Skip to main content

Advertisement

Log in

Prognostic importance of acute phase extracellular volume evaluated by cardiac magnetic resonance imaging for patients with acute myocardial infarction

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Myocardial extracellular volume (ECV) by cardiac magnetic resonance (CMR) in the acute phase of acute myocardial infarction (MI) more precisely predicts the functional recovery of infarct-related wall motion abnormalities and left ventricular (LV) remodeling than late gadolinium enhancement (LGE). The purpose of this study was to evaluate the prognostic importance of acute phase ECV in patients with AMI. We evaluated 61 consecutive AMI patients using 3.0 T CMR. CMR examination was performed median 10 days (7–15 days) after PCI. Primary endpoint was defined as major adverse cardiac event (MACE). The median follow-up duration was 3.1 years, and MACE occurred in 11 (18%) patients. Although LVEF and % infarct LGE volume were not associated with MACE in this study population, higher infarct ECV predicted the MACE with a hazard ratio (HR) of 4.04 (P = 0.02). High global ECV, which was a combined assessment of infarct ECV and remote ECV, also predicted MACE with a HR of 5.24 (P = 0.035). The addition of infarct ECV to remote ECV (global chi-squared score: 1.4) resulted in a significantly increased global chi-squared score (6.7; P = 0.017). Furthermore, after adjusting for the calculated propensity score for high global ECV, it remained an independent predictor of MACE with HR of 5.10 (P = 0.04). The quantification of ECV in the acute phase among AMI patients may provide an incremental prognostic value for predicting MACE beyond that of clinical, angiographic, and functional variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

Code availability

This research used only commercially available software.

References

  1. Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379

    Article  Google Scholar 

  2. Jablonowski R, Engblom H, Kanski M, Nordlund D, Koul S, van der Pals J et al (2015) Contrast-enhanced CMR overestimates early myocardial infarct size. JACC Cardiovasc Imaging 8:1379–1389

    Article  Google Scholar 

  3. Hammer-hansen S, Bandettini WP, Hsu L, Leung SW, Shanbhag S, Mancini C et al (2016) Mechanisms for overestimating acute myocardial infarct size with gadolinium-enhanced cardiovascular magnetic resonance imaging in humans : a quantitative and kinetic study. Eur Heart J 17:76–84

    Google Scholar 

  4. Windecker S, Kolh P, Alfonso F, Collet J-P, Cremer J et al (2014) 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution o. Eur Heart J 35:2541–2619

    Article  Google Scholar 

  5. Kellman P, Wilson JR, Xue H, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63

    Article  Google Scholar 

  6. Kellman P, Wilson JR, Xue H, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 2: Initial clinical experience. J Cardiovasc Magn Reson 14:64

    Article  Google Scholar 

  7. Kidambi A, Motwani M, Uddin A, Ripley DP, McDiarmid AK, Swoboda PP et al (2017) Myocardial extracellular volume estimation by CMR predicts functional recovery following acute MI. JACC Cardiovasc Imaging 10:989–999

    Article  Google Scholar 

  8. Bulluck H, Rosmini S, Abdel-Gadir A, White SK, Bhuva AN, Treibel TA et al (2016) Automated extracellular volume fraction mapping provides insights into the pathophysiology of left ventricular remodeling post-reperfused ST-elevation myocardial infarction. J Am Heart Assoc 5:003555

    Article  Google Scholar 

  9. Carrick D, Haig C, Rauhalammi S, Ahmed N, Mordi I, McEntegart M et al (2015) Pathophysiology of LV remodeling in survivors of STEMI. JACC Cardiovasc Imaging 8:779–789

    Article  Google Scholar 

  10. Chan W, Duffy SJ, White DA, Gao XM, Du XJ, Ellims AH et al (2012) Acute left ventricular remodeling following myocardial infarction: coupling of regional healing with remote extracellular matrix expansion. JACC Cardiovasc Imaging 5:884–893

    Article  Google Scholar 

  11. Omori T, Kurita T, Dohi K, Takasaki A, Nakata T, Nakamori S et al (2018) Prognostic impact of unrecognized myocardial scar in the non-culprit territories by cardiac magnetic resonance imaging in patients with acute myocardial infarction. Eur Hear J 19:108–116

    Google Scholar 

  12. Zhuang B, Sirajuddin A, Wang S, Arai A, Zhao S, Lu M (2018) Prognostic value of T1 mapping and extracellular volume fraction in cardiovascular disease: a systematic review and meta-analysis. Heart Fail Rev 23:723–731

    Article  Google Scholar 

  13. Schelbert EB, Piehler KM, Zareba KM, Moon JC, Ugander M, Messroghli DR et al (2015) Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J Am Heart Assoc 4:1–14

    Google Scholar 

  14. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD (2012) Third universal definition of myocardial infarction. Glob Heart 7:275–295

    Article  Google Scholar 

  15. Corpus RA, House JA, Marso SP, Grantham JA, Huber KC, Laster SB et al (2004) Multivessel percutaneous coronary intervention in patients with multivessel disease and acute myocardial infarction. Am Heart J 148:493–500

    Article  Google Scholar 

  16. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E (2020) Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson 22:17

