Skip to main content
Log in

Role of cardiovascular magnetic resonance in early detection and treatment of cardiac dysfunction in oncology patients

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The purpose of this review is to provide an overview of the essential role that cardiovascular magnetic resonance (CMR) has in the field of cardio-oncology. Recent findings: CMR has been increasingly used for early identification of cancer therapy related cardiac dysfunction (CTRCD) due to its precision in detecting subtle changes in cardiac function and for myocardial tissue characterization. Summary: CMR is able to identify subclinical CTRCD in patients receiving potentially cardiotoxic chemotherapy and guide initiation of cardio protective therapy. Multiparametric analysis with myocardial strain, tissue characterization play a critical role in understanding important clinical questions in cardio-oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Netherlands)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Henry ML, Niu J, Zhang N, Giordano SH, Chavez-MacGregor M (2018) Cardiotoxicity and cardiac monitoring among chemotherapy-treated breast cancer patients. JACC Cardiovasc. Imaging 11(8):1084–1093. https://doi.org/10.1016/j.jcmg.2018.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  2. Harris EER, Correa C, Hwang WT et al (2006) Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment. J Clin Oncol. 24(25):4100–6. https://doi.org/10.1200/JCO.2005.05.1037

    Article  PubMed  Google Scholar 

  3. Vandecruys E, Mondelaers V, de Wolf D, Benoit Y, Suys B (2012) Late cardiotoxicity after low dose of anthracycline therapy for acute lymphoblastic leukemia in childhood. J. Cancer Surviv. 6(1):95–101. https://doi.org/10.1007/s11764-011-0186-6

    Article  PubMed  Google Scholar 

  4. Barac A, Murtagh G, Carver JR et al (2015) Cardiovascular health of patients with cancer and cancer survivors: a roadmap to the next level. J Am Coll Cardiol 65(25):2739–46. https://doi.org/10.1016/j.jacc.2015.04.059

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zamorano JL, Lancellotti P, Rodriguez Muñoz D et al (2016) 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur Heart J 37(36):2768–2801. https://doi.org/10.1093/eurheartj/ehw211

    Article  PubMed  Google Scholar 

  6. Schwartz RG, McKenzie WB, Alexander J et al (1987) Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med 82(6):1109–18. https://doi.org/10.1016/0002-9343(87)90212-9

    Article  CAS  PubMed  Google Scholar 

  7. Plana JC, Galderisi M, Barac A et al (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 15(10):1063–93. https://doi.org/10.1093/ehjci/jeu192

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bellenger NG, Burgess MI, Ray SG et al (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J 21(16):1387–96. https://doi.org/10.1053/euhj.2000.2011

    Article  CAS  PubMed  Google Scholar 

  9. Dunet V, Schwitter J, Meuli R, Beigelman-Aubry C (2016) Incidental extracardiac findings on cardiac MR: systematic review and meta-analysis. J Magn Reson Imaging 43(4):929–39. https://doi.org/10.1002/jmri.25053

    Article  PubMed  Google Scholar 

  10. Grothues F, Smith GC, Moon JCC et al (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90(1):29–34. https://doi.org/10.1016/s0002-9149(02)02381-0

    Article  PubMed  Google Scholar 

  11. Mooij CF, De Wit CJ, Graham DA, Powell AJ, Geva T (2008) Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles. J Magn Reson Imaging 28(1):67–73. https://doi.org/10.1002/jmri.21407

    Article  PubMed  PubMed Central  Google Scholar 

  12. Erley J, Genovese D, Tapaskar N et al (2019) Echocardiography and cardiovascular magnetic resonance based evaluation of myocardial strain and relationship with late gadolinium enhancement. J Cardiovasc Magn Reson 21(1):46. https://doi.org/10.1186/s12968-019-0559-y

