Skip to main content
Log in

Layer-specific global longitudinal strain obtained by speckle tracking echocardiography for predicting heart failure and cardiovascular death following STEMI treated with primary PCI

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate layer-specific global longitudinal strain (GLS), obtained by speckle tracking, in predicting outcomes following ST-segment elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention (pPCI). Echocardiography, including layer-specific GLS, was performed at median two days after the STEMI in a prospective study of STEMI patients treated with pPCI between September 2006 and December 2008. The outcome was the composite of heart failure hospitalization and/or cardiovascular death (HF/CVD). A total of 349 patients were included. Mean age was 62.2 ± 11.5 years, 76% were male, and mean ejection fraction (LVEF) was 46 ± 9. Seventy-seven (22%) patients developed HF/CVD during median follow-up 5.4 years. Patients with HF/CVD had lower absolute values for all GLS-layers: endocardial (GLSEndo) 11.4%vs 14.5% (p < 0.001), midmyocardial (GLSMid) 9.8% vs 12.5% (p < 0.001) and epicardial (GLSEpi) 8.5% vs 10.9% (p < 0.001). In unadjusted analysis, all layers were significant predictors of HF/CVD; hazard ratio (HR) per 1% decrease for GLSEndo: HR 1.18 (95%CI 1.11–1.25), GLSMid: HR 1.22 (95%CI 1.14–1.30) and GLSEpi: HR 1.26 (95%CI 1.16–1.36), p < 0.0001 for all. The risk of HF/CVD increased incrementally with increasing tertiles for all layers, being more than three times higher in 3rd tertile compared to 1st tertile. In multivariable models, including baseline clinical and echocardiographic parameters, only GLSMid and GLSEpi remained independent predictors of HF/CVD. Global longitudinal strain obtained from all myocardial layers were significant predictors of incident HF and CVD following STEMI, however, only GLSMid and GLSEpi remained independent predictors after multivariable adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Olsen FJ, Jensen J, Pedersen S et al (2016) A novel echocardiographic risk stratification scheme for predicting heart failure hospitalization and cardiovascular mortality after ST-segment elevation myocardial infarction. J Am Coll Cardiol 67(13):480. https://doi.org/10.1016/S0735-1097(16)30481-8

    Article  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS et al (2016) American Heart Association Statistics Committee, Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2016 update: a report from the American Heart Association. Circulation 133:e38-360. https://doi.org/10.1161/CIR.0000000000000350

    Article  PubMed  Google Scholar 

  3. Bloch Thomsen PE, Jons C, Raatikainen MJP et al (2010) Cardiac Arrhythmias and Risk Stratification After Acute Myocardial Infarction (CARISMA) Study Group. Long-term recording of cardiac arrhythmias with an implantable cardiac monitor in patients with reduced ejection fraction after acute myocardial infarction: the Cardiac Arrhythmias and Risk Stratification After Acute Myocardial Infarction (CARISMA) study. Circulation 122:1258–1264. https://doi.org/10.1161/CIRCULATIONAHA.109.902148

    Article  PubMed  Google Scholar 

  4. O’Gara PT, Kushner FG, Ascheim DD et al (2012) 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 61:e78-140. https://doi.org/10.1161/CIR.0b013e3182742cf6

    Article  PubMed  Google Scholar 

  5. Fox KF, Cowie MR, Wood DA et al (2001) Coronary artery disease as the cause of incident heart failure in the population. Eur Heart J 22:228–236. https://doi.org/10.1053/euhj.2000.2289

    Article  CAS  PubMed  Google Scholar 

  6. Lloyd-Jones DM, Larson MG, Leip EP et al (2002) Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation 106:3068–3072. https://doi.org/10.1161/01.cir.0000039105.49749.6f

    Article  PubMed  Google Scholar 

  7. Swedberg K, Cleland J, Dargie H et al (2005) Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): the task force for the diagnosis and treatment of chronic heart failure of the European Society of Cardiology. Eur Heart J 26:1115–1140. https://doi.org/10.1093/eurheartj/ehi204

    Article  PubMed  Google Scholar 

  8. Skaarup KG, Iversen A, Jørgensen PG et al (2018) Association between layer-specific global longitudinal strain and adverse outcomes following acute coronary syndrome. Eur Heart J Cardiovasc Imaging 19(12):1334–1342. https://doi.org/10.1093/ehjci/jey004

    Article  PubMed  Google Scholar 

  9. Ersbøll M, Valeur N, Mogensen UM et al (2013) Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol 61(23):2365–2373. https://doi.org/10.1016/j.jacc.2013.02.061