    Article  Google Scholar 

  17. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG et al (2020) Standardized image interpretation and post-processing in cardiovascular magnetic resonance—2020 update : Society for Cardiovascular Magnetic Resonance (SCMR): Board of Trustees Task Force on Standardized Post-Processing. J Cardiovasc Magn Reson 2020(22):19–20

    Article  Google Scholar 

  18. Abdel-Aty H, Zagrosek A, Schulz-Menger J, Taylor AJ, Messroghli D, Kumar A et al (2004) Delayed enhancement and T2-weighted cardiovascular magnetic resonance imaging differentiate acute from chronic myocardial infarction. Circulation 109:2411–2416

    Article  Google Scholar 

  19. Bondarenko O, Beek A, Hofman M, Kühl H, Twisk J, van Dockum W et al (2005) Standardizing the definition of hyperenhancement in the quantitative assessment of infarct size and myocardial viability using delayed contrast-enhanced CMR. J Cardiovasc Magn Reson 7:481–485

    Article  Google Scholar 

  20. Kitagawa K, Sakuma H, Hirano T, Okamoto S, Makino K, Takeda K (2003) Acute myocardial infarction: myocardial viability assessment in patients early thereafter—comparison of contrast-enhanced MR imaging with resting 201 Tl SPECT. Radiology 226:138–144

    Article  Google Scholar 

  21. White SK, Sado DM, Fontana M, Banypersad SM, Maestrini V, Flett AS et al (2013) T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging 6:955–962

    Article  Google Scholar 

  22. Romano S, Judd RM, Kim RJ, Kim HW, Klem I, Heitner JF et al (2018) Feature-tracking global longitudinal strain predicts death in a multicenter population of patients with ischemic and nonischemic dilated cardiomyopathy incremental to ejection fraction and late gadolinium enhancement. JACC Cardiovasc Imaging 11:1419–1429

    Article  Google Scholar 

  23. Goto Y, Ishida M, Takase S, Sigfridsson A, Uno M, Nagata M et al (2017) Comparison of displacement encoding with stimulated echoes to magnetic resonance feature tracking for the assessment of myocardial strain in patients with acute myocardial infarction. Am J Cardiol 119:1542–1547

    Article  Google Scholar 

  24. D’Agostino RB (2007) Propensity scores in cardiovascular research. Circulation 115:2340–2343

    Article  Google Scholar 

  25. Stone GW, Selker HP, Thiele H, Patel MR, Udelson JE, Ohman EM et al (2016) Relationship between infarct size and outcomes following primary PCI patient-level analysis from 10 randomized trials. J Am Coll Cardiol 67:1674–1683

    Article  Google Scholar 

  26. Dall’Armellina E, Karia N, Lindsay AC, Karamitsos TD, Ferreira V, Robson MD et al (2011) Dynamic changes of edema and late gadolinium enhancement after acute myocardial infarction and their relationship to functional recovery and salvage index. Circ Cardiovasc Imaging 4:228–236

    Article  Google Scholar 

  27. Engblom H, Hedstrom̈ E, Heiberg E, Wagner GS, Pahlm O, Arheden H (2009) Rapid initial reduction of hyperenhanced myocardium after reperfused first myocardial infarction suggests recovery of the peri-infarction zone one-year follow-up by MRI. Circ Cardiovasc Imaging 2:47–55

    Article  Google Scholar 

  28. Nakamori S, Dohi K, Ishida M, Goto Y, Imanaka-Yoshida K, Omori T et al (2018) Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy. JACC Cardiovasc Imaging 11:48–59

    Article  Google Scholar 

  29. Kammerlander AA, Marzluf BA, Zotter-Tufaro C, Aschauer S, Duca F, Bachmann A et al (2016) T1 Mapping by CMR imaging from histological validation to clinical implication. JACC Cardiovasc Imaging 9:14–23

    Article  Google Scholar 

  30. Irwin MW, Mak S, Mann DL, Qu R, Penninger JM, Yan A et al (1999) Tissue expression and immunolocalization of tumor necrosis factor-α in postinfarction dysfunctional myocardium. Circulation 99:1492–1498

    Article  CAS  Google Scholar 

  31. Lee WW, Marinelli B, Van Der Laan AM, Sena BF, Gorbatov R, Leuschner F et al (2012) PET/MRI of inflammation in myocardial infarction. J Am Coll Cardiol 59:153–163

    Article  CAS  Google Scholar 

  32. Ibanez B, Aletras AH, Arai AE, Arheden H, Bax J, Berry C et al (2019) Cardiac MRI endpoints in myocardial infarction experimental and clinical trials: JACC Scientific Expert Panel. J Am Coll Cardiol 74:238–256

    Article  Google Scholar 

Download references

Funding

There is no funding related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tairo Kurita.

Ethics declarations

Conflict of interest

Nothing to disclose related to this article.

Ethical approval

This study was approved by the Mie University Hospital Institutional Review Board (Reference number H2019-071).

Informed consent

All patients provided written informed consent or opt-out informed consent. All patients provided opt-out informed consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishiyama, M., Kurita, T., Nakamura, S. et al. Prognostic importance of acute phase extracellular volume evaluated by cardiac magnetic resonance imaging for patients with acute myocardial infarction. Int J Cardiovasc Imaging 37, 3285–3297 (2021). https://doi.org/10.1007/s10554-021-02321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02321-0

Keywords

Navigation