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bucius P, Erley J, Tanacli R et al (2020) Comparison of feature tracking, fast-SENC, and myocardial tagging for global and segmental left ventricular strain. ESC Hear Fail 7(2):523–532. https://doi.org/10.1002/ehf2.12576

    Article  Google Scholar 

  14. Nayak KS, Nielsen JF, Bernstein MA et al (2015) Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson 17(1):71. https://doi.org/10.1186/s12968-015-0172-7

    Article  PubMed  PubMed Central  Google Scholar 

  15. Friedrich MG, Sechtem U, Schulz-Menger J et al (2009) Cardiovascular magnetic resonance in myocarditis. J Am Coll Cardiol 53(17):1475–87. https://doi.org/10.1016/j.jacc.2009.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  16. Spieker M, Katsianos E, Gastl M et al (2018) T2 mapping cardiovascular magnetic resonance identifies the presence of myocardial inflammation in patients with dilated cardiomyopathy as compared to endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 19(5):574–582. https://doi.org/10.1093/ehjci/jex230

    Article  CAS  PubMed  Google Scholar 

  17. Gräni C, Eichhorn C, Bière L et al (2017) Prognostic Value of Cardiac Magnetic Resonance Tissue Characterization in Risk Stratifying Patients With Suspected Myocarditis. J Am Coll Cardiol 70(16):1964–1976. https://doi.org/10.1016/j.jacc.2017.08.050

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kwong RY, Chan AK, Brown KA et al (2006) Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 113(23):2733–43. https://doi.org/10.1161/CIRCULATIONAHA.105.570648

    Article  PubMed  Google Scholar 

  19. Wu KC, Weiss RG, Thiemann DR et al (2008) Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol 51(25):2414–21. https://doi.org/10.1016/j.jacc.2008.03.018

    Article  PubMed  PubMed Central  Google Scholar 

  20. Henriksen PA (2018) Anthracycline cardiotoxicity: an update on mechanisms, monitoring and prevention. Heart 104(12):971–977. https://doi.org/10.1136/heartjnl-2017-312103

    Article  CAS  PubMed  Google Scholar 

  21. Curigliano G, Cardinale D, Dent S et al (2016) Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin 66(4):309–25. https://doi.org/10.3322/caac.21341

    Article  PubMed  Google Scholar 

  22. Narayan HK, Finkelman B, French B et al (2017) Detailed echocardiographic phenotyping in breast cancer patients: associations with ejection fraction decline, recovery, and heart failure symptoms over 3 years of follow-up. Circulation 135(15):1397–1412. https://doi.org/10.1161/CIRCULATIONAHA.116.023463

    Article  PubMed  PubMed Central  Google Scholar 

  23. Seidman A, Hudis C, Kathryn Pierri M et al (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20(5):1215–21. https://doi.org/10.1200/JCO.2002.20.5.1215

    Article  CAS  PubMed  Google Scholar 

  24. Cardinale D, Colombo A, Bacchiani G et al (2015) Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131(22):1981–8. https://doi.org/10.1161/CIRCULATIONAHA.114.013777

    Article  CAS  PubMed  Google Scholar 

  25. Meléndez GC, Sukpraphrute B, D’Agostino RB et al (2017) Frequency of left ventricular end-diastolic volume-mediated declines in ejection fraction in patients receiving potentially cardiotoxic cancer treatment. Am J Cardiol 119(10):1637–1642. https://doi.org/10.1016/j.amjcard.2017.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gulati G, Heck SL, Ree AH et al (2016) Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J 37(21):1671–80. https://doi.org/10.1093/eurheartj/ehw022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pituskin E, Mackey JR, Koshman S et al (2017) Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-Breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol 35(8):870–877. https://doi.org/10.1200/JCO.2016.68.7830

    Article  CAS  PubMed  Google Scholar 

  28. Fallah-Rad N, Walker JR, Wassef A et al (2011) The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor iipositive breast cancer treated with ad. J Am Coll Cardiol 57(22):2263–70. https://doi.org/10.1016/j.jacc.2010.11.063