    Article  PubMed  Google Scholar 

  10. Møller JE, Pellikka PA, Hillis GS et al (2006) Prognostic importance of diastolic function and filling pressure in patients with acute myocardial infarction. Circulation 114:438–444. https://doi.org/10.1161/CIRCULATIONAHA.105.601005

    Article  PubMed  Google Scholar 

  11. Park SJ, Park JH, Lee HS et al (2015) Impaired RV global longitudinal strain is associated with poor long-term clinical outcomes in patients with acute inferior STEMI. JACC Cardiovasc Imaging 8:161–169. https://doi.org/10.1016/j.jcmg.2014.10.011

    Article  PubMed  Google Scholar 

  12. Haeck MLA, Hoogslag GE, Boden H et al (2016) Prognostic implications of elevated pulmonary artery pressure after ST-segment elevation myocardial infarction. Am J Cardiol 118:326–331. https://doi.org/10.1016/j.amjcard.2016.05.008

    Article  PubMed  Google Scholar 

  13. Kümler T, Gislason GH, Køber L et al (2010) Persistence of the prognostic importance of left ventricular systolic function and heart failure after myocardial infarction: 17-year follow-up of the TRACE register. Eur J Heart Fail 12:805–811. https://doi.org/10.1093/eurjhf/hfq071

    Article  PubMed  Google Scholar 

  14. Spencer FA, Meyer TE, Gore JM et al (2002) Heterogeneity in the management and outcomes of patients with acute myocardial infarction complicated by heart failure: the National Registry of Myocardial Infarction. Circulation 105:2605–2610. https://doi.org/10.1161/01.cir.0000017861.00991.2f

    Article  PubMed  Google Scholar 

  15. Biering-Sørensen T, Solomon SD (2015) Assessing contractile function when ejection fraction is normal: a case for strain imaging. Circ Cardiovasc Imaging 8(11):e004181. https://doi.org/10.1161/CIRCIMAGING.115.004181

    Article  PubMed  Google Scholar 

  16. Blessberger H, Binder T (2010) Non-invasive imaging: two-dimensional speckle tracking echocardiography: basic principles. Heart Br Card Soc 96:716–722. https://doi.org/10.1136/hrt.2007.141002

    Article  Google Scholar 

  17. Mor-Avi V, Lang RM, Badano LP et al (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 24(3):277–313. https://doi.org/10.1016/j.echo.2011.01.015

    Article  PubMed  Google Scholar 

  18. Joyce E (2014) LVEF: long-standing monarch of systolic dysfunction, buckling under the strain? Eur J Heart Fail 16:1270–1272. https://doi.org/10.1002/ejhf.200

    Article  PubMed  Google Scholar 

  19. Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart Br Card Soc 100:1673–1680. https://doi.org/10.1136/heartjnl-2014-305538

    Article  Google Scholar 

  20. Sengeløv M, Jørgensen PG, Jensen JS et al (2015) Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. JACC Cardiovasc Imaging 8:1351–1359. https://doi.org/10.1016/j.jcmg.2015.07.013

    Article  PubMed  Google Scholar 

  21. Biering-Sørensen T, Knappe D, Pouleur AC et al (2017) Regional longitudinal deformation improves prediction of ventricular tachyarrhythmias in patients with heart failure with reduced ejection fraction: a MADIT-CRT substudy (Multicenter automatic defibrillator implantation trial-cardiac resynchronization therapy). Circ Cardiovasc Imaging 10(1):e005096. https://doi.org/10.1161/CIRCIMAGING.116.005096

    Article  PubMed  Google Scholar 

  22. Olsen FJ, Pedersen S, Jensen JS et al (2016) Global longitudinal strain predicts incident atrial fibrillation and stroke occurrence after acute myocardial infarction. Medicine (Baltimore) 95(44):e5338. https://doi.org/10.1097/MD.0000000000005338

    Article  Google Scholar 

  23. Russo C, Jin Z, Elkind MSV et al (2014) Prevalence and prognostic value of subclinical left ventricular systolic dysfunction by global longitudinal strain in a community-based cohort. Eur J Heart Fail 16:1301–1309. https://doi.org/10.1002/ejhf.154

    Article  PubMed  Google Scholar 

  24. MacIver DH (2012) The relative impact of circumferential and longitudinal shortening on left ventricular ejection fraction and stroke volume. Exp Clin Cardiol 17(1):5–11

    PubMed  PubMed Central  Google Scholar 

  25. Adamu U, Schmitz F, Becker M et al (2009) Advanced speckle tracking echocardiography allowing a three-myocardial layer-specific analysis of deformation parameters. Eur J Echocardiogr 10(2):303–308. https://doi.org/10.1093/ejechocard/jen238

