Skip to main content

Advertisement

Log in

Gender differences in primary mitral regurgitant volumes at specific regurgitant fractions as assessed by magnetic resonance imaging

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Guidelines suggest using a regurgitant fraction of 50% and regurgitant volume of 60 ml for determination of severe mitral insufficiency. Recent MRI data has suggested that a regurgitant fraction of 40% defines severe primary mitral insufficiency. We sought to determine whether there were gender differences in primary mitral regurgitant volumes for regurgitant fractions of 40% and 50%. A database search identified 394 patients that had MRI with a mitral regurgitant volume ≥ 10 ml or a study indication of mitral insufficiency. Chart review identified 97 patients with primary mitral insufficiency. Of these patients, 53 (54%) were women. Men had significantly larger left ventricular volumes, myocardial mass, stroke volumes and mitral regurgitant volumes (37 ± 25 ml vs. 24 ± 12 ml). The difference in regurgitant fraction between genders was not significant (27 ± 14% vs. 24 ± 11%; p-value = 0.24). Regurgitant fraction and regurgitant volume had a strong linear correlation in both men (r = .95) and women (r = .92). Despite similar linear correlations, the slope-intercept equations differed significantly between men and women (p < .001). A regurgitant fraction of 40% correlated with a regurgitant volume of 59 ml in men and 39.5 ml in women, while a regurgitant fraction of 50% correlated with a regurgitant volume of 76.2 ml in men and 49.6 ml in women. Regurgitant fraction, determined by cardiac MRI, provides a gender independent assessment of primary mitral insufficiency, and suggests that regurgitant volume thresholds for severe primary mitral insufficiency may be lower in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Data will be provided upon reasonable request to the corresponding author.

Abbreviations

MRI:

Magnetic resonance imaging

LVEDV:

Left ventricular end-diastolic volume

LVEDVi:

Left ventricular end-diastolic end-systolic volume index

LVESV:

Left ventricular end-systolic volume

LVESVi:

Left ventricular end-systolic volume index

LVEDD:

Left ventricular end-diastolic diameter

LVESD:

Left ventricular end-systolic diameter

PISA:

Proximal isovelocity surface area

MVP:

Mitral valve prolapse

References

  1. Mantovani F, Clavel MA, Michelena HI, Suri RM, Schaff HV, Enriquez-Sarano M (2016) Comprehensive imaging in women with organic mitral regurgitation. Implications for clinical outcome. J Am Coll Cardiol 9:388–396

    Article  Google Scholar 

  2. Avierenos JF, Inamo J, Grigioni F, Gersh B, Shub C, Enriquez-Sarano M (2008) Sex differences in morphology and outcomes of mitral valve prolapse. Ann Intern Med 149(11):787–794

    Article  Google Scholar 

  3. Seeburger J, Eifert S, Pfannmuller B, Garbade J, Vollroth M, Misfeld M, Borger M, Mohr FW (2013) Gender differences in mitral valve surgery. Thorac Cardiovasc Surg 61:42–46

    PubMed  Google Scholar 

  4. Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP 3rd, Gentile F, Jneid H, Krieger EV, Mack M, McLeod C et al (2020) ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 143:e72–e227. https://doi.org/10.1161/CIR.0000000000000923

    Article  PubMed  Google Scholar 

  5. Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, Hahn RT, Han Y, Hung J, Lang RM et al (2017) Recommendation for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society of Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr 30:303–371

    Article  Google Scholar 

  6. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, Lung B, Lancellotti P, Lansac E, Muñoz DR et al (2017) 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 38:2739–2791

    Article  Google Scholar 

  7. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Clausen J, Turkbey EB, Williams R, Plein S, Tee M, Eng J, Bluemke DA (2015) Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 17:29

    Article  Google Scholar 

  8. Salton CJ, Chuang ML, O’Donnell CJ, Kupka MJ, Larson MG, Kissinger KV, Edelman RR, Levy D, Manning WJ (2002) Gender differences and normal left ventricular anatomy in an adult population free of hypertension: a cardiovascular magnetic resonance study of the Framingham Heart Study Offspring Cohort. J Am Coll Cardiol 39:1055–1060

    Article  Google Scholar 

  9. Sellers RD, Levy MJ, Amplatz K, Lillehei EW (1964) Left retrograde cardioangiography in acquired cardiac disease: technic, indications and interpretations in 700 cases. Am J Cardiol 14:437–447

    Article  CAS  Google Scholar 

  10. Dujardin KS, Enriquez-Sarano M, Bailey KR, Nishimura RA, Seward JB, Tajik AJ (1997) Grading of mitral regurgitation by quantitative Doppler echocardiography: calibration by left ventricular angiography in routine clinical practice. Circulation 96:3409–3415

    Article  CAS  Google Scholar 

  11. Enriquez-Sarano M, Avierinos J-F, Messika-Zeitoun D, Detaint D, Capps M, Nkomo V, Scott C, Schaff HV, Tajik AJ (2005) Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N Engl J Med 352:875–883