    Article  CAS  PubMed  Google Scholar 

  29. Drafts BC, Twomley KM, D’Agostino R et al (2013) Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc Imaging 6(8):877–85. https://doi.org/10.1016/j.jcmg.2012.11.017

    Article  PubMed  PubMed Central  Google Scholar 

  30. Neilan TG, Coelho-Filho OR, Shah RV et al (2013) Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol 111(5):717–22. https://doi.org/10.1016/j.amjcard.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  31. Ferreira de Souza T, Quinaglia AC, Silva T, Osorio Costa F et al (2018) Anthracycline therapy is associated with cardiomyocyte atrophy and preclinical manifestations of heart disease. JACC Cardiovasc Imaging 11(8):1045–1055. https://doi.org/10.1016/j.jcmg.2018.05.012

    Article  PubMed  Google Scholar 

  32. Jordan JH, Vasu S, Morgan TM et al (2016) Anthracycline-associated T1 mapping characteristics are elevated independent of the presence of cardiovascular comorbidities in cancer survivors. Circ Cardiovasc Imaging 9(8):e004325. https://doi.org/10.1161/CIRCIMAGING.115.004325

    Article  PubMed  PubMed Central  Google Scholar 

  33. Meléndez GC, Jordan JH, D’Agostino RB, Vasu S, Hamilton CA, Hundley WG (2017) Progressive 3-month increase in LV myocardial ECV after anthracycline-based chemotherapy. JACC Cardiovasc Imaging 10(6):708–709. https://doi.org/10.1016/j.jcmg.2016.06.006

    Article  PubMed  Google Scholar 

  34. Muehlberg F, Funk S, Zange L et al (2018) Native myocardial T1 time can predict development of subsequent anthracycline-induced cardiomyopathy. ESC Hear Fail 5(4):620–629. https://doi.org/10.1002/ehf2.12277

    Article  Google Scholar 

  35. Galán-Arriola C, Lobo M, Vílchez-Tschischke JP et al (2019) Serial magnetic resonance imaging to identify early stages of anthracycline-induced cardiotoxicity. J Am Coll Cardiol 73(7):779–791. https://doi.org/10.1016/j.jacc.2018.11.046

    Article  PubMed  Google Scholar 

  36. Altaha MA, Nolan M, Marwick TH et al (2020) Can quantitative cmr tissue characterization adequately identify cardiotoxicity during chemotherapy?: Impact of temporal and observer variability. JACC Cardiovasc Imaging 13(4):951–962. https://doi.org/10.1016/j.jcmg.2019.10.016

    Article  PubMed  Google Scholar 

  37. Cardinale D, Colombo A, Torrisi R et al (2010) Trastuzumab-induced cardiotoxicity: Clinical and prognostic implications of troponin I evaluation. J Clin Oncol 28(25):3910–6. https://doi.org/10.1200/JCO.2009.27.3615

    Article  CAS  PubMed  Google Scholar 

  38. Oikonomou EK, Kokkinidis DG, Kampaktsis PN et al (2019) Assessment of prognostic value of left ventricular global longitudinal strain for early prediction of chemotherapy-induced cardiotoxicity: a systematic review and meta-analysis. JAMA Cardiol 4(10):1007–1018. https://doi.org/10.1001/jamacardio.2019.2952

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thavendiranathan P, Negishi T, Somerset E et al (2021) Strain-guided management of potentially cardiotoxic cancer therapy. J Am Coll Cardiol 77(4):392–401. https://doi.org/10.1016/j.jacc.2020.11.020

    Article  CAS  PubMed  Google Scholar 

  40. Neizel M, Lossnitzer D, Korosoglou G et al (2009) Strain-encoded (SENC) magnetic resonance imaging to evaluate regional heterogeneity of myocardial strain in healthy volunteers: comparison with conventional tagging. J Magn Reson Imaging 29(1):99–105. https://doi.org/10.1002/jmri.21612