    Article  PubMed  Google Scholar 

  26. Kim SA, Park SM, Kim MN et al (2016) Assessment of left ventricular function by layer-specific strain and its relationship to structural remodelling in patients with hypertension. Can J Cardiol 32(2):211–216. https://doi.org/10.1016/j.cjca.2015.04.025

    Article  PubMed  Google Scholar 

  27. Sarvari SI, Haugaa KH, Zahid W et al (2013) Layer-specific quantification of myocardial deformation by strain echocardiography may reveal significant CAD in patients with non-ST-segment elevation acute coronary syndrome. JACC Cardiovasc Imaging 6(5):535–544. https://doi.org/10.1016/j.jcmg.2013.01.009

    Article  PubMed  Google Scholar 

  28. Zhang L, Wu WC, Ma H et al (2016) Usefulness of layer-specific strain for identifying complex CAD and predicting the severity of coronary lesions in patients with non-ST-segment elevation acute coronary syndrome: compared with syntax score. Int J Cardiol 223:1045–1052. https://doi.org/10.1016/j.ijcard.2016.08.277

    Article  PubMed  Google Scholar 

  29. Hagemann C, Hoffmann S, Andersen R et al (2017) Layer-specific strain analysis by two-dimensional speckle tracking echocardiography: improvement of coronary artery disease diagnostics in patients with stable Angina Pectoris. J Am Coll Cardiol 69:1634. https://doi.org/10.1016/S0735-1097(17)35023-4

    Article  Google Scholar 

  30. Hagemann CE, Hoffmann S, Olsen FJ et al (2016) Layer-specific global longitudinal strain reveals impaired cardiac function in patients with reversible ischemia. J Am Coll Cardiol 67:1592. https://doi.org/10.1016/S0735-1097(16)31593-5

    Article  Google Scholar 

  31. Biering-Sørensen T, Mogelvang R, Søgaard P et al (2013) Prognostic value of cardiac time intervals by tissue Doppler imaging M-mode in patients with acute ST-segment-elevation myocardial infarction treated with primary percutaneous coronary intervention. Circ Cardiovasc Imaging 6:457–465. https://doi.org/10.1161/CIRCIMAGING.112.000230

    Article  PubMed  Google Scholar 

  32. Biering-Sørensen T, Jensen JS, Pedersen SH et al (2016) Regional longitudinal myocardial deformation provides incremental prognostic information in patients with ST-segment elevation myocardial infarction. PLoS ONE 11(6):e0158280. https://doi.org/10.1371/journal.pone.0158280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270. https://doi.org/10.1093/ehjci/jev014

    Article  PubMed  Google Scholar 

  34. Howard-Quijano K, McCabe M, Cheng A et al (2016) Left ventricular endocardial and epicardial strain changes with apical myocardial ischemia in an open-chest porcine model. Physiol Rep 4(24):e13042. https://doi.org/10.14814/phy2.13042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leitman M, Lysiansky M, Lysyansky P et al (2010) Circumferential and longitudinal strain in 3 myocardial layers in normal subjects and in patients with regional left ventricular dysfunction. J Am Soc Echocardiogr 23(1):64–70. https://doi.org/10.1016/j.echo.2009.10.004

    Article  PubMed  Google Scholar 

  36. Tarr A, Stöbe S, Trache T et al (2013) The impact of fore-shortening on regional strain—a comparison of regional strain evaluation between speckle tracking and tissue velocity imaging. Ultraschall Med 34:446–453. https://doi.org/10.1055/s-0032-1330521

    Article  CAS  PubMed  Google Scholar 

  37. Shi J, Pan C, Kong D et al (2016) Left ventricular longitudinal and circumferential layer-specific myocardial strains and their determinants in healthy subjects. Echocardiography 33(4):510–518. https://doi.org/10.1111/echo.13132

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed substantially to this paper.

Corresponding author

Correspondence to Gabriela Lladó Grove.

Ethics declarations

Conflict of interest

Peter Godsk Jørgensen has received lecture fees from Novo Nordisk.

Ethics approval

Anonymized data originated from a prospective study that was approved by a regional scientific ethics committee and complied with the declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grove, G.L., Pedersen, S., Olsen, F.J. et al. Layer-specific global longitudinal strain obtained by speckle tracking echocardiography for predicting heart failure and cardiovascular death following STEMI treated with primary PCI. Int J Cardiovasc Imaging 37, 2207–2215 (2021). https://doi.org/10.1007/s10554-021-02202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02202-6

Keywords

Navigation