Skip to main content

Advertisement

Log in

Optical coherence tomography and coronary angioscopy assessment of healed coronary plaque components

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Histopathological or intracoronary image assessment of healed plaques (HPs) has been reported. However, the lesion characteristics of HPs remains undetermined yet. We assessed the healed plaque components in patients with coronary artery lesions using multiple imaging modalities.

Methods

We enrolled 33 stable angina pectoris (SAP) patients with 36 native coronary culprit lesions with angiography severe stenosis and without severe calcification undergoing pre-intervention optical coherence tomography (OCT) and coronary angioscopy (CAS). HPs were defined as layered phenotype on OCT. Lesion morphologies and plaque characteristics of HPs were assessed using OCT and CAS.

Results

HPs were observed in 19 lesions (52.8%). HP lesions had higher frequent B2/C lesions (89.4% vs. 52.9%, p = 0.02), worse pre-PCI coronary flow (corrected thrombolysis in myocardial infarction count 21.6 ± 13.5 vs. 13.8 ± 6.2, p = 0.047) and greater lumen-area stenosis (79.6 ± 10.6% vs. 68.0 ± 21.6%, p = 0.047) than non-HP lesions. HP lesions had higher prevalence of OCT-thin-cap fibroatheroma (TCFA) (31.6% vs. 0.0%, p = 0.02), OCT-macrophage (89.5% vs. 41.2%, p = 0.004), and CAS-red thrombus (89.5% vs. 41.2%, p = 0.004) than non-HP lesions. The combination of 3 features including OCT-TCFA, macrophages, and CAS-red thrombus showed higher predictive valuer for HPs on OCT than each single variable. Post-PCI irregular tissue protrusion was more frequently observed in lesions with HPs than in those without (52.6% vs. 13.3%, p = 0.03).

Conclusions

SAP lesions with HPs might have more frequent vulnerable plaques with intraplaque inflammation and thrombus than those without, suggesting that layered phenotype on OCT might reflect not only healing process but also potential risks for future coronary events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van der Wal AC, Becker AE, van der Loos CM, Das PK (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89:36–44

    Article  PubMed  Google Scholar 

  2. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    Article  CAS  PubMed  Google Scholar 

  3. Mann J, Davies MJ (1999) Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart 82:265–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burke AP, Kolodgie FD, Farb A, Weber DK, Malcom GT, Smialek J et al (2001) Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103:934–940

    Article  CAS  PubMed  Google Scholar 

  5. Fracassi F, Crea F, Sugiyama T, Yamamoto E, Uemura S, Vergallo R et al (2019) Healed culprit plaques in patients with acute coronary syndromes. J Am Coll Cardiol 73:2253–2263

    Article  PubMed  Google Scholar 

  6. Okamoto H, Kume T, Yamada R, Koyama T, Tamada T, Imai K et al (2019) Prevalence and Clinical Significance of Layered Plaque in Patients With Stable Angina Pectoris- Evaluation With Histopathology and Optical Coherence Tomography. Circ J 83:2452–2459

    Article  PubMed  Google Scholar 

  7. Wang C, Hu S, Wu J, Yu H, Pan W, Qin Y et al (2019) Characteristics and significance of healed plaques in patients with acute coronary syndrome and stable angina: an in vivo OCT and IVUS study. EuroIntervention 15:e771–e778

    Article  PubMed  Google Scholar 

  8. Araki M, Yonetsu T, Russo M, Kurihara O, Kim HO, Shinohara H et al (2020) Predictors for layered coronary plaques: an optical coherence tomography study. J Thromb Thrombolysis. https://doi.org/10.1007/s11239-020-02116-5

    Article  PubMed  Google Scholar 

  9. Jia H, Abtahian F, Aguirre AD, Lee S, Chia S, Lowe H et al (2013) In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol 62:1748–1758

    Article  PubMed  Google Scholar 

  10. Yabushita H, Bouma BE, Houser SL, Aretz HT, Jang IK, Schlendorf KH et al (2002) Characterization of human atherosclerosis by optical coherence tomography. Circulation 106:1640–1645

    Article  PubMed  Google Scholar 

  11. Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N et al (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111:1551–1555

    Article  PubMed  PubMed Central  Google Scholar 

  12. Thieme T, Wernecke KD, Meyer R, Brandenstein E, Habedank D, Hinz A et al (1996) Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes. J Am Coll Cardiol 28:1–6

    Article  CAS  PubMed  Google Scholar 

  13. Inoue T, Shinke T, Otake H, Nakagawa M, Hariki H, Osue T et al (2014) Neoatherosclerosis and mural thrombus detection after sirolimus-eluting stent implantation. Circ J 78:92–100

    Article  PubMed  Google Scholar 

  14. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA et al (2018) Fourth universal definition of myocardial infarction (2018). J Am Coll Cardiol 18:2231–2264

    Article  Google Scholar 

  15. TIMI Study Group (1985) The thrombolysis in myocardial infarction (TIMI) trial. Phase I findings. N Engl J Med 312:932–936

  16. Gibson CM, Cannon CP, Daley WL, Dodge JT Jr, Alexander B Jr, Marble SJ et al (1996) TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation 93:879–888

    Article  CAS  PubMed  Google Scholar 

  17. Lee T, Yonetsu T, Koura K, Hishikari K, Murai T, Iwai T et al (2011) Impact of coronary plaque morphology assessed by optical coherence tomography on cardiac troponin elevation in patients with elective stent implantation. Circ Cardiovasc Interv 4:378–386