    Article  PubMed  Google Scholar 

  41. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP (1988) Human heart: tagging with MR imaging--a new method for noninvasive assessment of myocardial motion. Radiology 169(1):59–63. https://doi.org/10.1148/radiology.169.1.3420283

    Article  CAS  PubMed  Google Scholar 

  42. Amzulescu MS, De Craene M, Langet H et al (2019) Myocardial strain imaging: Review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging 20(6):605–619. https://doi.org/10.1093/ehjci/jez041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu L, Germans T, Güçlü A, Heymans MW, Allaart CP, Van Rossum AC (2014) Feature tracking compared with tissue tagging measurements of segmental strain by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 16(1):10. https://doi.org/10.1186/1532-429X-16-10

    Article  PubMed  PubMed Central  Google Scholar 

  44. Augustine D, Lewandowski AJ, Lazdam M et al (2013) Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender. J Cardiovasc Magn Reson 15(1):8. https://doi.org/10.1186/1532-429X-15-8

    Article  PubMed  PubMed Central  Google Scholar 

  45. Houbois CP, Nolan M, Somerset E et al (2020) Serial cardiovascular magnetic resonance strain measurements to identify cardiotoxicity in breast cancer: comparison with echocardiography. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2020.09.039

    Article  PubMed  Google Scholar 

  46. Romano S, Judd RM, Kim RJ et al (2017) Association of feature-tracking cardiac magnetic resonance imaging left ventricular global longitudinal strain with all-cause mortality in patients with reduced left ventricular ejection fraction. Circulation 135(23):2313–2315. https://doi.org/10.1161/CIRCULATIONAHA.117.027740

    Article  PubMed  PubMed Central  Google Scholar 

  47. Morton G, Schuster A, Jogiya R, Kutty S, Beerbaum P, Nagel E (2012) Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking. J Cardiovasc Magn Reson 14(1):43. https://doi.org/10.1186/1532-429X-14-43

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jolly MP, Jordan JH, Meléndez GC, McNeal GR, D’Agostino RB, Hundley WG (2017) Automated assessments of circumferential strain from cine CMR correlate with LVEF declines in cancer patients early after receipt of cardio-toxic chemotherapy. J Cardiovasc Magn Reson 19(1):59. https://doi.org/10.1186/s12968-017-0373-3

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jordan JH, Sukpraphrute B, Meléndez GC, Jolly MP, D’Agostino RB, Hundley WG (2017) Early myocardial strain changes during potentially cardiotoxic chemotherapy may occur as a result of reductions in left ventricular end-diastolic volume: the need to interpret left ventricular strain with volumes. Circulation 135(25):2575–2577. https://doi.org/10.1161/CIRCULATIONAHA.117.027930

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ong G, Brezden-Masley C, Dhir V et al (2018) Myocardial strain imaging by cardiac magnetic resonance for detection of subclinical myocardial dysfunction in breast cancer patients receiving trastuzumab and chemotherapy. Int J Cardiol 261:228–233. https://doi.org/10.1016/j.ijcard.2018.03.041

    Article  PubMed  Google Scholar 

  51. Giusca S, Korosoglou G, Zieschang V et al (2018) Reproducibility study on myocardial strain assessment using fast-SENC cardiac magnetic resonance imaging. Sci Rep 8(1):14100. https://doi.org/10.1038/s41598-018-32226-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grover S, Leong DP, Chakrabarty A et al (2013) Left and right ventricular effects of anthracycline and trastuzumab chemotherapy: a prospective study using novel cardiac imaging and biochemical markers. Int J Cardiol 168(6):5465–7. https://doi.org/10.1016/j.ijcard.2013.07.246