    Article  CAS  Google Scholar 

  12. Uretsky S, Supariwala A, Nidadovolu P, Khokhar SS, Comeau C, Shubayev O, Campanile F, Wolff SD (2010) Quantification of left ventricular remodeling in response to isolated aortic or mitral regurgitation. J Cardiovasc Magn Reson 12:32

    Article  Google Scholar 

  13. Uretsky S, Gilliam L, Lang L, Chaudhry FA, Argulian E, Supariwala A, Gurram S, Jain K, Subero M, Jang JJ et al (2015) Discordance between echocardiography and MRI in the assessment of mitral regurgitation severity. J Am Coll Cardiol 65:1078–1088

    Article  Google Scholar 

  14. Lilly L (2016) Pathophysiology of heart disease, 6th edn. Wolters Kluwer, Philadelphia, pp 198–203

    Google Scholar 

  15. Myerson SG, D’Arcy J, Christiansen JP, Dobson LE, Mohiaddin R, Francis JM, Prendergast B, Greenwood JP, Karamitsos TD, Neubauer S (2016) Determination of clinical outcome in mitral regurgitation with cardiovascular magnetic resonance quantification. Circulation 133:2287–2296

    Article  Google Scholar 

  16. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E (2020) Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson 22:17. https://doi.org/10.1186/s12968-020-00607-1

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T et al (2015) Recommendation for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39

    Article  Google Scholar 

  18. Puntman VO, Gebker R, Duckett S, Mirelis J, Schnackenburg B, Graefe M, Razavi R, Fleck E, Nagel E (2013) Left ventricular chamber dimensions and wall thickness by cardiovascular magnetic resonance: comparison with transthoracic echocardiography. Eur Heart J Cardiovasc Imaging 14:240–246

    Article  Google Scholar 

  19. Levy F, Marechaux S, Iacuzio L, Schouver ED, Castel AL, Toledano M, Rusek S, Dor V, Tribouilloy C, Dreyfus G (2018) Quantitative assessment of primary mitral regurgitation using left ventricular volumes obtained with new automated three-dimensional transthoracic echocardiography software: a comparison with 3-Tesla cardiac magnetic resonance. Arch Cardiovasc Dis 111:507–517

    Article  Google Scholar 

  20. Penicka M, Vecera J, Mirica DC, Kotrc M, Kockova R, Van Camp G (2018) Prognostic implications of magnetic resonance-derived quantification in asymptomatic patients with organic mitral regurgitation: comparison with Doppler echocardiography-derived integrative approach. Circulation 137:1349–1360

    Article  Google Scholar 

  21. McNeely C, Vassileva C (2016) Mitral valve surgery in women another target for eradicating sex inequality. Circ Cardiovasc Qual Outcomes 9:S94–S96

    Article  Google Scholar 

  22. Mohrman DE, Heller LJ (2014) The heart pump. Cardiovascular physiology, 8th edn. McGraw-Hill Education, New York, pp 52–72

    Google Scholar 

  23. Tribouilloy C, Grigioni F, Avierinos JF, Barbieri A, Rusinaru D, Syzmanski C, Ferlito M, Tafanelli L, Bursi F, Trojette F et al (2009) Survival implication of left ventricular end-systolic diameter in mitral regurgitation due to flail leaflets. J Am Coll Cardiol 54:1961–1968

    Article  Google Scholar 

  24. Dorosz JL, Lezotte DC, Weitzenkamp DA, Allen LA, Salcedo EE (2012) Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: A systematic review and meta-analysis. J Am Coll Cardiol 59:1799–1808

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate the role of each of the following individuals in the cardiac MRI program at Regions Hospital: Sheetal Kaul, MD; Danish Rizvi, MD; Teresa Medo, ARRT; Mike Silvis, BS, ARRT; Melinda Schlegelmilch, ARRT; Nola Sokolwoyak, ARRT; Lorraine Tirrel, ARRT; Emily Johnson, BS, RDCS

Funding

Regions Hospital Heart Center.

Author information

Authors and Affiliations

Authors

Contributions

CM House study conception and design, data acquisition and interpretation, drafted the manuscript; M Xi data interpretation and critical manuscript revision; KA Moriarty revised the manuscript and provided final approval; WB Nelson study conception and design, revised the manuscript and provided final approval.

Corresponding author

Correspondence to Chad M. House.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The HealthPartners institutional review board approved this research project with a waiver of patient consent due to the retrospective study design and minimal patient risk.

Consent to participate

IRB approval with waiver of consent.

Consent for publication

IRB approval with waiver of consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

House, C.M., Xi, M., Moriarty, K.A. et al. Gender differences in primary mitral regurgitant volumes at specific regurgitant fractions as assessed by magnetic resonance imaging. Int J Cardiovasc Imaging 38, 663–671 (2022). https://doi.org/10.1007/s10554-021-02449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02449-z

Keywords

Navigation