    Article  CAS  PubMed  Google Scholar 

  18. Tearney GJ, Regar E, Akasaka T, Adriaenssens T, Barlis P, Bezerra HG et al International Working Group for Intravascular Optical Coherence Tomography (IWG-IVOCT). Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation

  19. Shimokado A, Matsuo Y, Kubo T, Nishiguchi T, Taruya A, Teraguchi I et al (2018) In vivo optical coherence tomography imaging and histopathology of healed coronary plaques. Atherosclerosis 275:35–42

    Article  CAS  PubMed  Google Scholar 

  20. Vergallo R, Porto I, D’Amario D, Annibali G, Galli M, Benenati S et al (2019) Coronary atherosclerotic phenotype and plaque healing in patients with recurrent acute coronary syndromes compared with patients with long-term clinical stability: an in vivo optical coherence tomography study. JAMA Cardiol 4:321–329

    Article  PubMed  PubMed Central  Google Scholar 

  21. Uemura S, Ishigami K, Soeda T, Okayama S, Sung JH, Nakagawa H et al (2012) Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques. Eur Heart J 33:78–85

    Article  PubMed  Google Scholar 

  22. Soeda T, Uemura S, Park SJ, Jang Y, Lee S, Cho JM et al (2015) Incidence and clinical significance of poststent optical coherence tomography findings: one-year follow-up study from a Multicenter Registry. Circulation 132:1020–1029

    Article  PubMed  Google Scholar 

  23. Ueda Y, Ohtani T, Shimizu M, Hirayama A, Kodama K (2004) Assessment of plaque vulnerability by angioscopic classification of plaque color. Am Heart J 148:333–335

    Article  PubMed  Google Scholar 

  24. Alfonso F, Goicolea J, Hernandez R, Goncalves M, Segovia J, Bañuelos C et al (1995) Angioscopic findings during coronary angioplasty of coronary occlusions. J Am Coll Cardiol 26:135–141

    Article  CAS  PubMed  Google Scholar 

  25. Corti R, Fuster V, Badimon JJ (2003) Pathogenetic concepts of acute coronary syndromes. J Am Coll Cardiol 41:7S-14S

    Article  CAS  PubMed  Google Scholar 

  26. Domingueti CP, Dusse LM, Carvalho Md, de Sousa LP, Gomes KB, Fernandes AP (2016) Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications 30:738–45

  27. Yahagi K, Kolodgie FD, Lutter C, Mori H, Romero M, Finn AV (2017) Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arterioscler Thromb Vasc Biol 37:191–204

    Article  CAS  PubMed  Google Scholar 

  28. Sugiyama T, Yamamoto E, Bryniarski K, Xing L, Fracassi F, Lee H et al (2018) Coronary plaque characteristics in patients with diabetes mellitus who presented with acute coronary syndromes. J Am Heart Assoc 7:e009245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Otsuka F, Joner M, Prati F, Virmani R, Narula J (2014) Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol 11:379–389

    Article  PubMed  Google Scholar 

  30. Okada K, Ueda Y, Matsuo K, Nishio M, Hirata A, Kashiwase K et al (2011) Frequency and healing of nonculprit coronary artery plaque disruptions in patients with acute myocardial infarction. Am J Cardiol 107:1426–1429

    Article  PubMed  Google Scholar 

  31. Takano M, Inami S, Ishibashi F, Okamatsu K, Seimiya K, Ohba T et al (2005) Angioscopic follow-up study of coronary ruptured plaques in nonculprit lesions. J Am Coll Cardiol 45:652–658

    Article  PubMed  Google Scholar 

  32. Russo M, Fracassi F, Kurihara O, Kim HO, Thondapu V, Araki M et al (2020) Healed plaques in patients with stable angina pectoris. Arterioscler Thromb Vasc Biol 40:1587–1597

    Article  CAS  PubMed  Google Scholar 

  33. Araki M , Yonetsu T, Kurihara O, Nakajima A, Lee H, Soeda T et al (2020) Predictors of rapid plaque progression: an optical coherence tomography study. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2020.08.014.

  34. Usui E, Mintz GS, Lee T, Matsumura M, Zhang Y, Hada M et al (2020) Prognostic impact of healed coronary plaque in non-culprit lesions assessed by optical coherence tomography. Atherosclerosis. https://doi.org/10.1016/j.atherosclerosis.2020.07.005.

  35. Dai J, Fang C, Zhang S, Li L, Wang Y, Xing L et al (2020) Frequency, predictors, distribution, and morphological characteristics of layered culprit and nonculprit plaques of patients with acute myocardial infarction. Circ Cardiovasc Interv. https://doi.org/10.1161/CIRCINTERVENTIONS.120.009125.

  36. Kurihara O, Shinohara H , Kim HO, Russo M, Araki M, Nakajima A et al (2020) Comparison of post-stent optical coherence tomography findings: Layered versus non-layered culprit lesions. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.28940.

  37. Nakano M, Vorpahl M, Otsuka F, Taniwaki M, Yazdani SK, Finn AV et al (2012) Ex vivo assessment of vascular response to coronary stents by optical frequency domain imaging. JACC Cardiovasc Imaging 5:71–82

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Kimura.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest'.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1873 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, S., Cho, S., Misu, Y. et al. Optical coherence tomography and coronary angioscopy assessment of healed coronary plaque components. Int J Cardiovasc Imaging 37, 2849–2859 (2021). https://doi.org/10.1007/s10554-021-02287-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02287-z

Keywords

Navigation