    Article  PubMed  Google Scholar 

  53. Anon. PROactive Evaluation of Function to Avoid CardioToxicity. https://ClinicalTrials.gov/show/NCT03862131

  54. Ferreira VM, Schulz-Menger J, Holmvang G et al (2018) Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol 72(24):3158–3176. https://doi.org/10.1016/j.jacc.2018.09.072

    Article  PubMed  Google Scholar 

  55. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–23. https://doi.org/10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–26. https://doi.org/10.1056/NEJMoa1104621

    Article  CAS  PubMed  Google Scholar 

  57. Postow MA, Sidlow R, Hellmann MD (2018) Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 378(2):158–168. https://doi.org/10.1056/NEJMra1703481

    Article  CAS  PubMed  Google Scholar 

  58. Awadalla M, Golden DLA, Mahmood SS et al (2019) Influenza vaccination and myocarditis among patients receiving immune checkpoint inhibitors. J Immunother Cancer 7(1):53. https://doi.org/10.1186/s40425-019-0535-y

    Article  PubMed  PubMed Central  Google Scholar 

  59. Johnson DB, Balko JM, Compton ML et al (2016) Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med 375(18):1749–1755. https://doi.org/10.1056/NEJMoa1609214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mahmood SS, Fradley MG, Cohen JV et al (2018) Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol 71(16):1755–1764. https://doi.org/10.1016/j.jacc.2018.02.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang DY, Salem JE, Cohen JV et al (2018) Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol 4(12):1721–1728. https://doi.org/10.1001/jamaoncol.2018.3923

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bonaca MP, Olenchock BA, Salem JE et al (2019) Myocarditis in the setting of cancer therapeutics: proposed case definitions for emerging clinical syndromes in cardio-oncology. Circulation 140(2):80–91. https://doi.org/10.1161/CIRCULATIONAHA.118.034497

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schiffer WB, Deych E, Lenihan DJ, Zhang KW (2021) Coronary and aortic calcification are associated with cardiovascular events on immune checkpoint inhibitor therapy. Int J Cardiol 322:177–182. https://doi.org/10.1016/j.ijcard.2020.08.024

    Article  PubMed  Google Scholar 

  64. Zhang L, Awadalla M, Mahmood SS et al (2020) Cardiovascular magnetic resonance in immune checkpoint inhibitor-associated myocarditis. Eur Heart J 41(18):1733–1743. https://doi.org/10.1093/eurheartj/ehaa051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Curigliano G, Mayer EL, Burstein HJ, Winer EP, Goldhirsch A (2010) Cardiac toxicity from systemic cancer therapy: a comprehensive review. Prog Cardiovasc Dis 53(2):94–104. https://doi.org/10.1016/j.pcad.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  66. Yeh ETH, Bickford CL (2009) Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol 53(24):2231–47. https://doi.org/10.1016/j.jacc.2009.02.050

    Article  CAS  PubMed  Google Scholar 

  67. Darby SC, Ewertz M, McGale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368(11):987–98. https://doi.org/10.1056/NEJMoa1209825

    Article  CAS  PubMed  Google Scholar 

  68. Dastidar AG, Rodrigues JCL, Baritussio A, Bucciarelli-Ducci C (2016) MRI in the assessment of ischaemic heart disease. Heart 102(3):239–52. https://doi.org/10.1136/heartjnl-2014-306963

    Article  CAS  PubMed  Google Scholar 

  69. Motwani M, Swoboda PP, Plein S, Greenwood JP (2018) Role of cardiovascular magnetic resonance in the management of patients with stable coronary artery disease. Heart 104(11):888–894. https://doi.org/10.1136/heartjnl-2017-311658

    Article  CAS  PubMed  Google Scholar 

  70. MacHann W, Beer M, Breunig M et al (2011) Cardiac magnetic resonance imaging findings in 20-year survivors of mediastinal radiotherapy for Hodgkin’s disease. Int J Radiat Oncol Biol Phys 79(4):1117–23. https://doi.org/10.1016/j.ijrobp.2009.12.054

