Okin PM, Pashkow FJ, Snader CE, Marwick TH (1999) Impaired chronotropic response to exercise stress testing as a predictor of mortality. JAMA 281(6):524–529. https://doi.org/10.1001/jama.281.6.524

    Article  CAS  PubMed  Google Scholar 

  21. Abidov A, Hachamovitch R, Hayes SW, Ng CK, Cohen I, Friedman JD, Germano G, Berman DS (2003) Prognostic impact of hemodynamic response to adenosine in patients older than age 55 years undergoing vasodilator stress myocardial perfusion study. Circulation 107(23):2894–2899. https://doi.org/10.1161/01.CIR.0000072770.27332.75

    Article  PubMed  Google Scholar 

  22. Bhatheja R, Francis GS, Pothier CE, Lauer MS (2005) Heart rate response during dipyridamole stress as a predictor of mortality in patients with normal myocardial perfusion and normal electrocardiograms. Am J Cardiol 95(10):1159–1164. https://doi.org/10.1016/j.amjcard.2005.01.042

    Article  PubMed  Google Scholar 

  23. Dal Porto R, Faletra F, Picano E, Pirelli S, Moreo A, Varga A (2001) Safety, feasibility, and diagnostic accuracy of accelerated high-dose dipyridamole stress echocardiography. Am J Cardiol 87(5):520–524. https://doi.org/10.1016/s0002-9149(00)01424-7

    Article  CAS  PubMed  Google Scholar 

  24. Tenan MS, Brothers RM, Tweedell AJ, Hackney AC, Griffin L (2014) Changes in resting heart rate variability across the menstrual cycle. Psychophysiology 51(10):996–1004. https://doi.org/10.1111/psyp.12250

    Article  PubMed  Google Scholar 

  25. Hage FG, Dean P, Iqbal F, Heo J, Iskandrian AE (2011) A blunted heart rate response to regadenoson is an independent prognostic indicator in patients undergoing myocardial perfusion imaging. J Nucl Cardiol 18(6):1086–1094. https://doi.org/10.1007/s12350-011-9429-1

    Article  PubMed  Google Scholar 

  26. Vashist A, Heller EN, Blum S, Brown EJ, Bhalodkar NC (2002) Association of heart rate response with scan and left ventricular function on adenosine myocardial perfusion imaging. Am J Cardiol 89(2):174–177. https://doi.org/10.1016/s0002-9149(01)02196-8

    Article  PubMed  Google Scholar 

  27. Amanullah AM, Berman DS, Hachamovitch R, Kiat H, Kang X, Friedman JD (1997) Identification of severe or extensive coronary artery disease in women by adenosine technetium-99m sestamibi SPECT. Am J Cardiol 80(2):132–137. https://doi.org/10.1016/s0002-9149(97)00306-8

    Article  CAS  PubMed  Google Scholar 

  28. Conradson TB, Clarke B, Dixon CM, Dalton RN, Barnes PJ (1987) Effects of adenosine on autonomic control of heart rate in man. Acta Physiol Scand 131(4):525–531. https://doi.org/10.1111/j.1748-1716.1987.tb08272.x

    Article  CAS  PubMed  Google Scholar 

  29. Bravo PE, Hage FG, Woodham RM, Heo J, Iskandrian AE (2008) Heart rate response to adenosine in patients with diabetes mellitus and normal myocardial perfusion imaging. Am J Cardiol 102(8):1103–1106. https://doi.org/10.1016/j.amjcard.2008.06.021

    Article  CAS  PubMed  Google Scholar 

  30. Gebhard CE, Marędziak M, Portmann A, Bengs S, Haider A, Fiechter M, Herzog BA, Messerli M, Treyer V, Kudura K, von Felten E, Benz DC, Fuchs TA, Gräni C, Pazhenkottil AP, Buechel RR, Kaufmann PA, Gebhard C (2019) Heart rate reserve is a long-term risk predictor in women undergoing myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 46(10):2032–2041. https://doi.org/10.1007/s00259-019-04344-1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the participants for their cooperation and are grateful for the support of Department of Cardiac Function, People’s Hospital of Liaoning Province.

Funding

This work was supported by: the Science and Technology Fund of Liaoning Province (20180530109) and the Liaoning Province Xingliao Talents Plan Project (XLYC2005007).

Author information

Authors and Affiliations

Authors

Contributions

FZ proposed the conceptual design of the article, TL was responsible for data analysis and article drafting, DS and MD were responsible for data collection and gathering, and HZ, LG, YL and HZ were responsible for key revisions of the article.

Corresponding author

Correspondence to Fang Zhu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interests.

Ethical approval

Ethics approval was obtained from the People’s Hospital of Liaoning Province. Each participant provided written informed consent after receiving a detailed description of the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Ding, M., Sun, D. et al. The association between heart rate reserve and impaired coronary flow velocity reserve: a study based on adenosine stress echocardiography. Int J Cardiovasc Imaging 38, 1037–1046 (2022). https://doi.org/10.1007/s10554-021-02480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02480-0

Keywords

Navigation