    Article  PubMed  Google Scholar 

  71. Fontana M, Pica S, Reant P et al (2015) Prognostic value of late gadolinium enhancement cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 132(16):1570–9. https://doi.org/10.1161/CIRCULATIONAHA.115.016567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maceira AM, Joshi J, Prasad SK et al (2005) Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111(2):186–93. https://doi.org/10.1161/01.CIR.0000152819.97857.9D

    Article  PubMed  Google Scholar 

  73. Vogelsberg H, Mahrholdt H, Deluigi CC et al (2008) Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis noninvasive imaging compared to endomyocardial biopsy. J Am Coll Cardiol 51(10):1022–30. https://doi.org/10.1016/j.jacc.2007.10.049

    Article  PubMed  Google Scholar 

  74. Martinez-Naharro A, Kotecha T, Norrington K et al (2019) Native T1 and Extracellular Volume in Transthyretin Amyloidosis. JACC Cardiovasc Imaging 2(5):810–819. https://doi.org/10.1016/j.jcmg.2018.02.006

    Article  Google Scholar 

  75. Fontana M, Banypersad SM, Treibel TA et al (2014) Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 7(2):157–65. https://doi.org/10.1016/j.jcmg.2013.10.008

    Article  PubMed  Google Scholar 

  76. Karamitsos TD, Piechnik SK, Banypersad SM et al (2013) Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 6(4):488–97. https://doi.org/10.1016/j.jcmg.2012.11.013

    Article  PubMed  Google Scholar 

  77. Baggiano A, Boldrini M, Martinez-Naharro A et al (2020) Noncontrast Magnetic Resonance for the Diagnosis of Cardiac Amyloidosis. JACC Cardiovasc Imaging 13(1 Pt 1):69–80. https://doi.org/10.1016/j.jcmg.2019.03.026

    Article  PubMed  Google Scholar 

  78. Kotecha T, Martinez-Naharro A, Treibel TA et al (2018) Myocardial Edema and Prognosis in Amyloidosis. J Am Coll Cardiol 71(25):2919–2931. https://doi.org/10.1016/j.jacc.2018.03.536

    Article  PubMed  Google Scholar 

  79. Banypersad SM, Sado DM, Flett AS et al (2013) Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 6(1):34–9. https://doi.org/10.1161/CIRCIMAGING.112.978627

    Article  PubMed  Google Scholar 

  80. Fontana M, Ćorović A, Scully P, Moon JC (2019) Myocardial amyloidosis: the exemplar interstitial disease. JACC Cardiovasc Imaging 12(11 Pt 2):2345–2356. https://doi.org/10.1016/j.jcmg.2019.06.023

    Article  PubMed  Google Scholar 

  81. Desai MY, Windecker S, Lancellotti P et al (2019) Prevention, diagnosis, and management of radiation-associated cardiac disease: JACC scientific expert panel. J Am Coll Cardiol 74(7):905–927. https://doi.org/10.1016/j.jacc.2019.07.006

    Article  PubMed  Google Scholar 

  82. Imazio M, Demichelis B, Parrini I et al (2005) Relation of acute pericardial disease to malignancy. Am J Cardiol 95(11):1393–4. https://doi.org/10.1016/j.amjcard.2005.01.094

    Article  PubMed  Google Scholar 

  83. Wang ZJ, Reddy GP, Gotway MB, Yeh BM, Hetts SW, Higgins CB (2003) CT and MR imaging of pericardial disease. Radiographics. https://doi.org/10.1148/rg.23si035504

    Article  PubMed  Google Scholar 

  84. White CS (1996) MR evaluation of the pericardium and cardiac malignancies. Magn Reson Imaging Clin N Am 4(2):237–51

    Article  CAS  PubMed  Google Scholar 

  85. Zurick AO, Bolen MA, Kwon DH et al (2011) Pericardial delayed hyperenhancement with CMR imaging in patients with constrictive pericarditis undergoing surgical pericardiectomy: a case series with histopathological correlation. JACC Cardiovasc Imaging 4(11):1180–91. https://doi.org/10.1016/j.jcmg.2011.08.011

    Article  PubMed  Google Scholar 

  86. Carver JR, Shapiro CL, Ng A et al (2007) American society of clinical oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol 25(25):3991–4008. https://doi.org/10.1200/JCO.2007.10.9777

    Article  CAS  PubMed  Google Scholar 

  87. Lancellotti P, Nkomo VT, Badano LP et al (2013) Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European association of cardiovascular imaging and the American society of echocardiography. J Am Soc Echocardiogr 26(9):1013–32. https://doi.org/10.1016/j.echo.2013.07.005

    Article  PubMed  Google Scholar 

  88. Fussen S, De Boeck BWL, Zellweger MJ et al (2011) Cardiovascular magnetic resonance imaging for diagnosis and clinical management of suspected cardiac masses and tumours. Eur Heart J 32(12):1551–60. https://doi.org/10.1093/eurheartj/ehr104

    Article  PubMed  Google Scholar 

  89. Caspar T, El Ghannudi S, Ohana M et al (2017) Magnetic resonance evaluation of cardiac thrombi and masses by T1 and T2 mapping: an observational study. Int J Cardiovasc Imaging 3(4):551–559. https://doi.org/10.1007/s10554-016-1034-6

    Article  Google Scholar 

  90. Pazos-López P, Pozo E, Siqueira ME et al (2014) Value of CMR for the differential diagnosis of cardiac masses. JACC Cardiovasc Imaging 7(9):896–905. https://doi.org/10.1016/j.jcmg.2014.05.009

    Article  PubMed  Google Scholar 

  91. Wassmuth R, Lentzsch S, Erdbruegger U et al (2001) Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging–a pilot study. Am Heart J 141(6):1007–13. https://doi.org/10.1067/mhj.2001.115436

    Article  CAS  PubMed  Google Scholar 

  92. Chaosuwannakit N, D’Agostino R, Hamilton CA et al (2010) Aortic stiffness increases upon receipt of anthracycline chemotherapy. J Clin Oncol 28(1):166–72. https://doi.org/10.1200/JCO.2009.23.8527

    Article  CAS  PubMed  Google Scholar 

  93. Jordan JH, D’Agostino RB, Hamilton CA et al (2014) Longitudinal assessment of concurrent changes in left ventricular ejection fraction and left ventricular myocardial tissue characteristics after administration of cardiotoxic chemotherapies using T1-weighted and T2-weighted cardiovascular magnetic resonance. Cir Cardiovas Imaging 7(6):872–9. https://doi.org/10.1161/CIRCIMAGING.114.002217

    Article  Google Scholar 

  94. Barthur A, Brezden-Masley C, Connelly KA et al (2017) Longitudinal assessment of right ventricular structure and function by cardiovascular magnetic resonance in breast cancer patients treated with trastuzumab: a prospective observational study. J Cardiovasc Magn Reson 19(1):44. https://doi.org/10.1186/s12968-017-0356-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srilakshmi Vallabhaneni.

Ethics declarations

Conflict of interest

Dr. Zhang has received consulting fees from Eidos Therapeutics. Dr. Mitchell has received research support from Pfizer. Dr. Lenihan has received consulting fees from Lilly, Roche, Pfizer, Prothena, and AstraZeneca; and has received research funding from Myocardial Solutions, Inc. All other authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Informed consent

All authors participated in the writing and/or final review and approval of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallabhaneni, S., Zhang, K.W., Alvarez-Cardona, J.A. et al. Role of cardiovascular magnetic resonance in early detection and treatment of cardiac dysfunction in oncology patients. Int J Cardiovasc Imaging 37, 3003–3017 (2021). https://doi.org/10.1007/s10554-021-02271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10554-021-02271-7

Keywords